Integration Theory — Problem Farm 4.5 MAT 726, Spring 2025 — D. Ivanšić

Lebesgue Integrals

Type A problems (5pts each)

For the following functions and domains, determine if f is integrable over E. If it is, find the integral. Justify your reasoning with theorems, but if you do more than one of A1-A5, you may not appeal to the same theorem more than once.

A1.
$$f(x) = \frac{1}{x^p}, p > 1, E = [1, \infty)$$

A1.
$$f(x) = \frac{1}{x^p}, \ p > 1, \ E = [1, \infty)$$
 A2. $f(x) = \frac{1}{x^p}, \ 0$

A3.
$$f(x) = \frac{1}{x^p}, p > 1, E = (0, 1]$$

A3.
$$f(x) = \frac{1}{x^p}$$
, $p > 1$, $E = (0, 1]$ **A4.** $f(x) = \frac{1}{x^p}$, $0 , $E = (0, 1]$$

A5.
$$f(x) = e^x$$
, $E = (-\infty, 0]$

A6. Show that $f(x) = \frac{1}{x^2} \sin x$ is integrable over $[1, \infty)$.

Type B problems (8pts each)

B1. Show that $f(x) = \frac{1}{x}\sin(\pi x)$ is not integrable over $[1, \infty)$, but that $\lim_{n \to \infty} \int_{[1,n]} f$ exists.