Real Function Theory 1 — Lecture notes 3.1 Sums, Products and
MAT 726, Spring 2025 — D. Ivansié Compositions of LMF

Let £ C R be measurable, f : E — R a function, where R = R U {00, —00}.

Recall that a property holds almost everywhere (“a.e.”) if it holds on E' — Ey, where Ey C E,
mEO =0.

Proposition 3.1. Let E be measurable, f : E — R a function. The following are equivalent

1) For every c € R, {x € E'| f(z) > ¢} is measurable.
2) For every c € R, {z € E'| f(z) > ¢} is measurable.
3) Forevery ce R, {r € E | f(x
) (

)

)2

) < ¢} is measurable.
4) Forevery ce R, {z € E | f(z) <

c} is measurable.
Any of these implies that for every ¢ € R, {z € E'| f(z) = ¢} is measurable.
Proof.

Definition. A function f : £ — R, where E is measurable, is said to be (Lebesgue)
measurable if it satisfies any of the conditions 1-4 in Proposition 3.1.

Note. E C R is measurable if and only if the characteristic function xg : R — R,

1, if E . : : :
Xe(r) = { 0’ ;i ; p B measurable. This means there exist nonmeasurable functions.

Proposition 3.2. Let f : £ — R be a function, where E is measurable. Then f is
measurable if and only if for every open set U C R, the set f~!(U) is measurable.

Proof.
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Proposition 3.3. Let f : E — R be a continuous function, where E is measurable. Then
f is measurable.

Proof.

Proposition 3.4. Let f: I — R be a monotone function, where I is an interval. Then f
is measurable.

Proof. Homework.

Proposition 3.5. Let f : E — R be a function, where E is measurable.
1) If f is measurable on F and f = g a.e. on E, then g is measurable.

2) If D C F is measurable, then f is measurable on E if and only if the restrictions f|p
and f|p_p are measurable on their domains.

Theorem 3.6. Let f,g: E — R be functions, where F is measurable, such that f, g # +oo
a.e. on F. Then for every «, f € R we have

af + Bg is measurable on F fg is measurable on F
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Note. If f(z9) = oo and g(z¢) = —o0o, then (f + g)(x¢) is not defined. This is why we
require that f,g # +o0o a.e. on E. On the set F' C E where f and g are both finite f + g is
defined and m(FE — F') = 0, so by Proposition 3.5 f + g can be defined however we like on
E — F| and f + g will still be measurable.

Proof.

Proposition 3.7. Let f : E — R be a measurable function, where E is measurable, and
let f: R — R be a continuous function. Then f o g is a measurable function.

Proof.

Note. Proposition 3.7 implies that |f]|, | f|” are measurable if f is.
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Example. In general, the composite of measurable functions need not be measurable.
Verify this for the composite x4 o 1~ !, where v : R — R is the Cantor-Lebesgue function
modification v : [0,1] — [0,2], extended to a continuous and strictly increasing function
from R onto R, and A is a measurable set such that ¢(A) is nonmeasurable.

Definition. If fi,....f, + £ — R, we define the functions min{fi,...,f,} : £ — R,
max{fi,...,fn}: E— R as

min{ f1,..., fuHx) = min{ fi(z), ..., fu(z)} max{fi,..., fu}(z) = max{fi(z),..., fu(z)}

Proposition 3.8. If fi,..., f, are measurable, so are min{ fi, ..., f,} and max{f,..., fu}.

Proof.

Definition. For a function f: £ — R,
we define: f*(z) = max{f(x),0}

f~(z) = max{—f(z),0}
|f(2)] = max{f(x), —f(z)}
f=f"=fand|f[=f"+f".
f is measurable if and only if f™ and f~ both are.
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Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivansié

3.2 Pointwise Limits and

Simple Approximation

The phrase “f,, converges to f” may have several meanings:

Definition. Let f, : E — R be a sequence of functions, A C E. We say f, converges to f

1) pointwise on A, if lim f,,(x) = f(z) for all z € A.
2) pointwise a.e. on A, if lim f,(z) = f(z) for all z € A — B, where mB = 0.
3) uniformly on A if for every ¢ > 0 there is a K € N such that |f(z) — f.(z)| < ¢ for all

reAand n > K.

(Note that uniform convergence only makes sense if f, : E — R for all n € N.)

Example. Verify the type of convergence for the following examples.

fn:]0,00) = R

n

—, ifz>0
Wr)=4
ful@) {oo, ifxr=0
f(z) = oo for all x

fn — [ pointwise on [0, 00)

fn:[0,1] = R
C = Cantor set

2", ifxeC
Jalw) = { 1, ifzgC

f(z) =1 for all x
fn — f pointwise a.e. [0, 1]

fn:[0,1] = R
falz) =2"
f(z) =0 for all «

fn — f pointwise a.e. on [0, 1]

fn: R—=R

folx) = %sin:c

f(z) =0 for all «

fn — f uniformly on R

Proposition 3.9. Let (f,) : E — R be a sequence of measurable functions such that

fn — [ pointwise a.e. on E. Then f is measurable.
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Proof.

Definition. A function ¢ : E — R, E measurable, is called simple if it is measurable and
takes only a finite number of values.

Note. If ¢ takes on distinct values ¢q,..., ¢, € R, then

Y= Z CkXE,, Where Ey = {z € E | p(z) = ¢}, a measurable subset of F
k=1

n
Conversely, any function of form E ckXE, Where B, k=1,...,n, is measurable, is simple.
k=1

The Simple Approximation Lemma. Let f : F — R be measurable and bounded on E.
Then for every € > 0 there exist simple functions ¢., 9. : E — R such that
¢£§f§¢aand0§¢a_@a<5onE

(Note similarity to squeeze theorem 7.2.3: f € Rla,b] if and only if for every ¢ > 0 there
exist functions a, w € Rla, b] such that a(z) < f(x) < w(z) on [a,b] and ffw —a<e.)
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Proof.

The Simple Approximation Theorem. Let f : E — R be a function, E measurable.
Then f is measurable if and only if there exists a sequence (¢,) : E — R of simple functions
such that ¢, — f pointwise on E and |p,| < |f| for all n € N. If f > 0, we may choose
(pn) to be increasing. Thus, measurable functions are pointwise limits of simple functions.

Proof.
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Example. A sequence of simple functions whose limit is the Cantor-Lebesgue function .
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Real Function Theory 1 — Lecture notes 3.3 Littlewood’s Principles,
MAT 726, Spring 2025 — D. Ivansié Lusin’s, Egoroff’s Theorems

J.E. Littlewood summarizes measure theory in his three principles:

1) Every measurable set is nearly a finite union of intervals.
2) Every measurable function is nearly continuous.

3) Every pointwise-convergent sequence of measurable functions converges nearly uni-
formly.

More precisely, principle 1 is Theorem 2.12:

Let E be measurable and mFE < oo. Then for every € > 0 there is a disjoint collection of
open intervals Iy, ..., I, such that

m (E—-U)+m"(U—-FE) <e, where U =1 U---UI,.

Principle 3 is

Egoroff’s Theorem. Let mE < oo and let (f,) : £ — R be a sequence of measurable
functions that converges pointwise on E to f : £ — R. Then for every ¢ > 0 there is a
closed set F' C E such that f,, — f uniformly and m(E — F) < €.

Lemma 3.10. With same assumptions as Egoroff’s Theorem, for each n > 0 and § > 0
there exists a measurable subset A C E and an index N such that

|fo—fl<nmonAforallmn >N and m(E—A) <

Proof of Lemma 3.10.
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Proof of Egoroff’s Theorem.

Note. Egoroff’s Theorem also holds in an a.e. formulation.

Example. Verify Egoroft’s Theorem for this sequence of functions. Let {g,,n € N} be a
sequence listing all rational numbers in [0, 1].

f:[0,1] — [0,1] fn:[0,1] = [0,1]

] W if v € (#1,%] B flx), ifzxe (%,1]
f(x)_{ 0, ifrx=0 f"(x)_{
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Example. Verify Egoroft’s Theorem for this sequence of functions. Let C' = Cantor set
=My Ck, Uy = [0,1] = Ck, U = Uy~ Uk, @n : U, — [0,1] the function in the construction
of the Cantor-Lebesgue function.

fn:10,1] = [0, 1] f:[0,1] — [0,1]
n(z), ifxel, (), ifzelU
f”(“"):{ﬁ, it ¢ U, f(x):{g, itz eC

Proposition 3.11. Let f : ' — R be a simple function. Then for every € > 0 there
is a continuous function g : R — R and a closed set ¥ C FE such that f = g on F' and
m(E —F) <e.

Proof.

Ch.3-11



Lusin’s Theorem. Let f : E — R be a measurable function, £ measurable. Then for
every € > ( there is a continuous function g : R — R and a closed set /' C E such that
f=gon Fand m(E—F) <e.

Proof.

1 ifzxeq

Example. Verify Lusin’s Theorem for the function f:[0,1] = R, f(x) = { 0, ifz¢Q
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