Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivansié 4.1 The Riemann Integral

Recall the definition of the Riemann integral ff f(z)dz.

Definition. Let a = 2z < 21 < -+ < x, = b, t; € [x_1,2;] be a tagged partition of
la,b]. f :[a,b] - R is Riemann integrable if there exists an a number L € R such that

for every € > 0 there exists a 6 > 0 s.t. if P is any tagged partition with ||P|| < J, then
|S(f,P) — L| < ¢, where S(f,P) =>1, f(t;)Ax;. and Ax; = x; — x;_;.

Here is an alternative approach:

Definition. Let f : [a,b] = R be bounded, P a partition of [a,b]. We define the

lower Darboux sum: L(f,P)= Z m;Ax;, where m; = inf{f(z) | z € [x;_1, x|}
i=1

upper Darboux sum: U(f,P)= Z M;Ax;, where M; = inf{f(x) | z € [z;_1, x;]
i=1

and the

b
lower Riemann integral: / f =sup{L(f,P) | P is a partition of [a,b]}

b
upper Riemann integral: / f=1inf{U(f,P) | P is a partition of [a,b]}

b b
A function is Riemann integrable if / f= / f.

Theorem 4.0. A function is Riemann-integrable
via Riemann sum definition if and only if it is
Riemann-integrable via the Darboux sum defini-
tion.

Proof.
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Example. Recall the piecewise linear
functions f, : [0,1] — R passing through
points (0, 0), (%,n), (2 0) and (1,0).

n’

1
fn—>0,yet/ fa=1-»0
0

Example. Let f : [0,1] — R be the Dirichlet function, (¢,) a sequence enumerating rational
numbers in [0, 1], and let f, : [0, 1] — R functions given by

[ 1, ifzeQ _J L ifaed{q,.. .}
f(x)_{o, if v ¢ Q f”(x)_{O, ifxé,é{qi,---qn}

Show that f is not Riemann integrable via the Darboux sums and that f, — f, giving a
sequence of Riemann-integrable functions that converges to a function that is not Riemann-
integrable.
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Real Function Theory 1 — Lecture notes 4.2 The Lebesgue Integral of
MAT 726, Spring 2025 — D. Ivansié a Measurable Function. ..

Definition. Let E be measurable and let ¢y : E — R be a simple function that takes on
takes on distinct values aq,...,a, € R. Then ¢ = Z a;xg, where E; = f~!(a;) are disjoint.

i=1
This is called the canonical representation of 1.

Example. Show how ¢ : [1,3] = R, ¥ = 4xp12) + 5xJ2,3 can be written in other ways

n
E arXE; where Lj’s are not disjoint.
i=1

Because the canonical representation of a simple function is unique, we may define:

Definition. For a simple functon ¢ : E — R, where mE < oo, we define the integral of ¥
over E by

n n
/ Y= Z a; - mE;, where ) = Z a;X g, is the canonical representation of
E

i=1 i=1

Lemma 4.1. Let ¢ = ZaiXEm where the FE;’s are disjoint and measurable, F; C FE,
i=1

mE < 0. Then/@b:Zai-mEi
E i=1

Proof. The difference with the original formula is that not all a; need be distinct — see
book.

Proposition 4.2. Let ¢,1 : E — R be simple functions, mE < oo. Then for any o, 3 € R
we have:

[aprin=afers[v  ite<vonbihen [o< o
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Proof.

Example. Let a = 29 < 21 < --- < z,, = b be a partition of £ = [a,b], and let f: E - R
a;, ifx e (xi—lal’i)
b;, ifx=ux;

this simple function is equal to its Riemann integral.

be the step function f(z) = { . Show that the Lebesgue integral of

To define the Lebesgue integral, we follow the pattern for defining the Riemann integral via
Darboux sums.

Definition. Let f : £ — R be bounded, mE < oco. We define the
lower Lebesgue integral: / f =sup {/ ¢ | ¢ simple and ¢ < f on E}
E E

upper Lebesque integral: /f = inf {/ Y | ¢ simple and f <1 on E}
E E
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Notethatifmgfgi\/[onE,thenm-mEg/fg/f§M~mE,since/<p§/1/1,
E E E E
owing to ¢ < f < 1.

Definition. We say that a bounded function f : E — R, mFE < oo, is Lebesque-integrable

overEif/Ef:/Ef. Inthiscaseweset/Ef:/Efz/Ef

Theorem 4.3. If f : [a,b] — R is Riemann-integrable, then it is Lebesgue-integrable.
Proof.

Note. xq : [0,1] — R is Lebesgue-integrable over [0, 1], but is not Riemann-integrable over
0,1], and f[O,l] xq=1-m(QnJo0,1]) = 0.

Theorem 4.4. If mE < oo and f : £ — R is bounded and measurable, then f is Lebesgue-
integrable.

Proof.
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Theorem 4.5. If mE < oo and f,g: E — R be bounded and measurable. Then

[arson=afs+ofs  wr<gomsme [f< [y

Proof.

Corollary 4.6. Let mE < oo and let f : E — R be bounded and measurable, A, B C F,
disjoint and measurable. Then / f= / f+ / f.
AUB A B

Proof.

Corollary 4.7. Let mFE < oo and let f: E — R be bounded and measurable. Then

L= [

Proof.
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Proposition 4.8. Let mFE < oo and let (f,) : E — R be a sequence of bounded and

measurable functions. If f,, — f uniformly on F, then | f, — [ f.
E E

Proof.

Note. Pointwise convergence is not enough to claim / fn— / f, as in example in 4.1.
E E

Bounded Convergence Theorem. Let mE < oo and let (f,,) : E — R be a sequence of
measurable functions that is uniformly pointwise bounded, meaning there exists an M € R

such that |f,| < M for all n € N. If f,, — f pointwise on E, then / fn — / f.
E E

Proof.
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Example. Determine / ¢ for the Cantor-Lebesgue function ¢ : [0, 1] — [0, 1].
0,1]
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Real Function Theory 1 — Lecture notes 4.3 The Lebesgue Integral of
MAT 726, Spring 2025 — D. Ivansié a Nonnegative Function

Definition. Let f : E — R be measurable. We say that f vanishes outside of a set of finite
measure if there exists a set £y C F such that mEy < oo and f|g_g, = 0. We also say that
f has finite support and define the support of f as

supp f ={z € E'| f(z) # 0}

If f: F — R is measurable, bounded and has finite support, we define [ pf= / Eo f, where
Ey is any set so that mEy < oo and f|g_g, = 0 (that is, supp f C Ey). This is well-defined:
it does not depend on the choice of Ej.

More generally, we can define:

Definition. Let f : E — R be measurable, f > 0. We define

/ f =sup {/ h | h is bounded, measurable, of finite support and 0 < h < f on E}
E E

= OQ.

Example. Show /

[L,00) ¥

1
Example. / — 1s trickier.

[1700) x
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Chebyshev’s Inequality. Let f : E — R be measurable, f > 0. Then for any A > 0,

1
m{x€E|f(m)2A}§X/Ef

Proof.

Proposition 4.9. Let f : E — R be measurable, f > 0. Then

/f:()ifandonlyiff:()a.e. on F
E

Proof. Similar to a homework problem in section 4.2.

Theorem 4.10. Let f, g : £ — R be measurable, f, g > 0. Then for every a, 3 > 0 we have

[lar+sg=a[ 45 g itr<gonbe [f< [y

Proof.
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Theorem 4.11. Let f : E — R be measurable, f > 0, A, B C E measurable and disjoint.

Then
AuB A B E E—Ey

Proof. Depends on linearity and / f= / fxa, so it is same as before.
A

Fatou’s Lemma. For every n € N, let f,, : E — R be measurable, f, > 0.

If f, — f pointwise a.e. on E, then / f <lim inf/ fn
E E

Recall that liminfa, = lim inf{a; | ¥ > n}, imsupa, = lim sup{ax | k£ > n}. Note that
n—00 n—00

for every sequence (a,), liminf a,, < limsup a,.

Proof.
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Example. Let f, be the piecewise linear functions f,, : [0, 1] — R passing through points
(0,0), (,n), (2,0) and (1,0). Then f, — 0 on [0,1]. Verify Fatou’s Lemma for this

no

example.

l . .
Example. Let g, = { 2Xfent); 17 ls even Then g, — 0 on R. Verify Fatou’s Lemma

Xinnt1), if nis odd
for this example.

Example. Let g, = { Xinnt1); 1 nis prime Then g, — 0 on R. Verify Fatou’s

%X[n,nJrl}, if n is not prime
Lemma for this example.
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Monotone Convergence Theorem. For every n € N, let f,, : E — R be measurable,
fn >0, and let (f,) be an increasing sequence.

If f, — f pointwise a.e. on E, then /fn — / f
E E

Proof.

Corollary 4.12. For every n € N, let u, : £ — R be measurable, u,, > 0.

If f= Zun pointwise a.e. on F, then /Ef = Z/Eun
n=1 n=1

Definition. A measurable function f : E — R, f > 0, is said to be integrable if/ f < oo.
E

Proposition 4.13. If f: E — R, f > 0, is integrable, then f is finite a.e. on E.

Proof.

Beppo Levi’s Lemma. For every n € N, let f, : E — R be measurable, f, > 0, and let
(fn) be an increasing sequence. If the set { [, f, | n € N} is bounded, then (f,) converges
pointwise to a measurable function f that is finite a.e. on E and fE fn— fE f < oo

Proof.
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Real Function Theory 1 — Lecture notes 4.4 The General
MAT 726, Spring 2025 — D. Ivansié Lebesgue Integral

Recall the definition from section 3.1: for a function f: E — R, we set

[ () = max{f(2),0}, f~ () = max{—f(x),0} which implies f = f* — f~, |f| = /" + f~
Furthermore, f*, f~ > 0 and f is measurable if and only if /™ and f~ both are.

Proposition 4.14. Let f : E — R be measurable. Then f*, f~ are integrable if and only
if | f| is integrable.

Proof.

Definition. A measurable function f : £ — R is said to be integrable over E if |f] is
integrable over E. In this case, we define:

Jot= o

Note. The definition agrees with earlier definitions if f is bounded, measurable with finite
support or if f > 0.

1
Example. Let f: [1,00) = R, f(x) = (=1)"— on [n,n+1). Justify the following properties
n

of this function:

1) lim / f(z) dx exists

b—o0

) The above is a consequence of ordering rather than that “area enclosed” is finite.

b
Rearrange the constant pieces to get a function g for which hm / g(x)dxr = —oo0.

b—oo
This is the reason why textbooks usually only treat indefinite integrals of positive

functions.

3) Under Lebesgue integral definition, f is not integrable since |f| is not integrable,

/[1,00) fl =
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Proposition 4.15. Let f : E — R be integrable over E. Then f is finite a.e. on E and
/f: fit By C E and mE, = 0.
E E—Eq

Proof.

Proposition 4.16 (Integral Comparison Test). Let f : E — R be measurable and
suppose there exists a ¢ : E — R that is integrable over E and dominates f (that is,

|f] < g). Then f is integrable and
L= [
E E

Proof.
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Theorem 4.17. Let f,g: E — R be integrable on E. Then for every a, 3 € R we have

[arspn=afs+ofs  wr<gomsme [f< [y

Proof. See book

Note. If f(z), g(x) = oo, it’s not possible to define (f — g)(z). However, due to integrability
of both, f and g are finite a.e. on F, so we can reduce E to a smaller set where f and g are
both finite.

Corollary 4.18. Let f : E — R be integrable over E, A, B C E measurable and disjoint.

Then
Juu =17 15

Proof.

The Lebesgue Dominated Convergence Theorem. For every n € N, let f,, : & — R
be measurable and suppose there is a function g : £ — R that is integrable over E and
dominates (f,) on F (that is, |f,| < g for all n € N). If f,, — f pointwise a.e. on E, then f

is integrable on F and lim [ f, = | f.

Proof.
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Theorem 4.19 (General Lebesgue Dominated Convergence Theorem). For every
n € N, let f, : E — R be measurable, and let f, — f pointwise a.e. on E. Suppose there is
a sequence ¢, : E — R, g, > 0, of measurable functions that converges pointwise a.e. on F
to a function ¢ : £ — R and dominates (f,) on E (that is, |f,| < g, for all n € N).

If lim gn:/g<oo,then lim/fn:/f
n—o0 E E n—00 FE E

Proof. Homework.
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Real Function Theory 1 — Lecture notes 4.5 Countable Additivity and
MAT 726, Spring 2025 — D. Ivansié Continuity of Integration

Theorem 4.20 (Countable Additivity of Integration). Let f : E — R be integrable
over E, {E,,n € N} a family of disjoint measurable sets such that F = U E,. Then

n=1
/Ef:g Enf

Proof.

Theorem 4.21 (Continuity of Integration). Let f : E — R be integrable over E.

1) If £y C By C --- C E is an ascending 2)If E D Ey O Ey O ... is a descending
collection of measurable subsets, then collection of measurable subsets, then
/ f = lim f / f = lim f
U;L.ozl E, n—oo E. ﬂ;;,.ozl En n—oo E,

Proof. Homework.
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Real Function Theory 1 — Lecture notes 4.6 Uniform Integrability,
MAT 726, Spring 2025 — D. Ivansié Vitali Convergence Theorem

Lemma 4.14. Let mE < oo and § > 0. Then F is a disjoint union of a finite collection of
sets, each with measure less than 9.

Proof.

Proposition 4.23. Let f : E — R be measurable. If f is integrable over E, then for every
g > 0 there is a 6 > 0 such that

if A C FE is any measurable set with mA < 9, then / f<e
A

Conversely, if mFE < oo and for every € > 0 there is a § > 0 such that above condition holds,
then f is integrable over F.

Proof.
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Definition. A family F of measurable functions is uniformly integrable over E if for every
¢ > 0 there is a 6 > 0 such that for every f € F, if A C F is measurable and mA < 4, then

ilfl <e.

Example. Lemma 4.23 says if f is integrable over F and mFE < oo, then {f} is uniformly
integrable.

Example. A finite collection of integrable functions is uniformly integrable.

Example. A collection F dominated by an integrable function g > 0 is always uniformly
integrable.
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Example. Consider f, : [0,1] — R, f.(x) = n. Then {f,, n € N} is not uniformly
integrable.

Example. Consider the piecewise linear functions f, : [0,1] — R passing through points
(0,0), (£,n), (2,0) and (1,0). Although {f[o j fnsn € N} is a bounded set, this collection

no

is not uniformly integrable,

The Vitali Convergence Theorem. Let mE < oo and suppose {f, : E — R,n € N} is
uniformly integrable over E. If f, — f pointwise a.e. on E, then f is integrable over £ and

i [ =[5

Proof.
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Theorem 4.26. Let mFE < oo and suppose for every n € N, h, : E — R, h, > 0, is
integrable over F and that h, — 0 a.e. on E. Then

/ hn, — 0 if and only if {h,, n € N} is uniformly integrable over E
E

Proof.
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