
Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivanšić 4.1 The Riemann Integral

Recall the definition of the Riemann integral
∫ b

a
f(x)dx.

Definition. Let a = x0 < x1 < · · · < xn = b, ti ∈ [x−1, xi] be a tagged partition of
[a, b]. f : [a, b] → R is Riemann integrable if there exists an a number L ∈ R such that
for every ε > 0 there exists a δ > 0 s.t. if Ṗ is any tagged partition with ||Ṗ|| < δ, then
|S(f, Ṗ)− L| < ϵ, where S(f, Ṗ) =

∑n
i=1 f(ti)∆xi. and ∆xi = xi − xi−1.

Here is an alternative approach:

Definition. Let f : [a, b] → R be bounded, P a partition of [a, b]. We define the

lower Darboux sum: L(f,P) =
n∑

i=1

mi∆xi, where mi = inf{f(x) | x ∈ [xi−1, xi]}

upper Darboux sum: U(f,P) =
n∑

i=1

Mi∆xi, where Mi = inf{f(x) | x ∈ [xi−1, xi]

and the

lower Riemann integral:

∫ b

a

f = sup{L(f,P) | P is a partition of [a, b]}

upper Riemann integral:

∫ b

a

f = inf{U(f,P) | P is a partition of [a, b]}

A function is Riemann integrable if

∫ b

a

f =

∫ b

a

f .

Theorem 4.0. A function is Riemann-integrable
via Riemann sum definition if and only if it is
Riemann-integrable via the Darboux sum defini-
tion.

Proof.
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Example. Recall the piecewise linear
functions fn : [0, 1] → R passing through
points (0, 0),

(
1
n
, n

)
,
(
2
n
, 0
)
and (1, 0).

fn → 0, yet

∫ 1

0

fn = 1 ↛ 0

Example. Let f : [0, 1] → R be the Dirichlet function, (qn) a sequence enumerating rational
numbers in [0, 1], and let fn : [0, 1] → R functions given by

f(x) =

{
1, if x ∈ Q
0, if x /∈ Q

fn(x) =

{
1, if x ∈ {q1, . . . qn}
0, if x /∈ {q1, . . . qn}

Show that f is not Riemann integrable via the Darboux sums and that fn → f , giving a
sequence of Riemann-integrable functions that converges to a function that is not Riemann-
integrable.
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4.2 The Lebesgue Integral of

a Measurable Function. . .

Definition. Let E be measurable and let ψ : E → R be a simple function that takes on

takes on distinct values a1, . . . , an ∈ R. Then ψ =
n∑

i=1

aiχEi
where Ei = f−1(ai) are disjoint.

This is called the canonical representation of ψ.

Example. Show how ψ : [1, 3] → R, ψ = 4χ[1,2) + 5χ[2,3] can be written in other ways
n∑

i=1

akχEi
where Ek’s are not disjoint.

Because the canonical representation of a simple function is unique, we may define:

Definition. For a simple functon ψ : E → R, where mE < ∞, we define the integral of ψ
over E by∫

E

ψ =
n∑

i=1

ai ·mEi, where ψ =
n∑

i=1

aiχEi
is the canonical representation of ψ

Lemma 4.1. Let ψ =
n∑

i=1

aiχEi
, where the Ei’s are disjoint and measurable, Ei ⊆ E,

mE <∞. Then

∫
E

ψ =
n∑

i=1

ai ·mEi

Proof. The difference with the original formula is that not all ai need be distinct — see
book.

Proposition 4.2. Let φ, ψ : E → R be simple functions, mE <∞. Then for any α, β ∈ R
we have: ∫

E

(αφ+ βψ) = α

∫
E

φ+ β

∫
E

ψ if φ ≤ ψ on E, then

∫
E

φ ≤
∫
E

ψ
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Proof.

Example. Let a = x0 < x1 < · · · < xn = b be a partition of E = [a, b], and let f : E → R

be the step function f(x) =

{
ai, if x ∈ (xi−1, xi)
bi, if x = xi

. Show that the Lebesgue integral of

this simple function is equal to its Riemann integral.

To define the Lebesgue integral, we follow the pattern for defining the Riemann integral via
Darboux sums.

Definition. Let f : E → R be bounded, mE <∞. We define the

lower Lebesgue integral:

∫
E

f = sup

{∫
E

φ | φ simple and φ ≤ f on E

}
upper Lebesgue integral:

∫
E

f = inf

{∫
E

ψ | ψ simple and f ≤ ψ on E

}
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Note that if m ≤ f ≤ M on E, then m ·mE ≤
∫
E

f ≤
∫
E

f ≤ M ·mE, since
∫
E

φ ≤
∫
E

ψ,

owing to φ ≤ f ≤ ψ.

Definition. We say that a bounded function f : E → R, mE < ∞, is Lebesgue-integrable

over E if

∫
E

f =

∫
E

f . In this case we set

∫
E

f =

∫
E

f =

∫
E

f

Theorem 4.3. If f : [a, b] → R is Riemann-integrable, then it is Lebesgue-integrable.

Proof.

Note. χQ : [0, 1] → R is Lebesgue-integrable over [0, 1], but is not Riemann-integrable over
[0, 1], and

∫
[0,1]

χQ = 1 ·m(Q ∩ [0, 1]) = 0.

Theorem 4.4. If mE <∞ and f : E → R is bounded and measurable, then f is Lebesgue-
integrable.

Proof.
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Theorem 4.5. If mE <∞ and f, g : E → R be bounded and measurable. Then∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g if f ≤ g on E, then

∫
E

f ≤
∫
E

g

Proof.

Corollary 4.6. Let mE < ∞ and let f : E → R be bounded and measurable, A,B ⊆ E,

disjoint and measurable. Then

∫
A∪B

f =

∫
A

f +

∫
B

f .

Proof.

Corollary 4.7. Let mE <∞ and let f : E → R be bounded and measurable. Then∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |

Proof.
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Proposition 4.8. Let mE < ∞ and let (fn) : E → R be a sequence of bounded and

measurable functions. If fn → f uniformly on E, then

∫
E

fn →
∫
E

f .

Proof.

Note. Pointwise convergence is not enough to claim

∫
E

fn →
∫
E

f , as in example in 4.1.

Bounded Convergence Theorem. Let mE < ∞ and let (fn) : E → R be a sequence of
measurable functions that is uniformly pointwise bounded, meaning there exists an M ∈ R

such that |fn| ≤M for all n ∈ N. If fn → f pointwise on E, then

∫
E

fn →
∫
E

f .

Proof.
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Example. Determine

∫
[0,1]

φ for the Cantor-Lebesgue function φ : [0, 1] → [0, 1].
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4.3 The Lebesgue Integral of

a Nonnegative Function

Definition. Let f : E → R be measurable. We say that f vanishes outside of a set of finite
measure if there exists a set E0 ⊆ E such that mE0 <∞ and f |E−E0 = 0. We also say that
f has finite support and define the support of f as

supp f = {x ∈ E | f(x) ̸= 0}

If f : E → R is measurable, bounded and has finite support, we define
∫
E
f =

∫
E0
f , where

E0 is any set so that mE0 <∞ and f |E−E0 = 0 (that is, supp f ⊆ E0). This is well-defined:
it does not depend on the choice of E0.

More generally, we can define:

Definition. Let f : E → R be measurable, f ≥ 0. We define∫
E

f = sup

{∫
E

h | h is bounded, measurable, of finite support and 0 ≤ h ≤ f on E

}

Example. Show

∫
[1,∞)

1

x
= ∞.

Example.

∫
[1,∞)

1

x2
is trickier.
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Chebyshev’s Inequality. Let f : E → R be measurable, f ≥ 0. Then for any λ > 0,

m{x ∈ E | f(x) ≥ λ} ≤ 1

λ

∫
E

f

Proof.

Proposition 4.9. Let f : E → R be measurable, f ≥ 0. Then∫
E

f = 0 if and only if f = 0 a.e. on E

Proof. Similar to a homework problem in section 4.2.

Theorem 4.10. Let f, g : E → R be measurable, f, g ≥ 0. Then for every α, β > 0 we have∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g if f ≤ g on E, then

∫
E

f ≤
∫
E

g

Proof.
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Theorem 4.11. Let f : E → R be measurable, f ≥ 0, A,B ⊆ E measurable and disjoint.
Then ∫

A∪B
f =

∫
A

f +

∫
B

f If E0 ⊆ E,mE0 = 0, then

∫
E

f =

∫
E−E0

f

Proof. Depends on linearity and

∫
A

f =

∫
fχA, so it is same as before.

Fatou’s Lemma. For every n ∈ N, let fn : E → R be measurable, fn ≥ 0.

If fn → f pointwise a.e. on E, then

∫
E

f ≤ lim inf

∫
E

fn

Recall that lim inf an = lim
n→∞

inf{ak | k ≥ n}, lim sup an = lim
n→∞

sup{ak | k ≥ n}. Note that

for every sequence (an), lim inf an ≤ lim sup an.

Proof.
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Example. Let fn be the piecewise linear functions fn : [0, 1] → R passing through points
(0, 0),

(
1
n
, n

)
,
(
2
n
, 0
)
and (1, 0). Then fn → 0 on [0, 1]. Verify Fatou’s Lemma for this

example.

Example. Let gn =

{
1
2
χ[n,n+1], if n is even
χ[n,n+1], if n is odd

Then gn → 0 on R. Verify Fatou’s Lemma

for this example.

Example. Let gn =

{
χ[n,n+1], if n is prime

1
n
χ[n,n+1], if n is not prime

Then gn → 0 on R. Verify Fatou’s

Lemma for this example.
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Monotone Convergence Theorem. For every n ∈ N, let fn : E → R be measurable,
fn ≥ 0, and let (fn) be an increasing sequence.

If fn → f pointwise a.e. on E, then

∫
E

fn →
∫
E

f

Proof.

Corollary 4.12. For every n ∈ N, let un : E → R be measurable, un ≥ 0.

If f =
∞∑
n=1

un pointwise a.e. on E, then

∫
E

f =
∞∑
n=1

∫
E

un

Definition. A measurable function f : E → R, f ≥ 0, is said to be integrable if

∫
E

f <∞.

Proposition 4.13. If f : E → R, f ≥ 0, is integrable, then f is finite a.e. on E.

Proof.

Beppo Levi’s Lemma. For every n ∈ N, let fn : E → R be measurable, fn ≥ 0, and let
(fn) be an increasing sequence. If the set {

∫
E
fn | n ∈ N} is bounded, then (fn) converges

pointwise to a measurable function f that is finite a.e. on E and
∫
E
fn →

∫
E
f <∞.

Proof.
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4.4 The General

Lebesgue Integral

Recall the definition from section 3.1: for a function f : E → R, we set

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0} which implies f = f+ − f−, |f | = f+ + f−

Furthermore, f+, f− ≥ 0 and f is measurable if and only if f+ and f− both are.

Proposition 4.14. Let f : E → R be measurable. Then f+, f− are integrable if and only
if |f | is integrable.

Proof.

Definition. A measurable function f : E → R is said to be integrable over E if |f | is
integrable over E. In this case, we define:∫

E

f =

∫
E

f+ −
∫
E

f−

Note. The definition agrees with earlier definitions if f is bounded, measurable with finite
support or if f ≥ 0.

Example. Let f : [1,∞) → R, f(x) = (−1)n
1

n
on [n, n+1). Justify the following properties

of this function:

1) lim
b→∞

∫ b

1

f(x) dx exists

2) The above is a consequence of ordering rather than that “area enclosed” is finite.

Rearrange the constant pieces to get a function g for which lim
b→∞

∫ b

1

g(x) dx = −∞.

This is the reason why textbooks usually only treat indefinite integrals of positive
functions.

3) Under Lebesgue integral definition, f is not integrable since |f | is not integrable,∫
[1,∞)

|f | = ∞
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Proposition 4.15. Let f : E → R be integrable over E. Then f is finite a.e. on E and∫
E

f =

∫
E−E0

f if E0 ⊆ E and mE0 = 0.

Proof.

Proposition 4.16 (Integral Comparison Test). Let f : E → R be measurable and
suppose there exists a g : E → R that is integrable over E and dominates f (that is,
|f | ≤ g). Then f is integrable and ∣∣∣∣∫

E

f

∣∣∣∣ ≤ ∫
E

|f |

Proof.
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Theorem 4.17. Let f, g : E → R be integrable on E. Then for every α, β ∈ R we have∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g if f ≤ g on E, then

∫
E

f ≤
∫
E

g

Proof. See book

Note. If f(x), g(x) = ∞, it’s not possible to define (f−g)(x). However, due to integrability
of both, f and g are finite a.e. on E, so we can reduce E to a smaller set where f and g are
both finite.

Corollary 4.18. Let f : E → R be integrable over E, A,B ⊆ E measurable and disjoint.
Then ∫

A∪B
f =

∫
A

f +

∫
B

f

Proof.

The Lebesgue Dominated Convergence Theorem. For every n ∈ N, let fn : E → R
be measurable and suppose there is a function g : E → R that is integrable over E and
dominates (fn) on E (that is, |fn| ≤ g for all n ∈ N). If fn → f pointwise a.e. on E, then f

is integrable on E and lim
n→∞

∫
E

fn =

∫
E

f .

Proof.
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Theorem 4.19 (General Lebesgue Dominated Convergence Theorem). For every
n ∈ N, let fn : E → R be measurable, and let fn → f pointwise a.e. on E. Suppose there is
a sequence gn : E → R, gn ≥ 0, of measurable functions that converges pointwise a.e. on E
to a function g : E → R and dominates (fn) on E (that is, |fn| ≤ gn for all n ∈ N).

If lim
n→∞

∫
E

gn =

∫
E

g <∞, then lim
n→∞

∫
E

fn =

∫
E

f

Proof. Homework.
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4.5 Countable Additivity and

Continuity of Integration

Theorem 4.20 (Countable Additivity of Integration). Let f : E → R be integrable

over E, {En, n ∈ N} a family of disjoint measurable sets such that E =
∞⋃
n=1

En. Then

∫
E

f =
∞∑
n=1

∫
En

f

Proof.

Theorem 4.21 (Continuity of Integration). Let f : E → R be integrable over E.

1) If E1 ⊆ E2 ⊆ · · · ⊆ E is an ascending
collection of measurable subsets, then∫

∪∞
n=1 En

f = lim
n→∞

∫
En

f

2) If E ⊇ E1 ⊇ E2 ⊇ . . . is a descending
collection of measurable subsets, then∫

∩∞
n=1 En

f = lim
n→∞

∫
En

f

Proof. Homework.
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4.6 Uniform Integrability,

Vitali Convergence Theorem

Lemma 4.14. Let mE < ∞ and δ > 0. Then E is a disjoint union of a finite collection of
sets, each with measure less than δ.

Proof.

Proposition 4.23. Let f : E → R be measurable. If f is integrable over E, then for every
ε > 0 there is a δ > 0 such that

if A ⊆ E is any measurable set with mA < δ, then

∫
A

f < ε

Conversely, if mE <∞ and for every ε > 0 there is a δ > 0 such that above condition holds,
then f is integrable over E.

Proof.

Ch.4-20



Definition. A family F of measurable functions is uniformly integrable over E if for every
ε > 0 there is a δ > 0 such that for every f ∈ F , if A ⊆ E is measurable and mA < δ, then∫
A
|f | < ε.

Example. Lemma 4.23 says if f is integrable over E and mE < ∞, then {f} is uniformly
integrable.

Example. A finite collection of integrable functions is uniformly integrable.

Example. A collection F dominated by an integrable function g ≥ 0 is always uniformly
integrable.
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Example. Consider fn : [0, 1] → R, fn(x) = n. Then {fn, n ∈ N} is not uniformly
integrable.

Example. Consider the piecewise linear functions fn : [0, 1] → R passing through points
(0, 0),

(
1
n
, n

)
,
(
2
n
, 0
)
and (1, 0). Although {

∫
[0,1]

fn, n ∈ N} is a bounded set, this collection

is not uniformly integrable,

The Vitali Convergence Theorem. Let mE < ∞ and suppose {fn : E → R, n ∈ N} is
uniformly integrable over E. If fn → f pointwise a.e. on E, then f is integrable over E and

lim
n→∞

∫
E

fn =

∫
E

f .

Proof.
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Theorem 4.26. Let mE < ∞ and suppose for every n ∈ N, hn : E → R, hn ≥ 0, is
integrable over E and that hn → 0 a.e. on E. Then∫

E

hn → 0 if and only if {hn, n ∈ N} is uniformly integrable over E

Proof.
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