
Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivanšić

3.1 Sums, Products and

Compositions of LMF

Let E ⊆ R be measurable, f : E → R a function, where R = R ∪ {∞,−∞}.

Recall that a property holds almost everywhere (“a.e.”) if it holds on E−E0, where E0 ⊆ E,
mE0 = 0.

Proposition 3.1. Let E be measurable, f : E → R a function. The following are equivalent

1) For every c ∈ R, {x ∈ E | f(x) > c} is measurable.

2) For every c ∈ R, {x ∈ E | f(x) ≥ c} is measurable.

3) For every c ∈ R, {x ∈ E | f(x) < c} is measurable.

4) For every c ∈ R, {x ∈ E | f(x) ≤ c} is measurable.

Any of these implies that for every c ∈ R, {x ∈ E | f(x) = c} is measurable.

Proof.

Definition. A function f : E → R, where E is measurable, is said to be (Lebesgue)
measurable if it satisfies any of the conditions 1–4 in Proposition 3.1.

Note. E ⊆ R is measurable if and only if the characteristic function χE : R → R,

χE(x) =

{
1, if x ∈ E
0, if x /∈ E

is measurable. This means there exist nonmeasurable functions.

Proposition 3.2. Let f : E → R be a function, where E is measurable. Then f is
measurable if and only if for every open set U ⊆ R, the set f−1(U) is measurable.

Proof.
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Proposition 3.3. Let f : E → R be a continuous function, where E is measurable. Then
f is measurable.

Proof.

Proposition 3.4. Let f : I → R be a monotone function, where I is an interval. Then f
is measurable.

Proof. Homework.

Proposition 3.5. Let f : E → R be a function, where E is measurable.

1) If f is measurable on E and f = g a.e. on E, then g is measurable.

2) If D ⊆ E is measurable, then f is measurable on E if and only if the restrictions f |D
and f |E−D are measurable on their domains.

Theorem 3.6. Let f, g : E → R be functions, where E is measurable, such that f, g ̸= ±∞
a.e. on E. Then for every α, β ∈ R we have

αf + βg is measurable on E fg is measurable on E
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Note. If f(x0) = ∞ and g(x0) = −∞, then (f + g)(x0) is not defined. This is why we
require that f, g ̸= ±∞ a.e. on E. On the set F ⊆ E where f and g are both finite f + g is
defined and m(E − F ) = 0, so by Proposition 3.5 f + g can be defined however we like on
E − F , and f + g will still be measurable.

Proof.

Proposition 3.7. Let f : E → R be a measurable function, where E is measurable, and
let f : R → R be a continuous function. Then f ◦ g is a measurable function.

Proof.

Note. Proposition 3.7 implies that |f |, |f |p are measurable if f is.
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Example. In general, the composite of measurable functions need not be measurable.
Verify this for the composite χA ◦ ψ−1, where ψ : R → R is the Cantor-Lebesgue function
modification ψ : [0, 1] → [0, 2], extended to a continuous and strictly increasing function
from R onto R, and A is a measurable set such that ψ(A) is nonmeasurable.

Definition. If f1, . . . , fn : E → R, we define the functions min{f1, . . . , fn} : E → R,
max{f1, . . . , fn} : E → R as

min{f1, . . . , fn}(x) = min{f1(x), . . . , fn(x)} max{f1, . . . , fn}(x) = max{f1(x), . . . , fn(x)}

Proposition 3.8. If f1, . . . , fn are measurable, so are min{f1, . . . , fn} and max{f1, . . . , fn}.

Proof.

Definition. For a function f : E → R,

we define: f+(x) = max{f(x), 0}

f−(x) = max{−f(x), 0}

|f(x)| = max{f(x),−f(x)}

f = f+ − f− and |f | = f+ + f−.

f is measurable if and only if f+ and f− both are.
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3.2 Pointwise Limits and

Simple Approximation

The phrase “fn converges to f” may have several meanings:

Definition. Let fn : E → R be a sequence of functions, A ⊆ E. We say fn converges to f

1) pointwise on A, if lim fn(x) = f(x) for all x ∈ A.

2) pointwise a.e. on A, if lim fn(x) = f(x) for all x ∈ A− B, where mB = 0.

3) uniformly on A if for every ε > 0 there is a K ∈ N such that |f(x)− fn(x)| < ε for all
x ∈ A and n ≥ K.

(Note that uniform convergence only makes sense if fn : E → R for all n ∈ N.)

Example. Verify the type of convergence for the following examples.

fn : [0,∞) → R

fn(x) =

{ n

x
, if x > 0

∞, if x = 0

f(x) = ∞ for all x

fn → f pointwise on [0,∞)

fn : [0, 1] → R

fn(x) = xn

f(x) = 0 for all x

fn → f pointwise a.e. on [0, 1]

fn : [0, 1] → R

C = Cantor set

fn(x) =

{
xn, if x ∈ C
1, if x /∈ C

f(x) = 1 for all x

fn → f pointwise a.e. [0, 1]

fn : R → R

fn(x) =
1

n
sin x

f(x) = 0 for all x

fn → f uniformly on R

Proposition 3.9. Let (fn) : E → R be a sequence of measurable functions such that
fn → f pointwise a.e. on E. Then f is measurable.
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Proof.

Definition. A function φ : E → R, E measurable, is called simple if it is measurable and
takes only a finite number of values.

Note. If φ takes on distinct values c1, . . . , cn ∈ R, then

φ =
n∑

k=1

ckχEk
, where Ek = {x ∈ E | φ(x) = ck}, a measurable subset of E

Conversely, any function of form
n∑

k=1

ckχEk
where Ek, k = 1, . . . , n, is measurable, is simple.

The Simple Approximation Lemma. Let f : E → R be measurable and bounded on E.
Then for every ε > 0 there exist simple functions φε, ψε : E → R such that

φε ≤ f ≤ ψε and 0 ≤ ψε − φε < ε on E

(Note similarity to squeeze theorem 7.2.3: f ∈ R[a, b] if and only if for every ε > 0 there

exist functions α, ω ∈ R[a, b] such that α(x) ≤ f(x) ≤ ω(x) on [a, b] and
∫ b

a
ω − α < ε.)
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Proof.

The Simple Approximation Theorem. Let f : E → R be a function, E measurable.
Then f is measurable if and only if there exists a sequence (φn) : E → R of simple functions
such that φn → f pointwise on E and |φn| < |f | for all n ∈ N. If f ≥ 0, we may choose
(φn) to be increasing. Thus, measurable functions are pointwise limits of simple functions.

Proof.
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Example. A sequence of simple functions whose limit is the Cantor-Lebesgue function φ.
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3.3 Littlewood’s Principles,

Lusin’s, Egoroff’s Theorems

J.E. Littlewood summarizes measure theory in his three principles:

1) Every measurable set is nearly a finite union of intervals.

2) Every measurable function is nearly continuous.

3) Every pointwise-convergent sequence of measurable functions converges nearly uni-
formly.

More precisely, principle 1 is Theorem 2.12:

Let E be measurable and mE < ∞. Then for every ε > 0 there is a disjoint collection of
open intervals I1, . . . , In such that

m∗(E − U) +m∗(U − E) < ε, where U = I1 ∪ · · · ∪ In.

Principle 3 is

Egoroff’s Theorem. Let mE < ∞ and let (fn) : E → R be a sequence of measurable
functions that converges pointwise on E to f : E → R. Then for every ε > 0 there is a
closed set F ⊆ E such that fn → f uniformly and m(E − F ) < ε.

Lemma 3.10. With same assumptions as Egoroff’s Theorem, for each η > 0 and δ > 0
there exists a measurable subset A ⊆ E and an index N such that

|fn − f | < η on A for all n > N and m(E − A) < δ

Proof of Lemma 3.10.
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Proof of Egoroff’s Theorem.

Note. Egoroff’s Theorem also holds in an a.e. formulation.

Example. Verify Egoroff’s Theorem for this sequence of functions. Let {qn, n ∈ N} be a
sequence listing all rational numbers in [0, 1].

f : [0, 1] → [0, 1]

f(x) =

{
qn, if x ∈

(
1

n+1
, 1
n

]
0, if x = 0

fn : [0, 1] → [0, 1]

fn(x) =

{
f(x), if x ∈

(
1
n
, 1
]

0, if x ∈
[
0, 1

n

]
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Example. Verify Egoroff’s Theorem for this sequence of functions. Let C = Cantor set
=

∩∞
k=1Ck, Uk = [0, 1]− Ck, U =

∪∞
k=1 Uk, φn : Un → [0, 1] the function in the construction

of the Cantor-Lebesgue function.

fn : [0, 1] → [0, 1]

fn(x) =

{
φn(x), if x ∈ Un

0, if x /∈ Un

f : [0, 1] → [0, 1]

f(x) =

{
φ(x), if x ∈ U
0, if x ∈ C

Proposition 3.11. Let f : E → R be a simple function. Then for every ε > 0 there
is a continuous function g : R → R and a closed set F ⊆ E such that f = g on F and
m(E − F ) < ε.

Proof.
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Lusin’s Theorem. Let f : E → R be a measurable function, E measurable. Then for
every ε > 0 there is a continuous function g : R → R and a closed set F ⊆ E such that
f = g on F and m(E − F ) < ε.

Proof.

Example. Verify Lusin’s Theorem for the function f : [0, 1] → R, f(x) =

{
1 if x ∈ Q
0, if x /∈ Q
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