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Definitions

Theorems

Proofs

Sections 2.1-2.7

Lebesgue measure (2.1)

Lebesgue outer measure (2.2)

Outer measure of a set (2.2)

Measurable set (2.3)

Lebesgue measure as the restriction of outer measure on measurable sets (2.5)
Cantor set (2.7)

Cantor-Lebesgue function (2.7)

Outer measure equals length for intervals (Proposition 2.1)
Outer measure is translation-invariant and subadditive (Propositions 2.2, 2.3)
A countable set has outer measure 0 (2.2)
Any set of outer measure 0 is measurable (Prop 2.4)
Finite unions of measurable sets are measurable (Prop. 2.5)
Outer measure is finitely additive on measurable sets (Prop 2.6)
Countable unions of measurable sets are measurable (Prop. 2.7)
Every interval is measurable (Prop. 2.8)
Collection of measurable sets is a o-algebra (Prop. 2.9)
Translate of a measurable set is measurable (Prop. 2.10)
Outer and inner approximation of measurable sets (Theorem 2.11)
A measurable set is a Gg-set with a set of outer measure 0 removed (2.4)
A measurable set is an F,-set with a set of outer measure 0 added (2.4)
Lebesgue measure is countably additive (Prop. 2.13)
A Lebesgue measure derived from outer measure
is a Lebesgue measure in the sense of 2.1 (Theorem 2.14)
Continuity of measure over ascending and descending collection (Theorem 2.15)
The Borel-Cantelli Lemma (2.5)
Lemma 2.16
Every set of measure > 0 has a nonmeasureable subset (Vitali’s Theorem 2.17)
Theorem 2.18
Cantor set is closed, countable and has measure 0 (Prop. 2.19)
Cantor-Lebesgue function is increasing and continuous (Prop. 2.20)
Continuous bijection ¢ maps a set of measure 0 to a set of nonzero measure,
maps a measurable set to a nonmeasurable set (Prop. 2.21)
There exists a measurable set that is not Borel (Prop. 2.22)

A countable set has outer measure 0 (2.2)

Subadditivity of outer measure (Proposition 2.3)

Finite unions of measurable sets are measurable (Prop. 2.5)

Countable unions of measurable sets are measurable (Prop. 2.7)

Continuity of measure over ascending and descending collection (Theorem 2.15)
Lemma 2.16

Every set of measure > 0 has a nonmeasureable subset (Vitali’s Theorem 2.17)
Cantor set is closed, countable and has measure zero (Prop. 2.19)
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Sections 3.1-3.3

Definitions Measurable function (3.1)
Characteristic function x4 (3.2)
Simple function (3.2)

Theorems  Equivalence of measurable function definitions (Prop. 3.1)
Characteristic function y 4 is measurable iff A is measurable (3.2)
f is measurable iff f~1(U) is open for every open set U (Prop. 3.2)
f is measurable iff f71(A) is open for every Borel set A (Prob. 3.7)
Continuous functions on measurable domains are measurable (Prop. 3.3)
Monotone functions on intervals are measurable (Prop. 3.4)
Function is measurable iff its restrictions are measurable (Prop. 3.5)
Lin. comb., products of measurable functions are measurable (Theorem 3.6)
Min, max, | |, ¥, ~ of measurable functions are measurable (Prop. 3.8)
f continuous, g measurable = f o g is measurable (Prop. 3.7)
Composite of measurable functions need not be measurable (3.1)
Convergent sequence of measurable converges to measurable (Prop 3.9)
Simple Approximation Lemma (3.2)
f is measurable iff f is a limit of simple functions: Simple Approx. Thm. (3.2)
Littlewood’s three principles (3.3)
A measurable set is nearly a finite union of open intervals (Theorem 2.12)
Pointwise convergence is nearly uniform: Egoroff’s Theorem (3.3)
Every measurable function is nearly continuous: Lusin’s Theorem (3.3)

Proofs Cantor set is closed, countable and has measure zero (Prop. 2.19)
Simple Approximation Lemma (3.2)
Lemma 3.10
Every simple function is nearly continuous (Prop. 3.11)
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Sections 4.1-4.6

Definitions Riemann sum, Riemann integrability via Riemann sums (B&S 7.1)
Upper, lower Darboux sum (4.1)
Upper, lower Riemann integral (4.1)
Riemann integrable function via Darboux sums (4.1)
Simple function and integral of a simple function (4.2)
Upper, lower integral of a measurable function over a set of finite measure (4.2)
Integral of a measurable function over a set of finite measure (4.2)
Integral of a nonnegative function (4.3)
Integrability of a nonnegative function (4.3)
ft, f, integrability of a general function (4.4)
Uniform integrability of a family of functions (4.6)

Theorems  Equiv. of Riemann integrability via Darboux or Riemann sums (Theorem 4.0)
A Riemann integrable function is Lebesgue integrable (Theorem 4.3)
Linearity and Monotonicity of Integration (Prop. 4.2, Thms. 4.5, 4.10, 4.17)
Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18)
| J5 fI < [z 1f] (Coro. 4.7, Prop. 4.16)

Uniform convergence theorem (Prop. 4.8)

Bounded Convergence Theorem (4.2)

Chebyshev’s Inequality (4.3)

f>0and [, f=0 = f=0aeonE (Prop. 4.9)

Fatou’s Lemma (4.3)

Monotone Convergence Theorem (4.3)

Lebesgue Dominated Convergence Theorem (4.4)

General Lebesgue Dominated Convergence Theorem (Theorem 4.19)
Countable Additivity of Integration (Theorem 4.20)

Continuity of Integration (Theorem 4.21)

A finite collection of integrable functions is uniformly integrable (Prop. 4.23, 4.24)
Vitali Convergence Theorem (4.6)

Theorem 4.26

Proofs Existence of a Riemann-nonintegrable function (4.1)
Examples where Riemann integral fails pointwise convergence (4.1)
Bounded Convergence Theorem (4.2)
Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18)
Chebyshev’s Inequality (4.3)
f>0and [, f=0 = f=0aeonE (Prop. 4.9)
Fatou’s Lemma (4.3)
Examples where Fatou’s Lemma has strict inequality
Examples of nonintegrable functions for which lim,, ., fln f exists.
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Definitions

Theorems

Proofs

Sections 7.1-7.3

Essential upper bound, essentially bounded (7.1)
The spaces LPE and 7, p € [1,00] (7.1)

Norm on a linear space (7.1)

The space Cla,b] and its norm || ||max (7.1)

The norm || ||, on spaces LPE and [P (7.2)

The function f* (Theorem 7.1)

Normed convergence of a sequence (7.3)

Cauchy sequence in a normed space (7.3)
Banach space (7.3)

Rapidly Cauchy sequence (7.3)

la + bP < 2°(Jal? + [bP) (7.2)
P
Young’s Inequality: ab < % + 7 (7.2)

Theorem 7.1, including Holder’s inequality: [, /- g] < ||fll, - [l
Minkowski's inequality: ||f + gll, < |Lfll, + [gll, (7.2)
F bounded in LPFE is uniformly integrable (Coro. 7.2)
mE < oo and 1 < p; < py < oo implies LP?E C LP'E, || f|p, < ¢||fllp, (Coro. 7.3)
Convergent sequence is Cauchy (Prop 7.4)
Cauchy sequence is convergent if it has a convergent subsequence (Prop. 7.4)
Every rapidly Cauchy sequence is Cauchy (Prop. 7.5)
Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. 7.5)
Every rapidly Cauchy sequence in LPE converges wrt norm and pointwise (Thm 7.6)
Riesz-Fischer Theorem: LPFE is a Banach space (7.3)
Every norm-convergent sequence in LPE
has a subsequence that converges pointwise ae on E (7.3)
For f,, f € LPE. if f, — f pointwise ae on E, then
fn — f wrt norm iff || f,][, = ||f||, (Theorem 7.7)

Young’s inequality (7.2)

Holder’s inequality (Theorem 7.1)

F bounded in LPFE is uniformly integrable (Coro. 7.2)

Examples of functions in LP*E, but not in LP?E (7.2)

Every rapidly Cauchy sequence is Cauchy (Prop. 7.5)

Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. 7.5)
Examples of functions in LPFE, that converge pointwise, but not wrt norm (7.3)



