

Robust sensor systems using evolvable hardware

James Hereford, Charles Pruitt

Murray State University
Murray, KY 42071

James.Hereford@murraystate.edu

Abstract

 This paper describes a system that is robust with
respect to sensor failure. The system utilizes multiple
sensor inputs (three in this case) connected to a
programmable device (FPAA) that averages the
outputs from the sensors. The programmable device is
programmed using evolvable hardware (EHW)
techniques. If one or more of the input sensors fails,
then the controller detects the failure and initiates a
reprogramming of the circuit. The system then
continues to operate with a reduced number of sensors.
 The failure detection is accomplished by comparing
the actual system output with a Kalman filter estimate
of the output. If the actual output and the filter
estimate differ by amount greater than the system
uncertainty, then a failure is noted. The system is
robust to several different failure modes: sensor fails
as open circuit, sensor fails as short circuit, multiple
sensors fail, FPAA input amplifier failure.
 The experimental setup is described as well as
results using simulated inputs (individual voltage
sources) and actual temperature sensors (PRTDs).
The paper also discusses some interesting results as
well as issues that must be overcome to expand the
system.

1.0 Introduction

 The goal of this research is to develop a system that
is resistant or tolerant of processor failures; that is,
fault tolerant. Fault tolerance is the ability of electrical
components to continue to function despite failures
(faults) in the hardware. The possible faults will be
originally limited to failures in one of the sensors but
faults in other parts of the system (notably, one of the
processing stages) will be considered. The result is a
system that can suffer damage and recover without
direct human intervention. The final demonstration is
to have the system running then smash a sensor with a
hammer or short out an input on the FPAA and have
the system recover.

 The hardware setup incorporates multiple (co-
located) sensors instead of a single sensor in the
electronic system. A processing system is then derived
based on evolvable hardware principles to take the
average of all N sensors as the system output. Step 2 is
to let the system run indefinitely. For testing purposes,
sensor failures are artificially introduced. Once a
failure in a sensor is detected, the processing hardware
is “re-designed” based on evolvable hardware
principles to take the average of the input sensors.
 Developing a system that is fault tolerant based on
reprogramming will be a significant achievement.
Other researchers have built systems that “repair”
themselves autonomously [Sipper 2000] but to our
knowledge no one has yet reprogrammed a broken
system using Genetic Algorithm techniques. Other
evolvable hardware applications have reprogrammed
the hardware due to changes in the mission (e.g., robot
controllers) [Thompson 1996]. A second new
achievement would be the development of a system
that is robust to sensor failures. This will be the first
system that specifically includes additional sensor
inputs and reprograms the hardware due to sensor
failure.
 This research builds on several recently-developed
techniques and concepts. The first concept is the
application of evolvable hardware techniques to
FPAAs. Evolvable techniques have had some success
when applied to FPAAs [Flockton 1998, Flockton
1999] but they were not used to develop fault tolerant
systems. As mentioned previously, other researchers
have investigated the use of evolvable hardware
techniques to provide robust, fault-tolerant hardware
[Thompson 1996, Ortega 1999, Keymeulen 2000,
Canham 2002]. These systems, however, are different
from the approach presented in this research proposal.
Ortega et al. [Ortega 1999] do not use evolution as an
adaptive repair mechanism, even though their approach
is based on bio-inspired hardware. Keymeulen et al.
[Keymeulen 2000] and Canham et al. [Canham 2002]
incorporate fault tolerance into the design (training) of
the hardware circuit. That is, they inject the known
possible faults during the evolutionary process but do

mailto:James.Hereford@murraystate.edu

not address event changes (e.g., processor or sensor
failure) or reprogramming.

2.0 System overview

2.1 System diagram

 The goal is to evolve a circuit that takes the average
of three input sensors. (See Figure 1.) The sensors
could be any type (pressure, temperature, humidity,
etc) but for this research temperature sensors will be
used. Temperature sensors, both thermocouples and
platinum resistive temperature detectors (PRTDs), are
cheap and require little supporting circuitry. All of the
temperature sensors will be located near each other on
a metal bar (high thermal conductivity) that can be
raised or lowered in temperature. The output from
each sensor circuit is a small voltage signal (on the
order of a few milliVolts) that will be input directly
into the FPAA chip. Voltage levels are not a problem
since FPAAs have built-in amplifers, if needed.

Fi
on
se

re
w
Th
co
id
on
an
FP
Se
am
am

Fi
fo
tw
m
in
am
ca
pa
fe
in

to +10 (excluding zero). Two IAs, IA1 and IA4, are
equipped with an analog multiplexor that allows the
input to the IA to come from one of two sources. In
our experiments, one IA input was routed to an
external input and the other input was left unconnected
(input = 0V). By setting the multiplexor to use the
unconnected input, we could effectively set the gain to
zero for that IA.
 The inputs into the two MDACs can be either
external inputs, internal inputs, or fixed DC voltages
(from the internal reference voltages). The multiplying
function means that the MDAC input is attenuated by a
value corresponding to an 8-bit code. The attenuation
can range from –1.0 to +.99. The OAs can be
configured to function as an amplifier, low-pass filter
(with adjustable cutoff frequency), integrator or
comparator. The output voltage is limited to 0V to
+5V.

T1
3

Processing circuit
(FPAA) Tavg
T

T2
gure 1: System level diagram. A circuit is evolved
 an FPAA that takes the average of 3 input
nsors.

Field Programmable Analog Arrays (FPAA) are a
latively new technology that is a spinoff of the more
ell-known digital Field Programmable Gate Array.
e FPAA is a single chip that is divided into
nfigurable blocks. Some FPAAs have multiple
entical blocks that can be programmed to perform
e of a variety of operations: addition, negation, log,
tilog, amplify, differentiate, integrate, filter. Simpler
AAs, such as the ispPAC30 from Lattice
miconductor, have programmable input and output
plifiers with programmable interconnects among the
plifiers.
The architecture of the ispPAC30 is shown in

gure 2. The PAC30 contains four differential inputs,
ur input amplifiers (IA), two output amplifiers (OA),
o internal adjustable voltage references, and two
ultiplying digital-analog converters (MDACs). Any
put pin can be routed to any of the four input
plifiers or to the MDACs. In addition, either OA

n be routed to any IA or MDAC. This allows the
c30 to be configured to do signal summation,
edback, or cascade gains. The IAs multiply their
put by the gain setting; the gain can be set from -10

Figure 2: Architecture of the ispPAC30 FPAA from
Lattice Semiconductor.

 The FPAA is chosen rather than the FPGA because
it eliminates the need for multiple Analog-to-Digital
(A/D) converters. With 3 input sensors, the system
would require 3 A/Ds. With the FPAA, the analog
outputs from the temperature sensors can be sent
directly into the FPAA; if amplification is required,
then the FPAA can be programmed to provide
amplification. In many cases, the final (averaged)
temperature measurement needs to be interfaced to a
digital circuit, but then only a single A/D is required.
Reducing the number of A/Ds reduces the weight, cost,
and power consumption of the entire system.
 There are two main advantages for using evolvable
hardware techniques to initially program the FPAA.
First, applying evolutionary techniques to hardware
design has led to many innovative designs in analog
and digital circuits. Applying them here could also
lead to a very innovative approach. Second, some fault
tolerance arises just from the nature of the evolutionary
process. The robust designs will “survive” and have a

greater affect on future generations of designs than
non-robust designs [Thompson 1996]. Thus, the
design using EHW principles could be more robust
than a design based on conventional human expert
techniques.
 Once a failure has been detected, the processing
circuit needs to be reprogrammed to take the average of
the remaining sensors. Since the goal is to have
autonomous operation, it is assumed that that it is
unknown which sensor has failed. Therefore,
evolvable hardware techniques are applied to the now-
damaged circuit.
 To apply evolvable hardware techniques, a fitness
function must be computed during reprogramming. To
compute the fitness function, the last “good” data value
will be used. That is, the previous two data points of
the filtered output will be saved. If a fault is detected,
then the proper output is known and is used to
reprogram the averaging circuit.
 We note that a side benefit of incorporating multiple
sensors is that the final system output will have a
smaller uncertainty (as measured by the standard
deviation) than if only a single sensor was used.
Specifically, if the N sensors have identical
characteristics, each with a measurement standard
deviation of σ, then the standard deviation of the
measurement average will be (1/ N)*σ. Even for a
relatively small number of sensors, the overall
measurement standard deviation drops quickly; if N =
5, the standard deviation drops to .45σ or less than half
the standard deviation from a single sensor.

2.2 Failure Detection

 An important step is to introduce a failure (or
failures) into one of the sensors and subsequently
detect the failure. Introducing a failure is relatively
easy but detecting the failure is not a trivial matter. A
sensor failure can be simulated by disconnecting the
sensor or by more extreme methods (e.g., use a
hammer). A failure in an FPAA module can be
simulated by either setting the block to “Off” or
externally grounding the inputs for that block.
 The failure detection is accomplished by comparing
the actual system (FPAA) output with a Kalman filter
estimate of the output [Hereford 2004]. If the actual
output and the filter estimate differ by amount greater
than the system uncertainty, then a failure is noted.
The predicted output, denoted by , is determined by
computing an estimate for the next data point using a
Kalman filter update from the previous data point. The
system uncertainty is determined by the sum of the
process noise, given by a variance-like parameter Q,
and the measurement noise, given by the parameter R.

If the FPAA output is denoted by z, then a failure is
detected if

−x̂

 . RQxz +>− − |ˆ|
See [Hereford 2004] for more background on the
failure detection system.
 It is difficult to measure Q and R. Therefore, for the
robust sensor experiments we selected Q and R based
on the expected output performance. We wanted to
detect a drop of at least 10 %. Since the expected
output of the averaging system is 0.4 V (at room
temperature), that means Q + R must be equal to or less
than 0.1*0.4 or 0.04 V. We set Q fairly low, Q = 0.01
V, because this allowed more flexibility in tuning the
filter. This led to R = 0.03 V. We note that several
different values for Q and R were used in this
experiment. The performance of the algorithm, i.e., its
ability to detect failure, was not sensitive to minor
changes in the ratio between Q and R.

2.3 Evolvable algorithm overview

 The evolvable algorithm used to program (and
reprogram) the FPAA is a standard genetic algorithm
[Goldberg 1989] with crossover and mutation. The
selection method is roulette wheel selection. The
probability of crossover is 0.7 and the probability of
mutation is 1/8. The population size, n, and the
number of generations, ngen, were varied based on
formulas derived in [Hereford 2004a]. In general, for
the 30 bit programming string, n was 40 and ngen was
15.
 Elitism was used in all of the experiments to insure
that the fittest member of each generation is guaranteed
a spot in the following generation. The fittest member
of the each generation shows up in the following
generation as the last individual. This makes tracking
the results of the experiment simple.

3.0 Results

 Lattice Semiconductor provides graphical, drag and
drop software that runs on a host PC to program the
ispPAC30. Upon request, they also offered C-code
that allowed us to program the device directly using a
programming string of bits. A complete configuration
of the PAC30 requires 112 bits. However, for our
EHW experiments we used two shorter bit strings. The
first string was only 20 bits and was used to evolve the
gains on three input amplifiers (4 bits each) and one
MDAC (8 bits). For the 20 bit case, the
interconnections among the IAs, MDACS, and OAs
were fixed. The second string length was 30 bits. This
programming string evolved the gains on the 4 IAs,
one MDAC and the two on-board multiplexors. Again
the interconnections were fixed. We note that the

interconnections among the PAC30 components could
also be evolved but (a) it would take longer and (b) we
would then have to monitor both outputs to check for
proper configurations.

3.1 Results from voltage inputs

 The first step was to successfully program the
ispPAC30 with the 20-bit programming string. To
program the three IAs and an MDAC, the 20-bit string
is broken up into four segments. Eight bits are used to
program the MDAC, and three groups of four bits each
are used to program each of the IAs. All internal
routing of the device was done manually by setting
commands within the code. The 8-bit MDAC string
allowed for 255 possible combinations, which
correspond to an MDAC gain of –1.0 to +0.999. The
IAs were limited to integer gain values from 1 to 10.
 The three input voltages to the IAs were from a DC
power supply. Three identical 50mV signals were
used, and the desired (target) output was set at 500mV.
The population size was set to twenty-five and ten runs
were conducted. Brief results from these runs can be
seen in Table 1. This table tracks the progression of
each generation by showing the last member.
Although thirty-five generations were used, only 14 are
shown in the table. This is because every run
conducted converged within 14 generations (in many
cases, as few as 3 generations were needed). The
average number of generations needed to converge to
an acceptable solution (within 2% of the desired
output) was 3.1. This means that, on average, only 75
out of over one million possible combinations were
evaluated before an acceptable solution was found.
Also, it took an average of 8.7 generations to converge
to a solution that was within 1% of the desired output.
 As a step up in complexity, the programming string
was increased to 30 bits. The extra bits were used to
set the gain on the fourth IA, set the polarity on all four
IAs, and select which multiplexer would be used.
Adding the polarity bit allowed each of the gains on the
IAs to be set to integer values of –10 to 10, excluding

zero.
 The population size was increased to 40. Although
the search space had increased, the average number of
generations (based on 10 runs) needed to find a
solution within 1% of the desired output was 7.2. It
takes less than one second for each individual to be
randomly generated, programmed to the chip, and
evaluated. Therefore, the FPAA can be fully
configured within four to five minutes; that is, it takes
the evolutionary algorithm approximately four minutes
to program the device and, if necessary, reprogram the
device for a 20 bit programming string.
 Several simulated failures were devised and tested.
These include a single input failing as an open circuit, a
single input failing as a short circuit, two inputs failing,
three inputs failing, and a simulated IA failure. In all
cases, the failure was detected successfully. For all
failures except one, the circuit was reprogrammed to
within 1.1% of the desired output. The only failure
that the system was unable to recover from was when
all three sensors failed.

3.2 Experimental Results

 Once the system worked with fixed, stable voltages,
we switched to real sensor inputs. Thermocouples
were considered but ultimately rejected. The main
problem with thermocouples is the fact that the voltage
they produce at room temperature is very small
(<1mV) and at times would even be negative.
Programming the FPAA for a voltage near zero was
very difficult since the global maximum (1 mV) for
the genetic algorithm was at a step continuity (0 mV).
Therefore, we chose to use platinum resistance
temperature detectors, or PRTDs. There were several
reasons for this decision.
 First, the PRTD is a more linear device than the
thermocouple, meaning that converting a voltage to a
temperature is relatively simple. Second, the PRTD
itself is just an element that changes resistance with
changing temperature. It is not a self-powered sensor.
Therefore, by placing it in one leg of a Wheatstone

Run
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.541 0.542 0.507 0.51 0.51 0.505 0.5 0.49 0.49 0.49 0.492 0.492 0.507 0.5
2 0.466 0.463 0.503 0.507 0.506 0.503 0.502 0.505 0.507 0.505 0.505 0.505 0.506 0.505
3 0.476 0.523 0.509 0.503 0.504 0.505 0.502 0.5 0.504 0.502 0.5 0.5 0.499 0.501
4 0.636 0.508 0.507 0.505 0.503 0.5 0.499 0.5 0.502 0.502 0.5 0.501 0.502 0.501
5 0.417 0.417 0.507 0.505 0.505 0.497 0.497 0.498 0.495 0.496 0.501 0.497 0.497 0.497
6 0.503 0.505 0.505 0.51 0.508 0.506 0.507 0.506 0.505 0.509 0.505 0.505 0.507 0.505
7 0.482 0.482 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.498 0.498 0.502 0.502 0.502
8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
9 0.526 0.504 0.504 0.504 0.504 0.504 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
10 0.493 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 1. Best result from generations 1 through 14. Target output is 0.5 V. Results are shown for 10
separate GA runs.

bridge, we can tailor the output voltage to meet our
requirements.
 However, there are some drawbacks to using
PRTDs. As stated above, the PRTD is not a self-
powered sensor. Because of the fact that it is a
resistance element and you must run current through it
to receive an output voltage, there are self-heating
problems that can arise from the I2R power losses.
Initially, we had planned to utilize the same 5V power
supply that powers the FPAA chip to power a
Wheatstone bridge circuit. However, this caused rather
large (10+°C) errors in the temperature measurement.
To alleviate the self-heating problem, the Wheatstone
bridge circuit was powered by 1V. A diagram of this
circuit is shown in Figure 3.

Figure 3: Wheatstone bridge circuit used with each
PRTD sensor.

 With the errors due to the PRTD at a minimum,
three bridge circuits like the one in Figure 3 were
constructed to provide the input voltages to the FPAA.
The output of these bridges is on the order of 40 mV at
room temperature. The next step was to run another
experiment with simulated errors to test the ability of
the program to recover when the inputs to the FPAA
came from real temperature sensors.
 In all of the experiments, the output voltage of each
of the three bridges was measured before the initial
programming step. Ten times the average of these
three voltages was used as the target value during
initial programming. (The target value is shown in the
first column of Table 2.) The three bridge outputs were
routed to input amplifiers IA1, IA2, and IA4 on the
FPAA. Failures were introduced to input 1 (for one
failure) and inputs 1 and 4 (for two failures), since the
gains of IA1 and IA4 could be set to zero. Also, as in
experiments with the DC voltages, the last acceptable
output before the failure occurred was used as the new
target value in the reprogramming step.
 The failures in this set of experiments were the same
as the ones used in the previous set of experiments.
One or two PRTDs were replaced with either an open
or short circuit to simulate different types of failure.
When the PRTD fails as an open circuit, the output of
the bridge is 0.5V; as a short circuit, the output is –
0.5V. An FPAA failure was also simulated by
disconnecting one of the lead wires on an IA. In

addition to monitoring the ability of this system to
recover from each of the introduced failures, we also
noted the physical configuration of the FPAA after the
original programming and after the reprogramming
step had been completed. This allowed us to track
what changes had been made to the configuration.
Table 2 gives a brief description of each failure and the
results obtained from the trial run. In addition to
voltage outputs from the PAC30, the table also
indicates how close to the target value the
configuration is and the physical configuration of the
chip after both programming and reprogramming.
 Several conclusions are immediately apparent from
Table 2. First, the reprogramming did not take longer
than the initial programming. For the reprogramming
step, we started with a random initial population and
did not use the previous best result (or previous best
generation) as a starting point. For an operational
system, we would like quick reprogramming to (a)
minimize down time and (b) reduce errors due to
environment change. Second, the gain on the faulty
sensor was reduced to zero or set to a small value for
each failure. One notable example is the case where
two PRTD sensors were set to open circuits. The
Genetic Algorithm set the gains for the two damaged
sensors to 0, even though it was unknown which
sensors were damaged. To then reach the target output,
the gain of the third IA and the MDAC had to be set to
the maximum value. Third, the system is able to
recover from any off-chip faults and even some on-
chip faults. The last row in Table 2 shows the results
from a simulated IA failure (the input leads were
shorted out leading to the IA output always being
zero). The system was able to detect a fault and then
reprogram.
 The only failure from which our system was not
able to recover was total sensor failure. As long one
sensor was operational, the reprogramming step was
successful. For example, Figure 4 shows the
programming and reprogramming steps of the
experiment when two of the three inputs fail as open
circuits. Each data point represents the last individual
in each generation. This last individual is the fittest
member from the previous generation. The dotted lines
represent ±5% of the target value. As one can see,
within three to four generations, a good solution has
been reached. Further generations only serve to refine
the solution. Ten generations were used in the initial
programming step. The solution was within 0.05% of
the target value. Then the failure was introduced and
detected. The reprogramming step was initiated and
arrived at a solution that was within 4% of the target
value.

Target
value

Output after
initial

programming,
(% of target)

Setup after
programming

(IA1, IA2, IA4,
MDAC)

of
generations
to converge

Failure
Type

Output after
reprogramming,

(% of target)

Setup after
reprogramming
(IA1, IA2, IA4,

MDAC)

of
generations
to converge

0.4147V 0.4128 V
(0.46%)

-1, 8, 10, 0.566 3 1 PRTD
open

circuit

0.406923 V
(1.417%)

0, 1, 10, 0.857 2

0.4147V 0.415554 V
(0.206%)

3, -1, 10, 0.810 3 1 PRTD
short

circuit

0.416785 V
(0.296%)

-3, -7, -7, 0.448 4

0.4196V 0.419595 V
(0.0012%)

10, 10, 7, 0.37 4 2 PRTDs
open

circuit

0.41889 V
(0.168%)

0, 10, 0, 0.999 8

0.4445V 0.448942 V
(0.999%)

10, 4, 0, 0.739 3 2 PRTDs
short
cicuit

0.455566 V
(1.475%)

-3, 10, 0, 0.228 4

0.4453V 0.447538 V
(0.496%)

-4, 6, 10, 0.779 5 Simulated
IA failure

0.448125 V
(0.131%)

-2, 10, 6, 0.582 2

Table 2: Results before and after each of the failures. The left 4 columns show FPAA configuration and
output after initial programming and the right 3 columns show the configuration after the failure and after
reprogramming.

Figure 4. Error detection and reprogramming.
Triangles show circuit output during initial
programming. Failure (2 inputs fail as open
circuits) occurs (output is off chart), then circles
show circuit output during reprogramming.

4.0 Discussion

4.1 Interesting results

One of the interesting results of these experiments is
the fact that many different FPAA configurations give
the same output voltage. Thus, there are many
redundant configurations that the genetic algorithm
may find. For example, one particular solution may
rely entirely on sensors 2 and 3. This solution is
insensitive to a failure of sensor 1. If sensor 1 fails, no

error is detected. This occurred once during one of the
experiments conducted with the voltage inputs. After
initial programming was complete, input 1 was
disconnected. This resulted in a change of less than
1% in the output from the chip. Therefore, no error
was detected. There are many other possibilities that
could have similar results.
 Another interesting observation is the ability of this
system to recover from almost anything but complete
sensor failure. If any failure causes the output to vary
significantly, it will be detected and reprogramming
will configure the device around this failure. And
because the IA gains can be negative, failures that
result in both positive and negative voltage inputs can
be accounted for. Therefore, we can speculate that if a
failure occurs within the chip itself that causes a
fluctuation of the output voltage, and this failure is
localized within one part of the chip (i.e. it only effects
one or two of the inputs), not only will the error be
detected, but the reprogramming step will be able to
reconfigure the device around the error. Thus, only the
inputs that remain unaffected will be used. If this is the
case, then our temperature sensor system is not only
tolerant to faults in the sensors, but also partial failures
of the chip itself.
 All of these results show that the system is adept at
recovering from failures which take place after the
initial programming. However, one issue not discussed
above is the situation in which an error occurs during
programming. The success of the programming step
when this type of failure occurs depends upon when the
error takes place. If it occurs in the first few
generations, the program is able to recover and

program to an acceptable solution. However, if it
occurs in a later generation, the initial programming is
generally not successful. At this point, the chip is
configured to an output that is much different than the
target output. The error detection algorithm then
compares the FPAA output to the target output.
Because they are different, an error is detected and
reprogramming is initiated. Although the system is not
able to detect this type of error the instant it occurs, it is
able to recover well from it. This holds true for the
situation in which the reprogramming step may not
arrive at a configuration that is satisfactory. The output
from this configuration will be seen as an error, and
programming will initiate again.
 Because the failure detection method described
above compares the output to the last acceptable value,
temperature fluctuations can be introduced after the
chip has been initially configured. Therefore, the
output of the chip may change dramatically, as long as
it does not do so rapidly. Then, if there is a sensor
failure at the new elevated or lowered temperature, the
target value for the reprogramming will be the last
acceptable value of the output. Thus, the system will
be reconfigured to operate correctly within the new
environment – not the one in which it was originally
configured.

4.2 Issues

 There are several issues that must be addressed if
the robust system is to be expanded to include more
sensors. A major issue that needs to be addressed is
the type of programmable device. The ispPAC30 from
Lattice Semiconductor has been good for the
experiments presented in section 3. However, we
would like to expand the number of input sensors.
Having more input sensors would lead to a further
reduction in the standard deviation of the output and
thus better data quality. More sensors would also
allow for more lead time before the system fails, which
is good for graceful degradation applications. With
small sensors, such as MEMS, available, the physical
size of having many input sensors is not a problem.
 Unfortunately, the ispPAC30 is limited to only four
inputs. FPAAs from other manufacturers were
investigated but they were either no longer being
manufactured (e.g., Motorola MPAA020) or difficult to
obtain (Anadigm). Lattice Semiconductor makes other
FPAAs but none of them has 15 or 20 possible inputs.
FPGAs, on the other hand, can have many possible
inputs but then there is the added complexity of
converting an analog output to a digital output for each
sensor.
 Another issue with the ispPAC30 is that the gains
on two of the input amplifiers can not be set to 0.
Some sensors, such as the PRTDs used here, are part of

an input circuit. When the sensor is faulty, the input
circuit will provide a voltage to the FPAA. The desire
would be to “zero out” the input amplifier with the bad
sensor. However, that is not possible with the
ispPAC30.
 A second issue is keeping the input constant during
the reprogramming. It is assumed that the input can be
kept constant during the initial programming since that
could be done in a controlled environment. However,
if the robust system is in an operational environment,
then the input can not necessarily be kept fixed. For
example, the input temperature may change during the
reprogramming. Since we use the last good value as
our target during reprogramming, we will program the
device to the wrong value. This will lead to bias errors
in the output.

5.0 Conclusions

 We have developed a system that is robust or fault-
tolerant. It programs a circuit (embodied on an FPAA)
to average N input sensors, where N is three for our
experimental results. It detects a failure using a
Kalman filter approach, then reprograms the FPAA to
take the average of the input sensors after failure.
 The system is robust to several different failure
modes: sensor fails as open circuit, sensor fails as short
circuit, multiple sensors fail, FPAA input amplifier
failure. The only input failure that the system can not
recover from is when all of the sensors fail. An overall
change in the input environment (e.g., the temperature
increases) is expected and does not trigger a failure and
a subsequent reprogramming.

Acknowlegements

 The authors would like to acknowledge the support
of the Kentucky NSF EPSCoR Research Enhancement
Grant program and the Murray State University
Committee on Institutional Studies and Research. We
also would like to thank Lattice Semiconductor,
especially Chris Dix and Ed Ramsden, for technical
support related to the ispPAC30 and Pete Miller and
Nick Galyen for help with the laboratory experiments.

References:

[Canham 2002] R. O. Canham, A. Tyrrell, “Evolved fault
tolerance in evolvable hardware”, IEEE Congress on
Evolutionary Computation 2002, Honolulu, HI, 2002.

[Flockton 1998] S. J. Flockton, K. Sheehan, “Evolvable
hardware systems using programmable analogue devices”,
IEE Colloquium Digest, pp. 511 – 516, 1998.

[Goldberg 1989] D.E. Goldberg, Genetic Algorithms in
Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

[Hereford 2004] J. Hereford, N. Galyen, “Failure detection
for multiple input system”, Proceedings of 2004 IEEE
SoutheastCon, Greensboro, NC, March 2004.

[Hereford 2004a] J. Hereford, D. Gwaltney, “Design
space issues for intrinsic evolvable hardware”, 2004
NASA/DoD Conference on Evolvable Hardware,
Seattle, WA, June 2004.

[Keymeulen 2000] D. Keymeulen, A. Stoica, R. Zebulum, Y.
Jin, V. Duong, “Fault-tolerant approaches based on evolvable
hardware and using reconfigurable electronic devices”,
Proceedings of the IEEE International Integrated Reliability
Workshop, pp. 32 – 39, 2000.

[Ortega 1999] C. Ortega, A. Tyrrell, “Biologically inspired
fault tolerant architectures for real-time control applications,”
Control Engineering Practice, pp. 673-678, 1999.

[Sipper 2000] M. Sipper, E. Ronald, "A New Species of
Hardware", IEEE Spectrum, pp. 59-64, March 2000.
S. Liu, L. E. Holloway, “Active sensing policies for
stochastic systems”, IEEE Transactions on Automatic
Control, February 2002.

[Thompson 1996] A. Thompson, “Evolutionary techniques
for fault tolerance”, Proc. UKACC Int. Conf. on Control, pp.
693 – 698, 1996.

	Robust sensor systems using evolvable hardware
	Abstract
	Figure 1: System level diagram. A circuit is evolved on an FPAA that takes the average of 3 input sensors.
	Acknowlegements

