
Design Space Issues for Intrinsic Evolvable Hardware

James Hereford
Murray State University

Murray, KY 42071
James.Hereford@murraystate.edu

David Gwaltney
NASA-Marshall Space Flight Center

Huntsville, AL 35812
David.A.Gwaltney@nasa.gov

Abstract
This paper discusses the problem of increased
programming time for intrinsic evolvable hardware
(EHW) as the complexity of the circuit grows. We
develop equations for the size of the population, n, and
the number of generations required for the population
to converge, ngen, based on L, the length of the
programming string. We show that the processing time
of the computer becomes negligible for intrinsic EHW
since the selection/crossover/mutation steps are only
done once per generation, suggesting there is room for
use of more complex evolutionary algorithms in
intrinsic EHW. Finally, we review the state of the
practice and discuss the notion of a system design
approach for intrinsic EHW.

1.0 Introduction

 This paper looks at the cycle time for the
evolutionary process for intrinsic evolvable hardware
(EHW), and its relationship to the complexity of the
design being sought. In general, intrinsic EHW is
successful in designing small- or medium-sized
circuits. But the devices themselves, such as Field
Programmable Gate Arrays (FPGAs), can implement
complex circuits. In the past, researchers have limited
the search space when they use reconfigurable devices
with large design spaces.
 Initially, we define the design space as the total
space of allowable circuits given the hardware
device(s). In evolvable hardware, the design space is
defined by both the number of programmable
“configuration blocks” and the number of
programmable interconnections among the blocks. To
make this discussion general, a configuration block can
be as simple as a transistor or as complicated as an
amplifier or logic block. The larger the design space
then the more complex circuit that can be evolved. We
will assume that size of the design space is proportional
to the number of programming bits.
 The outline for this paper is as follows: Section 2
will develop theoretical equations for the population
size and the number of generations required to
converge based on the length of the programming
string (chromosome). Section 3 discusses the timing of

intrinsic EHW experiments. For both a slow and a fast
EHW configuration, it is shown that increasing the
processor speed alone will not significantly affect the
overall timing. Section 4 looks at the current state of
the practice of hardware evolution and discusses design
approaches that may enable the evolution of complex
circuitry. Section 5 gives the main conclusions from
the paper.

2.0 Population size and number of
generations

 To evolve a complicated circuit requires a large
design space and hence a long string of programming
bits, L. The size of the design space is 2L, but an
evolutionary algorithm (EA) generally does not need to
evaluate all of the possibilities to reach the peak or
optimum operating point. To determine the number of
evaluations that are required for a programming string
with L bits, we will consider the size of the population,
n, and the number of generations, ngen, separately.
The objective is to determine how n and ngen scale
with the length of the programming string, L, or
chromosome length. The total number of evaluations
will then be n*ngen.
 This paper follows the approach of Harik et al. [1]
to determine population size, n, in terms of length of
the chromosome string L for a Genetic Algorithm
(GA). Harik develops a model of GAs based on an
analogy between genetic algorithms and one-
dimensional random walks. The result is an equation
that relates the size of the population with the desired
quality of the solution, as well as the problem size and
difficulty. The final equation for n is given by

d

mn bbk ')ln(2 1 πσα−= (1)

where
 α = probability of GA failure
 k = building block order (length)
 m’ = m-1 = (number of building blocks) – 1
 d = signal-to-fitness difference
 σbb = average root mean square building block
standard deviation
 Equation 1 indicates a GA scales very well to the
problem size. It shows that the required population

mailto:James.Hereford@murraystate.edu
mailto:David.A.Gwaltney@nasa.gov

grows with the square root of the size of the problem.
For our purposes, we assumed that the programming
strings are binary (or binary alphabets), the building
block size is 4 (so m = L/4), the probability of GA
failure is .01, the fitness difference between the best
and 2nd best building block is 1, and the root mean
square fitness variance () is 0.04. (Note: the
fitness variance is small compared to the test cases
presented by Harik; this value was chosen because it
gave pretty good agreement with our evolvable
hardware experiments.) This yields an equation for
population size as

2
bbσ

 1
4

13 −=
Ln , (2)

where L is the length of the programming string. This
result shows that n scales as the square root of L. The
constant (13 in this case) will vary based on the
problem difficulty (in general it will be a larger
number) but n is still O(L1/2).
 The parameter ngen is the number of generations till
the population converges. Goldberg [2] utilizes the
schema theorem to estimate the number of generations
till convergence as

)1ln(
1
1

−
−
+

= n
r
rngen , (3)

where r is the fitness ratio between a “good” schema
and a bad schema. We assume that as the
programming string gets longer that the fitness ratio, r,
will get smaller. Substituting for r into equation 3 and
simplifying yields the number of generations till
convergence as
 ngen (4)).1ln()12()1(log −+= + nL

 We can now estimate how long it takes to program a
device using evolvable hardware techniques. The
following chart (table 1) lists several reconfigurable
devices that are used for intrinsic evolvable hardware.
The table lists the devices, L (the number of bits
required to do the programming), 2L (the total number
of possible combinations given the number of
programming bits), n, ngen, n*ngen, and estimated
time to program device assuming 0.5 seconds per
evaluation. The evaluation time varies considerably in
intrinsic EHW based on application and experimental
setup; 0.5 seconds is close to the worst case condition.
 To determine the computational complexity of the
ngen calculation, the growth in ngen based on L is
done via linear regression. A plot of log(L) vs
log(ngen) is a straight line. The slope of the line,
calculated using linear regression, is .43 so ngen is
O(L.43).

Device L 2L n ngen n*ngen Time
Pac30 (amplifier gains
only)

20 106 26 19 494 4 mins

Pac30 (complete config) 112 5x1033 68 39 2652 22 mins
FPTA2 (limited) 500 3x10150 145 70 10,150 85 mins
FPTA2 (complete) 5000 >10300 459 165 75,735 10.5 hrs
Virtex XCV50 (limited) 9600 >10300 637 210 133,770 18.5 hrs
Virtex XCV50 (complete) 1569,000 >10300 4900 926 4.5x106 625 hrs

Table 1: Programming times for reconfigurable devices used for intrinsic EHW assuming 0.5 seconds for
evaluation of each solution.

 Table 1 makes clear the main benefit of using
GAs/evolvable hardware techniques: as the design
space grows to nearly infinite proportions (>10300
possibilities), the number of evaluations, n*ngen, only
grows as O(L1/2)*O(L.43) = O(L0.93) or slightly less than
O(L).

3.0 Reduction of execution time

 In general, an EA used in evolvable hardware has
the following major steps: evaluate each member of the
population, selection, crossover, and mutation. For
intrinsic EHW all of the steps can be done on the
processing computer except the evaluation. The
evaluation of each member requires several steps:

download bit string to device, update device, measure
new output, read output and transfer to processor. We
define the evaluation time as tevaluate.
 If the population size is denoted n, then the
calculation time for one generation of the EA is
 tcycle = n*(tevaluate) + tprocessor, (5)
where tprocessor is the time for the processor to do
selection, crossover, and mutation. Consider the
impact on the calculation time due to increased
processor speeds. The issue is that processor
speed/time (tprocessor) is only one part of the equation, so
improvements in processor speed only affect one part
of the whole process. By analogy with computer
design, we can apply Amdahl’s Law [3]. Assume that
processor speed increases by a factor nspeedup. Then
Amdahl’s Law says that

 tcycle(after speedup) =
nspeedup

t process +n* tevaluate (6)

In other words, tcycle in not reduced by nspeedup; rather
only tprocess is reduced by nspeedup. Since tprocess is only
a fraction of the tcycle, increasing the processor speed
has only minimal affect on the overall time.
 To illustrate the (lack of) effect of increasing
computer speed, we look at some sample numbers for
two different intrinsic EHW setups. One setup utilizes
a FPAA from Lattice Semiconductor (ispPAC30)
controlled by a PC. A digital multimeter (DMM) is
used to read the output and a GPIB (IEEE 488) bus is
used to transfer the data to the PC. This is an EHW
setup using relatively slow devices.
 The FPAA setup has an evaluation time of 35 msec
(mainly due to the time to measure the output and
transfer the data to the processor). From timing
measurements on a Pentium III computer, we know
that tprocess = .6 msec. Calculating tcycle from these
values (assuming a population size of 50) yields
 tcycle = 50*(35) + .6 = 1750.6 msec = 1.75 sec.
From the calculation of tcycle, it is clear that the
processor time is a very small fraction of the total cycle
time. Even if we used a new and fast computer that
was, say 5 times faster (nspeedup = 5) than the Pentium
III, Amdahl’s law says that the new execution time will
be
 tcycle(fast computer) = 0.6/5 + 1750 = 1750.12 ms
Therefore, the speedup in processor speed will have an
insignificant impact on total time in intrinsic evolvable
hardware experiments. Clearly, much more can be
gained in this experiment by decreasing the evaluation
time.
 The second intrinsic EHW setup is the stand-alone
board-level evolvable system (SABLES) developed by
researchers at Jet Propulsion Laboratory [4]. The
SABLES system is an example of a fast EHW setup.
From Stoica et al. [4], the stimulus/response time is
1.13 msec per population member, and it takes 6 msec
to generate a new population. Thus,
 tcycle = 50 * (1.13 msec) + 6 msec = 62.5 ms.
 It is clear that the SABLES setup provides an
enormous speed advantage over the (slow) FPAA setup
– it is approximately thirty times faster. But again
Amdahl’s Law shows that speeding up (i.e., reducing)
the processor time will have only a minor impact on
the overall execution time. Again assuming a speedup
of 5 in the processor yields
 tcycle(fast processor) = 56.5 +6/5 = 57.5 msec
or only about an 8% time reduction for a large
improvement in processor speed.
 We have shown that improvements in processor
speed will not significantly impact the total time in
intrinsic EHW experiments. This is in contrast to
Genetic Programming and other extrinsic EHW

experiments where increases in processor speed have
led to development of more complicated circuits [5].

4.0 State of the practice

 The previous sections provide a quantitative analysis
giving two results for intrinsic hardware evolution.
One result shows a GA provides a good approach for
searching the solution space as the length of the
chromosome increases. The second shows the time for
processing a population primarily depends on
evaluation time for each individual. These results are
qualitatively intuitive based on experience and
empirical data, but have not been quantified in
published literature for specific devices used in
intrinsic hardware evolution. In this section we discuss
the implication of these results for practical
implementation and give several observations about the
current state of practice for intrinsic EHW.
 The first observation from published literature is that
researchers using intrinsic hardware evolution are
primarily concerned with hardware platform
development. However researchers concerned with
design of the evolutionary process use extrinsic
hardware evolution. We define the evolutionary
process to include an evolutionary algorithm (EA),
chromosome mapping, population sizing/initialization
and fitness evaluation. Work involving the use of a
physical platform routinely employs standard GAs
[6,7,8,9]. Researchers developing more complex
approaches to the evolutionary process frequently use
simulated hardware components. [5,10,11]. One
reason for this may be that simulation lends itself to
implementation of complex algorithms more easily
than a hardware platform with resource and timing
constraints. The evolutionary process and the platform
are intimately tied together and impose limits on each
other. These two components of hardware evolution
are a system to be considered together in the design of
an intrinsic EHW platform.
 The second observation concerns the basis of our
first result (equation 2) in the analysis of simplified
statistical processes and genetic algorithms with
crossover, but no mutation. Goldberg refers to these
equations as facet wise models giving insight into the
process of applying GAs to problem solving. These
models are verified using simulations of the GA and
problem to be solved [1,12]. Goldberg, et. al., consider
building blocks in a chromosome to be one bit in the
case of the simple ONEMAX problem, concerned with
convergence of the chromosome string to all ones. In
the case of deceptive traps, the problem includes a
building block of 6 bits with a local maximum at
000000 and a global maximum at 111111. In this case,
the GA is led astray as the fitness improves as the
number of zeros increases, but the best fitness is only

achieved if all 6 bits are ones. The goal is maximizing
fitness of m 6-bit deceptive traps in a chromosome of
length, L, where m = L/6.
 Building blocks in intrinsic EHW have physical
relevance, and a chromosome may contain building
blocks of varying lengths. The problem of autonomous
circuit design is more difficult than the ONEMAX
problem or a set of repetitive deceptive traps, making
the precise application of such analytical models more
difficult. The results obtained here for the number of
evaluations, n*ngen, are estimates and represent the
minimum evaluations needed. Extending these
equations to provide population sizing and evaluations
bound in a hardware evolution problem will provide
tools for implementation of an evolvable hardware
platform.
 A third observation is many approaches for evolving
complex circuitry involve using previously evolved
circuits or known circuit configurations [5,13,14].
Time for evolution is reduced by using already evolved
components, rather than forcing the evolutionary
algorithm to re-evolve basic circuits. Humans
routinely employ such a strategy in the design of
electronic circuits. While such approaches make sense
from a practical standpoint, they are frequently viewed
as limiting the design space, especially when “fixing”
portions of a reconfigurable device is involved.

5.0 Conclusions

 The analytical results show intrinsic EHW
employing GAs is a good approach for tackling very
large problems since as the design space grows very
large (near infinite), the processing time only grows at
slightly less than O(L). Adjustments to the models will
need to be made to create useful tools for selecting
population sizes and estimating the time to
convergence for a given application. The analytical
results clearly show that the processing time for the EA
is a very small fraction of the total cycle time. This
implies there is room for use of complex EAs in
intrinsic EHW.
 The published literature acknowledges that the
evolutionary process and the platform are intimately
tied together. This supports the notion of a system
level view of design space that includes design of the
evolutionary process and the physical platform. The
use of analytical models for insight into the
evolutionary process along with a system level view of
intrinsic EHW will help enable successful scaling of
designs in practical applications.

Acknowledgements

 Dr. Hereford would like to thank the Kentucky NSF
EPSCoR Research Enhancement Grant program for
support. Mr. Gwaltney is supported by a NASA
Marshall Space Flight Center Director’s Discretionary
Fund task.

References:

[1] G. Harik, E. Cantu-Paz , D. Goldberg, B. Miller, “The
gambler’s ruin problem, genetic algorithms, and the sizing of
populations”, Evolutionary Computation, vol. 7, number 3,
pp. 231 – 253, 1999.
[2] D. Goldberg, K Deb, J. Clark, “Genetic Algorithms,
noise, and the sizing of populations”, Complex Systems, vol.
6, pp 333 – 362, 1992.
[3] D. Patterson, J. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, Morgan
Kaufmann, San Francisco, 1998.
[4] A. Stoica, R. Zebulum, M. I. Ferguson, D. Keymeulen, V.
Duong, X. Guo, “Evolving circuits in seconds: Experiments
with a stand-alone board-level evolvable system”, 2002
NASA/DoD Conf. on Evolvable Hardware, July 2002, pp.
67-74.
[5] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, G.
Lanza, Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, Kluwer, 2003.
[6] M. I. Ferguson, R. Zebulum, D. Keymeulen, and A.
Stoica, “An Evolvable Hardware Platform Based on DSP and
FPTA”, Genetic and Evolutionary Computation Conf.
(GECCO-2002), July 2002, pp. 145-152.
[7] J. Lohn, G. Larchev, R. DeMara, “Evolutionary Fault
Recovery in a Virtex FPGA Using a Representation that
Incorporates Routing”, International Parallel and Distributed
Processing Symposium (IPDPS'03), April 22 - 26, 2003.
[8] P. Layzell, “Reducing Hardware Evolution's Depen-
dency on FPGAs,” Proc of MicroNeuro '99, 7th International
Conf. on Microelectronics for Neural, Fuzzy and Bio-inspired
Systems., CA. April 1999, pp171-178.
[9] J. Langeheine, K. Meier, J. Schemmel, “Intrinsic
Evolution of Quasi DC solutions for Transistor Level Analog
Electronic Circuits Using a CMOS FTPA Chip,” 2002
NASA/DoD Conf. on Evolvable Hardware, pp. 75-84.
[10] J. Lohn, G. Haith, S. Colombana, D. Stassinopoulos,
"Towards Evolving Electronic Circuits for Autonomous
Space Applications," Proc of the 2000 IEEE Aerospace
Conf., , March 2000, pp 476-486, Vol. 5.
[11] J. Bothelo, B. Leonardo, Vieira, F. Pedro and A.
Mesquita, “An Experiment on Nonlinear Synthesis Using
Evolutionary Techniques Based only on CMOS Transistors,”
2003 NASA/DoD Conf. on Evolvable Hardware, pp. 50-58.
[12] D. Goldberg, The Design of Innovation Lessons From
and For Competent Genetic Algorithms, Kluwer Academic
Publishers, Boston, MA USA, 2002.
[13] A. Stoica, R. Zebulum, D. Keymeulen, M.I. Ferguson,
and X. Guo, “Scalability Issues in Evolutionary Synthesis of
Electronic Circuits: Lessons Learned and Challenges Ahead,”
AAAI Spring Symposium on Computational Synthesis,
March 24-26, 2003.
[14] V. Vassilev and J. Miller, "Scalability Problems of
Digital Circuit Evolution," 2nd NASA/DOD Workshop on
Evolvable Hardware, U.S.A., 2000.

	Design Space Issues for Intrinsic Evolvable Hardware
	
	
	Abstract

	1.0 Introduction

	n
	ngen
	n*ngen
	
	
	Acknowledgements

