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Abstract 
 
 This paper describes a system that is robust with 
respect to sensor failure.  The system utilizes multiple 
sensor inputs (three in this case) connected to a 
programmable device (FPAA) that averages the 
outputs from the sensors.  The programmable device is 
programmed using evolvable hardware (EHW) 
techniques.  If one or more of the input sensors fails, 
then the controller detects the failure and initiates a 
reprogramming of the circuit.  The system then 
continues to operate with a reduced number of sensors. 
 The failure detection is accomplished by comparing 
the actual system output with a Kalman filter estimate 
of the output.  If the actual output and the filter 
estimate differ by amount greater than the system 
uncertainty, then a failure is noted.  The system is 
robust to several different failure modes: sensor fails 
as open circuit, sensor fails as short circuit, multiple 
sensors fail, FPAA input amplifier failure.   
 The experimental setup is described as well as 
results using simulated inputs (individual voltage 
sources) and actual temperature sensors (PRTDs).  
The paper also discusses some interesting results as 
well as issues that must be overcome to expand the 
system.   
 
1.0 Introduction 
 
 The goal of this research is to develop a system that 
is resistant or tolerant of processor failures; that is, 
fault tolerant.  Fault tolerance is the ability of electrical 
components to continue to function despite failures 
(faults) in the hardware.  The possible faults will be 
originally limited to failures in one of the sensors but 
faults in other parts of the system (notably, one of the 
processing stages) will be considered.  The result is a 
system that can suffer damage and recover without 
direct human intervention.  The final demonstration is 
to have the system running then smash a sensor with a 
hammer or short out an input on the FPAA and have 
the system recover. 

 The hardware setup incorporates multiple (co-
located) sensors instead of a single sensor in the 
electronic system.  A processing system is then derived 
based on evolvable hardware principles to take the 
average of all N sensors as the system output.  Step 2 is 
to let the system run indefinitely.  For testing purposes, 
sensor failures are artificially introduced.  Once a 
failure in a sensor is detected, the processing hardware 
is “re-designed” based on evolvable hardware 
principles to take the average of the input sensors.   
 Developing a system that is fault tolerant based on 
reprogramming will be a significant achievement.  
Other researchers have built systems that “repair” 
themselves autonomously [Sipper 2000] but to our 
knowledge no one has yet reprogrammed a broken 
system using Genetic Algorithm techniques.  Other 
evolvable hardware applications have reprogrammed 
the hardware due to changes in the mission (e.g., robot 
controllers) [Thompson 1996].  A second new 
achievement would be the development of a system 
that is robust to sensor failures.  This will be the first 
system that specifically includes additional sensor 
inputs and reprograms the hardware due to sensor 
failure.   
 This research builds on several recently-developed 
techniques and concepts.  The first concept is the 
application of evolvable hardware techniques to 
FPAAs.  Evolvable techniques have had some success 
when applied to FPAAs [Flockton 1998, Flockton 
1999] but they were not used to develop fault tolerant 
systems.  As mentioned previously, other researchers 
have investigated the use of evolvable hardware 
techniques to provide robust, fault-tolerant hardware 
[Thompson 1996, Ortega 1999, Keymeulen 2000, 
Canham 2002].  These systems, however, are different 
from the approach presented in this research proposal.  
Ortega et al. [Ortega 1999] do not use evolution as an 
adaptive repair mechanism, even though their approach 
is based on bio-inspired hardware.  Keymeulen et al. 
[Keymeulen 2000] and Canham et al. [Canham 2002] 
incorporate fault tolerance into the design (training) of 
the hardware circuit.  That is, they inject the known 
possible faults during the evolutionary process but do 
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not address event changes (e.g., processor or sensor 
failure) or reprogramming. 
 
2.0 System overview 
 
2.1 System diagram 
 
 The goal is to evolve a circuit that takes the average 
of three input sensors.  (See Figure 1.)  The sensors 
could be any type (pressure, temperature, humidity, 
etc) but for this research temperature sensors will be 
used.  Temperature sensors, both thermocouples and 
platinum resistive temperature detectors (PRTDs), are 
cheap and require little supporting circuitry.  All of the 
temperature sensors will be located near each other on 
a metal bar (high thermal conductivity) that can be 
raised or lowered in temperature.  The output from 
each sensor circuit is a small voltage signal (on the 
order of a few milliVolts) that will be input directly 
into the FPAA chip.  Voltage levels are not a problem 
since FPAAs have built-in amplifers, if needed.   
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to +10 (excluding zero).  Two IAs, IA1 and IA4, are 
equipped with an analog multiplexor that allows the 
input to the IA to come from one of two sources.  In 
our experiments, one IA input was routed to an 
external input and the other input was left unconnected 
(input = 0V).  By setting the multiplexor to use the 
unconnected input, we could effectively set the gain to 
zero for that IA. 
 The inputs into the two MDACs can be either 
external inputs, internal inputs, or fixed DC voltages 
(from the internal reference voltages).  The multiplying 
function means that the MDAC input is attenuated by a 
value corresponding to an 8-bit code.  The attenuation 
can range from –1.0 to +.99.  The OAs can be 
configured to function as an amplifier, low-pass filter 
(with adjustable cutoff frequency), integrator or 
comparator.  The output voltage is limited to 0V to 
+5V.  
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gure 1: System level diagram.  A circuit is evolved 
 an FPAA that takes the average of 3 input 
nsors. 

Field Programmable Analog Arrays (FPAA) are a 
latively new technology that is a spinoff of the more 
ell-known digital Field Programmable Gate Array.  
e FPAA is a single chip that is divided into 
nfigurable blocks.  Some FPAAs have multiple 
entical blocks that can be programmed to perform 
e of a variety of operations: addition, negation, log, 
tilog, amplify, differentiate, integrate, filter.  Simpler 
AAs, such as the ispPAC30 from Lattice 
miconductor, have programmable input and output 
plifiers with programmable interconnects among the 
plifiers.   
The architecture of the ispPAC30 is shown in 

gure 2.  The PAC30 contains four differential inputs, 
ur input amplifiers (IA), two output amplifiers (OA), 
o internal adjustable voltage references, and two 
ultiplying digital-analog converters (MDACs).  Any 
put pin can be routed to any of the four input 
plifiers or to the MDACs.  In addition, either OA 

n be routed to any IA or MDAC.  This allows the 
c30 to be configured to do signal summation, 
edback, or cascade gains.  The IAs multiply their 
put by the gain setting; the gain can be set from -10 

 
Figure 2: Architecture of the ispPAC30 FPAA from 
Lattice Semiconductor. 
 
 The FPAA is chosen rather than the FPGA because 
it eliminates the need for multiple Analog-to-Digital 
(A/D) converters.  With 3 input sensors, the system 
would require 3 A/Ds.  With the FPAA, the analog 
outputs from the temperature sensors can be sent 
directly into the FPAA; if amplification is required, 
then the FPAA can be programmed to provide 
amplification.  In many cases, the final (averaged) 
temperature measurement needs to be interfaced to a 
digital circuit, but then only a single A/D is required.  
Reducing the number of A/Ds reduces the weight, cost, 
and power consumption of the entire system. 
 There are two main advantages for using evolvable 
hardware techniques to initially program the FPAA.  
First, applying evolutionary techniques to hardware 
design has led to many innovative designs in analog 
and digital circuits.  Applying them here could also 
lead to a very innovative approach.  Second, some fault 
tolerance arises just from the nature of the evolutionary 
process.  The robust designs will “survive” and have a 



greater affect on future generations of designs than 
non-robust designs [Thompson 1996].  Thus, the 
design using EHW principles could be more robust 
than a design based on conventional human expert 
techniques. 
 Once a failure has been detected, the processing 
circuit needs to be reprogrammed to take the average of 
the remaining sensors.  Since the goal is to have 
autonomous operation, it is assumed that that it is 
unknown which sensor has failed.  Therefore, 
evolvable hardware techniques are applied to the now-
damaged circuit.   
 To apply evolvable hardware techniques, a fitness 
function must be computed during reprogramming.  To 
compute the fitness function, the last “good” data value 
will be used.  That is, the previous two data points of 
the filtered output will be saved.  If a fault is detected, 
then the proper output is known and is used to 
reprogram the averaging circuit. 
 We note that a side benefit of incorporating multiple 
sensors is that the final system output will have a 
smaller uncertainty (as measured by the standard 
deviation) than if only a single sensor was used.  
Specifically, if the N sensors have identical 
characteristics, each with a measurement standard 
deviation of σ, then the standard deviation of the 
measurement average will be (1/ N )*σ.  Even for a 
relatively small number of sensors, the overall 
measurement standard deviation drops quickly; if N = 
5, the standard deviation drops to .45σ or less than half 
the standard deviation from a single sensor. 
 
2.2 Failure Detection 
 
 An important step is to introduce a failure (or 
failures) into one of the sensors and subsequently 
detect the failure.  Introducing a failure is relatively 
easy but detecting the failure is not a trivial matter.  A 
sensor failure can be simulated by disconnecting the 
sensor or by more extreme methods (e.g., use a 
hammer). A failure in an FPAA module can be 
simulated by either setting the block to “Off” or 
externally grounding the inputs for that block.   
 The failure detection is accomplished by comparing 
the actual system (FPAA) output with a Kalman filter 
estimate of the output [Hereford 2004].  If the actual 
output and the filter estimate differ by amount greater 
than the system uncertainty, then a failure is noted.  
The predicted output, denoted by , is determined by 
computing an estimate for the next data point using a 
Kalman filter update from the previous data point.  The 
system uncertainty is determined by the sum of the 
process noise, given by a variance-like parameter Q, 
and the measurement noise, given by the parameter R.  

If the FPAA output is denoted by z, then a failure is 
detected if 

−x̂

 . RQxz +>− − |ˆ|
See [Hereford 2004] for more background on the 
failure detection system. 
 It is difficult to measure Q and R.  Therefore, for the 
robust sensor experiments we selected Q and R based 
on the expected output performance.  We wanted to 
detect a drop of at least 10 %.  Since the expected 
output of the averaging system is 0.4 V (at room 
temperature), that means Q + R must be equal to or less 
than 0.1*0.4 or 0.04 V.  We set Q fairly low, Q = 0.01 
V, because this allowed more flexibility in tuning the 
filter.  This led to R = 0.03 V.  We note that several 
different values for Q and R were used in this 
experiment.  The performance of the algorithm, i.e., its 
ability to detect failure, was not sensitive to minor 
changes in the ratio between Q and R.   
 
2.3 Evolvable algorithm overview 
 
 The evolvable algorithm used to program (and 
reprogram) the FPAA is a standard genetic algorithm 
[Goldberg 1989] with crossover and mutation.  The 
selection method is roulette wheel selection.  The 
probability of crossover is 0.7 and the probability of 
mutation is 1/8.  The population size, n, and the 
number of generations, ngen, were varied based on 
formulas derived in [Hereford 2004a].  In general, for 
the 30 bit programming string, n was 40 and ngen was 
15. 
 Elitism was used in all of the experiments to insure 
that the fittest member of each generation is guaranteed 
a spot in the following generation.  The fittest member 
of the each generation shows up in the following 
generation as the last individual.  This makes tracking 
the results of the experiment simple.   
 
3.0 Results 
 
 Lattice Semiconductor provides graphical, drag and 
drop software that runs on a host PC to program the 
ispPAC30.  Upon request, they also offered C-code 
that allowed us to program the device directly using a 
programming string of bits.  A complete configuration 
of the PAC30 requires 112 bits.  However, for our 
EHW experiments we used two shorter bit strings.  The 
first string was only 20 bits and was used to evolve the 
gains on three input amplifiers (4 bits each) and one 
MDAC (8 bits).  For the 20 bit case, the 
interconnections among the IAs, MDACS, and OAs 
were fixed.  The second string length was 30 bits.  This 
programming string evolved the gains on the 4 IAs, 
one MDAC and the two on-board multiplexors.  Again 
the interconnections were fixed.  We note that the 



interconnections among the PAC30 components could 
also be evolved but (a) it would take longer and (b) we 
would then have to monitor both outputs to check for 
proper configurations. 
 
3.1 Results from voltage inputs 
 
 The first step was to successfully program the 
ispPAC30 with the 20-bit programming string.  To 
program the three IAs and an MDAC, the 20-bit string 
is broken up into four segments.  Eight bits are used to 
program the MDAC, and three groups of four bits each 
are used to program each of the IAs.  All internal 
routing of the device was done manually by setting 
commands within the code.  The 8-bit MDAC string 
allowed for 255 possible combinations, which 
correspond to an MDAC gain of –1.0 to +0.999.  The 
IAs were limited to integer gain values from 1 to 10. 
 The three input voltages to the IAs were from a DC 
power supply.  Three identical 50mV signals were 
used, and the desired (target) output was set at 500mV.  
The population size was set to twenty-five and ten runs 
were conducted.  Brief results from these runs can be 
seen in Table 1.  This table tracks the progression of 
each generation by showing the last member.  
Although thirty-five generations were used, only 14 are 
shown in the table.  This is because every run 
conducted converged within 14 generations (in many 
cases, as few as 3 generations were needed).  The 
average number of generations needed to converge to 
an acceptable solution (within 2% of the desired 
output) was 3.1.  This means that, on average, only 75 
out of over one million possible combinations were 
evaluated before an acceptable solution was found.  
Also, it took an average of 8.7 generations to converge 
to a solution that was within 1% of the desired output. 
 As a step up in complexity, the programming string 
was increased to 30 bits.  The extra bits were used to 
set the gain on the fourth IA, set the polarity on all four 
IAs, and select which multiplexer would be used.  
Adding the polarity bit allowed each of the gains on the 
IAs to be set to integer values of –10 to 10, excluding 

zero. 
 The population size was increased to 40.  Although 
the search space had increased, the average number of 
generations (based on 10 runs) needed to find a 
solution within 1% of the desired output was 7.2.  It 
takes less than one second for each individual to be 
randomly generated, programmed to the chip, and 
evaluated.  Therefore, the FPAA can be fully 
configured within four to five minutes; that is, it takes 
the evolutionary algorithm approximately four minutes 
to program the device and, if necessary, reprogram the 
device for a 20 bit programming string. 
 Several simulated failures were devised and tested.  
These include a single input failing as an open circuit, a 
single input failing as a short circuit, two inputs failing, 
three inputs failing, and a simulated IA failure.  In all 
cases, the failure was detected successfully.  For all 
failures except one, the circuit was reprogrammed to 
within 1.1% of the desired output.  The only failure 
that the system was unable to recover from was when 
all three sensors failed. 
 
3.2 Experimental Results 
 
 Once the system worked with fixed, stable voltages, 
we switched to real sensor inputs.  Thermocouples 
were considered but ultimately rejected.  The main 
problem with thermocouples is the fact that the voltage 
they produce at room temperature is very small 
(<1mV) and at times would even be negative.  
Programming the FPAA for a voltage near zero was 
very difficult since the global maximum ( 1 mV) for 
the genetic algorithm was at a step continuity (0 mV).  
Therefore, we chose to use platinum resistance 
temperature detectors, or PRTDs.  There were several 
reasons for this decision.   
 First, the PRTD is a more linear device than the 
thermocouple, meaning that converting a voltage to a 
temperature is relatively simple.  Second, the PRTD 
itself is just an element that changes resistance with 
changing temperature.  It is not a self-powered sensor.  
Therefore, by placing it in one leg of a Wheatstone 

 
Run 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.541 0.542 0.507 0.51 0.51 0.505 0.5 0.49 0.49 0.49 0.492 0.492 0.507 0.5 
2 0.466 0.463 0.503 0.507 0.506 0.503 0.502 0.505 0.507 0.505 0.505 0.505 0.506 0.505 
3 0.476 0.523 0.509 0.503 0.504 0.505 0.502 0.5 0.504 0.502 0.5 0.5 0.499 0.501 
4 0.636 0.508 0.507 0.505 0.503 0.5 0.499 0.5 0.502 0.502 0.5 0.501 0.502 0.501 
5 0.417 0.417 0.507 0.505 0.505 0.497 0.497 0.498 0.495 0.496 0.501 0.497 0.497 0.497 
6 0.503 0.505 0.505 0.51 0.508 0.506 0.507 0.506 0.505 0.509 0.505 0.505 0.507 0.505 
7 0.482 0.482 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.498 0.498 0.502 0.502 0.502 
8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
9 0.526 0.504 0.504 0.504 0.504 0.504 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
10 0.493 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
 
Table 1.  Best result from generations 1 through 14.  Target output is 0.5 V.  Results are shown for 10 
separate GA runs.  



bridge, we can tailor the output voltage to meet our 
requirements. 
 However, there are some drawbacks to using 
PRTDs.  As stated above, the PRTD is not a self-
powered sensor.  Because of the fact that it is a 
resistance element and you must run current through it 
to receive an output voltage, there are self-heating 
problems that can arise from the I2R power losses.  
Initially, we had planned to utilize the same 5V power 
supply that powers the FPAA chip to power a 
Wheatstone bridge circuit.  However, this caused rather 
large (10+°C) errors in the temperature measurement.  
To alleviate the self-heating problem, the Wheatstone 
bridge circuit was powered by 1V.  A diagram of this 
circuit is shown in Figure 3. 

 
Figure 3: Wheatstone bridge circuit used with each 
PRTD sensor. 
 
 With the errors due to the PRTD at a minimum, 
three bridge circuits like the one in Figure 3 were 
constructed to provide the input voltages to the FPAA.  
The output of these bridges is on the order of 40 mV at 
room temperature.  The next step was to run another 
experiment with simulated errors to test the ability of 
the program to recover when the inputs to the FPAA 
came from real temperature sensors.   
 In all of the experiments, the output voltage of each 
of the three bridges was measured before the initial 
programming step.  Ten times the average of these 
three voltages was used as the target value during 
initial programming.  (The target value is shown in the 
first column of Table 2.)  The three bridge outputs were 
routed to input amplifiers IA1, IA2, and IA4 on the 
FPAA.  Failures were introduced to input 1 (for one 
failure) and inputs 1 and 4 (for two failures), since the 
gains of IA1 and IA4 could be set to zero. Also, as in 
experiments with the DC voltages, the last acceptable 
output before the failure occurred was used as the new 
target value in the reprogramming step. 
 The failures in this set of experiments were the same 
as the ones used in the previous set of experiments.  
One or two PRTDs were replaced with either an open 
or short circuit to simulate different types of failure.  
When the PRTD fails as an open circuit, the output of 
the bridge is 0.5V; as a short circuit, the output is –
0.5V.  An FPAA failure was also simulated by 
disconnecting one of the lead wires on an IA.  In 

addition to monitoring the ability of this system to 
recover from each of the introduced failures, we also 
noted the physical configuration of the FPAA after the 
original programming and after the reprogramming 
step had been completed.  This allowed us to track 
what changes had been made to the configuration.  
Table 2 gives a brief description of each failure and the 
results obtained from the trial run.  In addition to 
voltage outputs from the PAC30, the table also 
indicates how close to the target value the 
configuration is and the physical configuration of the 
chip after both programming and reprogramming. 
 Several conclusions are immediately apparent from 
Table 2.  First, the reprogramming did not take longer 
than the initial programming.  For the reprogramming 
step, we started with a random initial population and 
did not use the previous best result (or previous best 
generation) as a starting point.  For an operational 
system, we would like quick reprogramming to (a) 
minimize down time and (b) reduce errors due to 
environment change.  Second, the gain on the faulty 
sensor was reduced to zero or set to a small value for 
each failure.  One notable example is the case where 
two PRTD sensors were set to open circuits.  The 
Genetic Algorithm set the gains for the two damaged 
sensors to 0, even though it was unknown which 
sensors were damaged.  To then reach the target output, 
the gain of the third IA and the MDAC had to be set to 
the maximum value.  Third, the system is able to 
recover from any off-chip faults and even some on-
chip faults.  The last row in Table 2 shows the results 
from a simulated IA failure (the input leads were 
shorted out leading to the IA output always being 
zero).  The system was able to detect a fault and then 
reprogram. 
 The only failure from which our system was not 
able to recover was total sensor failure.  As long one 
sensor was operational, the reprogramming step was 
successful.  For example, Figure 4 shows the 
programming and reprogramming steps of the 
experiment when two of the three inputs fail as open 
circuits.  Each data point represents the last individual 
in each generation.  This last individual is the fittest 
member from the previous generation.  The dotted lines 
represent ±5% of the target value.  As one can see, 
within three to four generations, a good solution has 
been reached.  Further generations only serve to refine 
the solution.  Ten generations were used in the initial 
programming step.  The solution was within 0.05% of 
the target value.  Then the failure was introduced and 
detected.  The reprogramming step was initiated and 
arrived at a solution that was within 4% of the target 
value.   
  



 
 

Target 
value 

Output after 
initial 

programming, 
(% of target) 

Setup after 
programming 

(IA1, IA2, IA4, 
MDAC) 

# of 
generations 
to converge 

 
Failure 
Type 

Output after 
reprogramming, 

(% of target) 

Setup after 
reprogramming 
(IA1, IA2, IA4, 

MDAC) 

# of 
generations 
to converge 

0.4147V 0.4128 V 
(0.46%) 

-1, 8, 10, 0.566 3 1 PRTD 
open 

circuit 

0.406923 V 
(1.417%) 

0, 1, 10, 0.857 2 

0.4147V 0.415554 V 
(0.206%) 

3, -1, 10, 0.810 3 1 PRTD 
short 

circuit 

0.416785 V 
(0.296%) 

-3, -7, -7, 0.448 4 

0.4196V 0.419595 V 
(0.0012%) 

10, 10, 7, 0.37 4 2 PRTDs 
open 

circuit 

0.41889 V 
(0.168%) 

0, 10, 0, 0.999 8 

0.4445V 0.448942 V 
(0.999%) 

10, 4, 0, 0.739 3 2 PRTDs 
short 
cicuit 

0.455566 V 
(1.475%) 

-3, 10, 0, 0.228 4 

0.4453V 0.447538 V 
(0.496%) 

-4, 6, 10, 0.779 5 Simulated 
IA failure 

0.448125 V 
(0.131%) 

-2, 10, 6, 0.582 2 

Table 2: Results before and after each of the failures. The left 4 columns show FPAA configuration and 
output after initial programming and the right 3 columns show the configuration after the failure and after 
reprogramming.  
 
  

 
Figure 4. Error detection and reprogramming.  
Triangles show circuit output during initial 
programming.  Failure (2 inputs fail as open 
circuits) occurs (output is off chart), then circles 
show circuit output during reprogramming.   
 
4.0 Discussion 
 
4.1 Interesting results 
 
One of the interesting results of these experiments is 
the fact that many different FPAA configurations give 
the same output voltage.  Thus, there are many 
redundant configurations that the genetic algorithm 
may find.  For example, one particular solution may 
rely entirely on sensors 2 and 3.  This solution is 
insensitive to a failure of sensor 1.  If sensor 1 fails, no 

error is detected.  This occurred once during one of the 
experiments conducted with the voltage inputs.  After 
initial programming was complete, input 1 was 
disconnected.  This resulted in a change of less than 
1% in the output from the chip.  Therefore, no error 
was detected.  There are many other possibilities that 
could have similar results.   
 Another interesting observation is the ability of this 
system to recover from almost anything but complete 
sensor failure.  If any failure causes the output to vary 
significantly, it will be detected and reprogramming 
will configure the device around this failure.  And 
because the IA gains can be negative, failures that 
result in both positive and negative voltage inputs can 
be accounted for.  Therefore, we can speculate that if a 
failure occurs within the chip itself that causes a 
fluctuation of the output voltage, and this failure is 
localized within one part of the chip (i.e. it only effects 
one or two of the inputs), not only will the error be 
detected, but the reprogramming step will be able to 
reconfigure the device around the error.  Thus, only the 
inputs that remain unaffected will be used.  If this is the 
case, then our temperature sensor system is not only 
tolerant to faults in the sensors, but also partial failures 
of the chip itself. 
 All of these results show that the system is adept at 
recovering from failures which take place after the 
initial programming.  However, one issue not discussed 
above is the situation in which an error occurs during 
programming.  The success of the programming step 
when this type of failure occurs depends upon when the 
error takes place.  If it occurs in the first few 
generations, the program is able to recover and 



program to an acceptable solution.  However, if it 
occurs in a later generation, the initial programming is 
generally not successful.  At this point, the chip is 
configured to an output that is much different than the 
target output.  The error detection algorithm then 
compares the FPAA output to the target output.  
Because they are different, an error is detected and 
reprogramming is initiated.  Although the system is not 
able to detect this type of error the instant it occurs, it is 
able to recover well from it.  This holds true for the 
situation in which the reprogramming step may not 
arrive at a configuration that is satisfactory.  The output 
from this configuration will be seen as an error, and 
programming will initiate again. 
 Because the failure detection method described 
above compares the output to the last acceptable value, 
temperature fluctuations can be introduced after the 
chip has been initially configured.  Therefore, the 
output of the chip may change dramatically, as long as 
it does not do so rapidly.  Then, if there is a sensor 
failure at the new elevated or lowered temperature, the 
target value for the reprogramming will be the last 
acceptable value of the output.  Thus, the system will 
be reconfigured to operate correctly within the new 
environment – not the one in which it was originally 
configured. 
 
4.2 Issues 
 
 There are several issues that must be addressed if 
the robust system is to be expanded to include more 
sensors.  A major issue that needs to be addressed is 
the type of programmable device.  The ispPAC30 from 
Lattice Semiconductor has been good for the 
experiments presented in section 3.  However, we 
would like to expand the number of input sensors.  
Having more input sensors would lead to a further 
reduction in the standard deviation of the output and 
thus better data quality.  More sensors would also 
allow for more lead time before the system fails, which 
is good for graceful degradation applications.  With 
small sensors, such as MEMS, available, the physical 
size of having many input sensors is not a problem. 
 Unfortunately, the ispPAC30 is limited to only four 
inputs.  FPAAs from other manufacturers were 
investigated but they were either no longer being 
manufactured (e.g., Motorola MPAA020) or difficult to 
obtain (Anadigm).  Lattice Semiconductor makes other 
FPAAs but none of them has 15 or 20 possible inputs.  
FPGAs, on the other hand, can have many possible 
inputs but then there is the added complexity of 
converting an analog output to a digital output for each 
sensor. 
 Another issue with the ispPAC30 is that the gains 
on two of the input amplifiers can not be set to 0.  
Some sensors, such as the PRTDs used here, are part of 

an input circuit.  When the sensor is faulty, the input 
circuit will provide a voltage to the FPAA.  The desire 
would be to “zero out” the input amplifier with the bad 
sensor.  However, that is not possible with the 
ispPAC30. 
 A second issue is keeping the input constant during 
the reprogramming.  It is assumed that the input can be 
kept constant during the initial programming since that 
could be done in a controlled environment.  However, 
if the robust system is in an operational environment, 
then the input can not necessarily be kept fixed.  For 
example, the input temperature may change during the 
reprogramming.  Since we use the last good value as 
our target during reprogramming, we will program the 
device to the wrong value.  This will lead to bias errors 
in the output.  
 
5.0 Conclusions 
 
 We have developed a system that is robust or fault-
tolerant.  It programs a circuit (embodied on an FPAA) 
to average N input sensors, where N is three for our 
experimental results.  It detects a failure using a 
Kalman filter approach, then reprograms the FPAA to 
take the average of the input sensors after failure. 
 The system is robust to several different failure 
modes: sensor fails as open circuit, sensor fails as short 
circuit, multiple sensors fail, FPAA input amplifier 
failure.  The only input failure that the system can not 
recover from is when all of the sensors fail.  An overall 
change in the input environment (e.g., the temperature 
increases) is expected and does not trigger a failure and 
a subsequent reprogramming.  
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