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Abstract 
This paper discusses the problem of increased 
programming time for intrinsic evolvable hardware 
(EHW) as the complexity of the circuit grows.  We 
develop equations for the size of the population, n, and 
the number of generations required for the population 
to converge, ngen, based on L, the length of the 
programming string.  We show that the processing time 
of the computer becomes negligible for intrinsic EHW 
since the selection/crossover/mutation steps are only 
done once per generation, suggesting there is room for 
use of more complex evolutionary algorithms in 
intrinsic EHW.  Finally, we review the state of the 
practice and discuss the notion of a system design 
approach for intrinsic EHW. 
 
1.0 Introduction 
 
 This paper looks at the cycle time for the 
evolutionary process for intrinsic evolvable hardware 
(EHW), and its relationship to the complexity of the 
design being sought. In general, intrinsic EHW is 
successful in designing small- or medium-sized 
circuits.  But the devices themselves, such as Field 
Programmable Gate Arrays (FPGAs), can implement 
complex circuits.  In the past, researchers have limited 
the search space when they use reconfigurable devices 
with large design spaces. 
 Initially, we define the design space as the total 
space of allowable circuits given the hardware 
device(s).  In evolvable hardware, the design space is 
defined by both the number of programmable 
“configuration blocks” and the number of 
programmable interconnections among the blocks. To 
make this discussion general, a configuration block can 
be as simple as a transistor or as complicated as an 
amplifier or logic block.  The larger the design space 
then the more complex circuit that can be evolved.  We 
will assume that size of the design space is proportional 
to the number of programming bits. 
 The outline for this paper is as follows: Section 2 
will develop theoretical equations for the population 
size and the number of generations required to 
converge based on the length of the programming 
string (chromosome).  Section 3 discusses the timing of 

intrinsic EHW experiments.  For both a slow and a fast 
EHW configuration, it is shown that increasing the 
processor speed alone will not significantly affect the 
overall timing.  Section 4 looks at the current state of 
the practice of hardware evolution and discusses design 
approaches that may enable the evolution of complex 
circuitry.  Section 5 gives the main conclusions from 
the paper. 
 
2.0 Population size and number of 
generations 
 
 To evolve a complicated circuit requires a large 
design space and hence a long string of programming 
bits, L.  The size of the design space is 2L, but an 
evolutionary algorithm (EA) generally does not need to 
evaluate all of the possibilities to reach the peak or 
optimum operating point. To determine the number of 
evaluations that are required for a programming string 
with L bits, we will consider the size of the population, 
n, and the number of generations, ngen, separately.  
The objective is to determine how n and ngen scale 
with the length of the programming string, L, or 
chromosome length.  The total number of evaluations 
will then be n*ngen. 
 This paper follows the approach of Harik et al. [1] 
to determine population size, n, in terms of length of 
the chromosome string L for a Genetic Algorithm 
(GA).  Harik develops a model of GAs based on an 
analogy between genetic algorithms and one-
dimensional random walks.  The result is an equation 
that relates the size of the population with the desired 
quality of the solution, as well as the problem size and 
difficulty.  The final equation for n is given by 
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where 
  α = probability of GA failure 
  k = building block order (length) 
  m’ = m-1 = (number of building blocks) – 1 
  d = signal-to-fitness difference 
  σbb = average root mean square building block 
standard deviation 
 Equation 1 indicates a GA scales very well to the 
problem size. It shows that the required population 
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grows with the square root of the size of the problem.  
For our purposes, we assumed that the programming 
strings are binary (or binary alphabets), the building 
block size is 4 (so m = L/4), the probability of GA 
failure is .01, the fitness difference between the best 
and 2nd best building block is 1,  and the root mean 
square fitness variance ( ) is 0.04.  (Note: the 
fitness variance is small compared to the test cases 
presented by Harik; this value was chosen because it 
gave pretty good agreement with our evolvable 
hardware experiments.)  This yields an equation for 
population size as 
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where L is the length of the programming string.  This 
result shows that n scales as the square root of L.  The 
constant (13 in this case) will vary based on the 
problem difficulty (in general it will be a larger 
number) but n is still O(L1/2).  
 The parameter ngen is the number of generations till 
the population converges.  Goldberg [2] utilizes the 
schema theorem to estimate the number of generations 
till convergence as  
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where r is the fitness ratio between a “good” schema 
and a bad schema.  We assume that as the 
programming string gets longer that the fitness ratio, r, 
will get smaller.  Substituting for r into equation 3 and 
simplifying yields the number of generations till 
convergence as  
  ngen      (4) ).1ln()12( )1(log −+= + nL

 We can now estimate how long it takes to program a 
device using evolvable hardware techniques.  The 
following chart (table 1) lists several reconfigurable 
devices that are used for intrinsic evolvable hardware.  
The table lists the devices, L (the number of bits 
required to do the programming), 2L (the total number 
of possible combinations given the number of 
programming bits), n, ngen, n*ngen, and estimated 
time to program device assuming 0.5 seconds per 
evaluation.  The evaluation time varies considerably in 
intrinsic EHW based on application and experimental 
setup; 0.5 seconds is close to the worst case condition. 
 To determine the computational complexity of the 
ngen calculation, the growth in ngen based on L is 
done via linear regression.  A plot of log(L) vs 
log(ngen) is a straight line.  The slope of the line, 
calculated using linear regression, is .43 so ngen is 
O(L.43). 
 

 
Device L 2L n ngen n*ngen Time 
Pac30 (amplifier gains 
only) 

20 106 26 19 494 4 mins 

Pac30 (complete config) 112 5x1033 68 39 2652 22 mins 
FPTA2 (limited) 500 3x10150 145 70 10,150 85 mins 
FPTA2 (complete) 5000 >10300 459 165 75,735 10.5 hrs 
Virtex XCV50 (limited) 9600 >10300 637 210 133,770 18.5 hrs 
Virtex XCV50 (complete) 1569,000 >10300 4900 926 4.5x106 625 hrs 

 
Table 1: Programming times for reconfigurable devices used for intrinsic EHW assuming 0.5 seconds for 
evaluation of each solution. 
 
 Table 1 makes clear the main benefit of using 
GAs/evolvable hardware techniques: as the design 
space grows to nearly infinite proportions (>10300 
possibilities), the number of evaluations, n*ngen, only 
grows as O(L1/2)*O(L.43) = O(L0.93) or slightly less than 
O(L).   
 
3.0 Reduction of execution time 
 
 In general, an EA used in evolvable hardware has 
the following major steps: evaluate each member of the 
population, selection, crossover, and mutation.  For 
intrinsic EHW all of the steps can be done on the 
processing computer except the evaluation.  The 
evaluation of each member requires several steps: 

download bit string to device, update device, measure 
new output, read output and transfer to processor.  We 
define the evaluation time as tevaluate. 
 If the population size is denoted n, then the 
calculation time for one generation of the EA is 
  tcycle =  n*(tevaluate) + tprocessor,     (5) 
where tprocessor is the time for the processor to do 
selection, crossover, and mutation.  Consider the 
impact on the calculation time due to increased 
processor speeds.  The issue is that processor 
speed/time (tprocessor) is only one part of the equation, so 
improvements in processor speed only affect one part 
of the whole process.  By analogy with computer 
design, we can apply Amdahl’s Law [3]. Assume that 
processor speed increases by a factor nspeedup.  Then 
Amdahl’s Law says that 



  tcycle(after speedup) = 
nspeedup

t process +n* tevaluate (6) 

In other words, tcycle in not reduced by nspeedup; rather 
only tprocess is reduced by nspeedup.  Since tprocess is only 
a fraction of the tcycle, increasing the processor speed 
has only minimal affect on the overall time. 
 To illustrate the (lack of) effect of increasing 
computer speed, we look at some sample numbers for 
two different intrinsic EHW setups.  One setup utilizes 
a FPAA from Lattice Semiconductor (ispPAC30) 
controlled by a PC.  A digital multimeter (DMM) is 
used to read the output and a GPIB (IEEE 488) bus is 
used to transfer the data to the PC.  This is an EHW 
setup using relatively slow devices.   
 The FPAA setup has an evaluation time of 35 msec 
(mainly due to the time to measure the output and 
transfer the data to the processor).  From timing 
measurements on a Pentium III computer, we know 
that tprocess = .6 msec.  Calculating tcycle from these 
values (assuming a population size of 50) yields  
  tcycle = 50*(35) + .6 = 1750.6 msec = 1.75 sec. 
From the calculation of tcycle, it is clear that the 
processor time is a very small fraction of the total cycle 
time.  Even if we used a new and fast computer that 
was, say 5 times faster (nspeedup = 5) than the Pentium 
III, Amdahl’s law says that the new execution time will 
be 
  tcycle(fast computer) = 0.6/5 + 1750 = 1750.12 ms 
Therefore, the speedup in processor speed will have an 
insignificant impact on total time in intrinsic evolvable 
hardware experiments.  Clearly, much more can be 
gained in this experiment by decreasing the evaluation 
time.   
 The second intrinsic EHW setup is the stand-alone 
board-level evolvable system (SABLES) developed by 
researchers at Jet Propulsion Laboratory [4].  The 
SABLES system is an example of a fast EHW setup.  
From Stoica et al. [4], the stimulus/response time is 
1.13 msec per population member, and it takes 6 msec 
to generate a new population.  Thus, 
  tcycle  = 50 * (1.13 msec) + 6 msec = 62.5 ms. 
 It is clear that the SABLES setup provides an 
enormous speed advantage over the (slow) FPAA setup 
– it is approximately thirty times faster.  But again 
Amdahl’s Law shows that speeding up (i.e., reducing) 
the processor time will have only a minor impact on 
the overall execution time.  Again assuming a speedup 
of 5 in the processor yields 
  tcycle(fast processor) = 56.5 +6/5 = 57.5 msec 
or only about an 8% time reduction for a large 
improvement in processor speed. 
 We have shown that improvements in processor 
speed will not significantly impact the total time in 
intrinsic EHW experiments.  This is in contrast to 
Genetic Programming and other extrinsic EHW 

experiments where increases in processor speed have 
led to development of more complicated circuits [5]. 
 
4.0 State of the practice 
 
 The previous sections provide a quantitative analysis 
giving two results for intrinsic hardware evolution.  
One result shows a GA provides a good approach for 
searching the solution space as the length of the 
chromosome increases.  The second shows the time for 
processing a population primarily depends on 
evaluation time for each individual.  These results are 
qualitatively intuitive based on experience and 
empirical data, but have not been quantified in 
published literature for specific devices used in 
intrinsic hardware evolution.  In this section we discuss 
the implication of these results for practical 
implementation and give several observations about the 
current state of practice for intrinsic EHW.   
 The first observation from published literature is that 
researchers using intrinsic hardware evolution are 
primarily concerned with hardware platform 
development.  However researchers concerned with 
design of the evolutionary process use extrinsic 
hardware evolution.  We define the evolutionary 
process to include an evolutionary algorithm (EA), 
chromosome mapping, population sizing/initialization 
and fitness evaluation.  Work involving the use of a 
physical platform routinely employs standard GAs 
[6,7,8,9].  Researchers developing more complex 
approaches to the evolutionary process frequently use 
simulated hardware components. [5,10,11].  One 
reason for this may be that simulation lends itself to 
implementation of complex algorithms more easily 
than a hardware platform with resource and timing 
constraints.  The evolutionary process and the platform 
are intimately tied together and impose limits on each 
other. These two components of hardware evolution 
are a system to be considered together in the design of 
an intrinsic EHW platform. 
 The second observation concerns the basis of our 
first result (equation 2) in the analysis of simplified 
statistical processes and genetic algorithms with 
crossover, but no mutation.  Goldberg refers to these 
equations as facet wise models giving insight into the 
process of applying GAs to problem solving.  These 
models are verified using simulations of the GA and 
problem to be solved [1,12].  Goldberg, et. al., consider 
building blocks in a chromosome to be one bit in the 
case of the simple ONEMAX problem, concerned with 
convergence of the chromosome string to all ones.  In 
the case of deceptive traps, the problem includes a 
building block of 6 bits with a local maximum at 
000000 and a global maximum at 111111.  In this case, 
the GA is led astray as the fitness improves as the 
number of zeros increases, but the best fitness is only 



achieved if all 6 bits are ones.  The goal is maximizing 
fitness of m 6-bit deceptive traps in a chromosome of 
length, L, where m = L/6.    
 Building blocks in intrinsic EHW have physical 
relevance, and a chromosome may contain building 
blocks of varying lengths.  The problem of autonomous 
circuit design is more difficult than the ONEMAX 
problem or a set of repetitive deceptive traps, making 
the precise application of such analytical models more 
difficult.  The results obtained here for the number of 
evaluations, n*ngen, are estimates and represent the 
minimum evaluations needed.  Extending these 
equations to provide population sizing and evaluations 
bound in a hardware evolution problem will provide 
tools for implementation of an evolvable hardware 
platform. 
 A third observation is many approaches for evolving 
complex circuitry involve using previously evolved 
circuits or known circuit configurations [5,13,14].  
Time for evolution is reduced by using already evolved 
components, rather than forcing the evolutionary 
algorithm to re-evolve basic circuits.  Humans 
routinely employ such a strategy in the design of 
electronic circuits.  While such approaches make sense 
from a practical standpoint, they are frequently viewed 
as limiting the design space, especially when “fixing” 
portions of a reconfigurable device is involved.     
 
5.0 Conclusions 
 
 The analytical results show intrinsic EHW 
employing GAs is a good approach for tackling very 
large problems since as the design space grows very 
large (near infinite), the processing time only grows at 
slightly less than O(L).  Adjustments to the models will 
need to be made to create useful tools for selecting 
population sizes and estimating the time to 
convergence for a given application.  The analytical 
results clearly show that the processing time for the EA 
is a very small fraction of the total cycle time.  This 
implies there is room for use of complex EAs in 
intrinsic EHW.   
 The published literature acknowledges that the 
evolutionary process and the platform are intimately 
tied together.  This supports the notion of a system 
level view of design space that includes design of the 
evolutionary process and the physical platform.  The 
use of analytical models for insight into the 
evolutionary process along with a system level view of 
intrinsic EHW will help enable successful scaling of 
designs in practical applications. 
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