Real Function Theory 1 — Lecture notes 2.1 Introduction to
MAT 726, Spring 2025 — D. Ivansié Measure Theory

We wish to define a function (measure)
m : {some subsets of R} — [0, o0

which captures the idea of “size,” which in R is “length.” (If we were working in R? or R?,
“size” would be “area” or “volume.”)

Definition. Let A be a o-algebra of subsets of R that contains all intervals. A function
m: A —[0,00] = [0,00) U{oo} is called a Lebesgue measure if it possesses these properties:

1) Meausure of an interval is its length. If I is an interval — (a,b), [a,b), (a,b], [a,?],
where open bounds could be co — then m(I) =length of I (possibly o)

2) Measure is translation-invariant. If E € A, then for every y € R,
E+y={e+yleec E}isalsoin A and m(E +y) = m(E).

3) Measure is countably additive over countable disjoint unions. If {Ey, k € N} is a dis-
joint collection of sets in A, then m (U Ek> = Z m(Ey) (disjoint collection means

kEN k=1
for every i # j, E; N E; = 0).

It turns out, it is not possible to achieve this for A = P(R) = all subsets of R, but it is for a
smaller collection, a o-algebra called Lebesgue measurable sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called outer measure.
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Real Function Theory 1 — Lecture notes 2.2 Lebesgue
MAT 726, Spring 2025 — D. Ivansié Outer Measure

Definition. Let I be an open interval, [ = (a,b), where a € {—oco} UR and b € R U {o0}.
The length of I, ((I), is defined as:

E(I):{ b—a, ifa,beR

0, ifa=—o0orb=o00

Definition. Let A C R. The outer measure of A, m*(A) or m*A, is defined as

. : - > where {Ix, k € N} is
= -
m"A = inf {;é([k) |AC H[k’ a cover of A by open intervals }
Note. 1) m*@ =0 2) If AC B, then m*A <m*B.

Example. If A is countable, then m*A = 0.

Proposition 2.1. If I is an interval, then m*I = ¢(I).

Proof.
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Proposition 2.2. Outer measure is translation-invariant, that is, for every A C R, y € R,
m*(A+y) = m*A.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collec-

tion {Ex, k € N} of subsets of R, m* (U Ek> < Zm*Ek
k=1 k=1

Proof.
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Real Function Theory 1 — Lecture notes 2.3 Lebesgue
MAT 726, Spring 2025 — D. Ivansié Measurable Sets

For an outer measure m*, we know that m*(AU B) < m*A + m*B holds. However, there
exist disjoint sets for which

m* (AU B) < m*A+ m*B, which is not desirable for a measure.
Setting ' = A, C' = AU B, this can be rewritten as

m*(C) <m*(ENC)+m*(E°NC), again, not desirable for a measure.

Definition. A set E is measurable if for any set A

m*A=m"(ANE)+m*"(AN E°)

It immediately follows that if one of A, B is measurable and A, B are disjoint, then
m*(AU B) = m*A+ m*B.

Note.

1) Since m*(A) < m* (AN E) +m*(AnN E°), to show E is measurable we only need to
show the opposite inequality: m*(AN E) +m* (AN E°) < m*(A).
2) E is measurable if and only if E¢ is measurable.

3) 0 and R are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable
sets are measurable.

Proof.
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Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a
o-algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let Ey, ..., E, be disjoint measurable sets and A C R. Then

n

m* (Aﬂ <O Ek>> = im*(AﬂEk) and m* (O Ek> = Zm*Ek

k=1 =

Proof.
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Proposition 2.7. The union of a countable collection of measurable sets is measurable.
The collection of measurable sets is a o-algebra.

Proof.

Proposition 2.8. Every interval is measurable.

Proof.

Ch.2-7



Note.

—_

The collection of measurable sets is a o-algebra.

[\

Every open set is measurable — it is a countable union of open intervals.

w

)
)
) Every closed set is measurable — it is a complement of an open set.
)

4) Every F, and Gy set is measurable — they are intersections and unions of countable

collections of closed and open sets

5) Every Borel set is measurable — it is in the smallest o-algebra that contains open sets
and measurable sets are one g-algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a o-algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

Proof.
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Real Function Theory 1 — Lecture notes 2.4 Outer/Inner Approx. of
MAT 726, Spring 2025 — D. Ivansié Lebesgue Measurable Sets

Let A be measurable, m*A < co. Then for any set B O A we have

m*(B—A)=m"B—m=xA the excision property

Theorem 2.11. Let F be any set. Then measurability of F is equivalent to any of the
following four conditions.

Outer approximation by open and Gj sets:
1) For every € > 0 there is an open set U 2 E such that m*(U — F) < e.
2) There exists a Gg-set G D E such that m*(G — E) = 0.

Inner approximation by closed and F, sets:

3) For every € > 0 there is a closed set I’ C F such that m*(E — F) < e.
4) There exists an F,-set F' C E such that m*(E — F) = 0.

Proof.
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Note. The theorem implies that measurable sets have foorm £ =G —Y = F U Z where G
is a Gs-set, F'is an F,-set and Y and Z are sets of measure zero.

Note. For any set E there is an open set U = |J;—, Iy such that m*U < m*E + ¢, so
assuming m*F is finite, m*U — m*E < ¢, but this does not mean that m*(U — F) < ¢
because m*(U — F) = m*U — m*FE is valid only for measurable sets F.
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Theorem 2.12. Let E be measurable and m*E < oco. Then for every € > 0 there is a
disjoint collection of open intervals Iy, ..., I, such that

m(E—-U)+m"(U—-FE) <e, where U =1, U---UI,.

Proof.
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Real Function Theory 1 — Lecture notes 2.5 Countable Additivity,
MAT 726, Spring 2025 — D. Ivansié Continuity, Borel-Cantelli

Definition. Let M be the o-algebra of measurable subsets of R.
The function m : M — [0, 0o] defined by mE = m*FE is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if { Ex, k € N} is a disjoint
collection of measurable sets, then

G E. is measurable and m (G Ek) = f: mE;
k=1

k=1 k=1

Proof.

Theorem 2.14. The function m : M — [0,00] is a Lebesgue measure as defined in 2.1
(assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If {Ag, k € N} is an ascending collection 2) If { By, k € N} is a descending collection
of measurable sets, then of measurable sets and mB; < oo, then

m U Ak> = lim mA; m (ﬂ Bk) = lim mB;,
(k:l k—oo o1 k—o00
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Proof.

Definition. If E is measurable, we say a property P holds almost everywhere on E (a.e.
on E, holds for almost all x € E) if there is a subset Fy C E such that mE, = 0 and P holds
for all z € F — Ej.
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The Borel Cantelli Lemma. Let {Ey, &k € N} be a collection of measurable sets satisfying

[e.9]

m(FEy) < co. Then almost all z € R belong to at most finitely many of the sets FEj.
k=1

Proof.
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Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivansié

2.6 Nonmeasurable sets

Lemma 2.16. Let £ C R be bounded and measurable. Suppose there is a bounded,
countably infinite (= denumerable) set of numbers A such that the collection {E+ X, A € A}

is disjoint. Then mFE = 0.

Proof.

Example. Let E = {% | m,n € N;m odd} N[0,1] and A = {5 | k > 1}. F is measurable
since it is countable and A is countably infinite. Then the collection {E + A\, A € A} is

disjoint.

Definition. On an E C R define the relation of rational equivalence: x and y are rationally
equivalent (z ~ y) if z —y € Q. This is an equivalence relation.

The equivalence relation partitions E into equivalence classes. Let Cg be a set of class
representatives (choice set), one element from every class.
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Then Cf satisfies:

i) If a,b € Cg, then a — b ¢ Q.

ii) For every x € E there exists a ¢ € Cg such that  ~ ¢, so z = ¢ + ¢ for some g € Q.

This implies that for any subset A C Q, the collection {Cr + A, A € A} is disjoint.

Example. Let E = [0,1]. Then Cg consist of one rational number and a collection of
irrational ones. Show that Cg is uncountable.

Vitali’s Theorem 2.17. Any set of real numbers E with m*E > 0 contains a subset that
is not measurable.

Theorem 2.18. There exist disjoint sets of real numbers A and B such that

m*(AUB) <m*A+m*B

Proof.
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Real Function Theory 1 — Lecture notes 2.7 The Cantor Set and the
MAT 726, Spring 2025 — D. Ivansié Cantor-Lebesgue Function

Definition. We construct the Cantor set. Let I = [0, 1] and define {C%, k € N} recursively:

Cr+1 = C) — (open middle thirds of intervals in Cy)

We see that:

— Cj is a union of 2¥ disjoint intervals of length .
— C12C,2C32D...,50 {C, k € N} is a descending sequence of closed sets.

We define the Cantor set C' as C' = ﬂ Cl.
k=1

Note that C' is nonempty for any of these reasons:

— the Nested Set Theorem: intersection of a bounded descending collection of closed sets
is nonempty.
— 0,1 € C}, for every k, so 0,1 € C.

— More generally, if a is an endpoint of one of the intervals in C%, then a € Cyyq, and
thus a € C, for all n > k, it follows that a € C.

Proposition 2.19. The Cantor set C'is a closed uncountable set of measure 0.

Proof.
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Note. The Cantor set is an example of an uncountable set of measure 0 (so far, only such
examples have been countable sets).

Note. The following holds for every z € [0, 1]:

:L':Z% for some a; € {0, 1,2} xEC@x:Z% for some a; € {0,2}
k=1 k=1

The first statement is essentially writing x as a decimal with base 3. The second statement
is not hard to see because a; = 0,2 if and only if z € C). (Also note that endpoints of
the intervals in C}, are sums where a; is constant, 0 or 2, from some index on.) Since this
representation of elements of the Cantor set is unique, it gives a bijection between C' and
sequences of 0s and 2s, of which there are uncountably many.

Definition. Let U, =1 — C},. - = - = —_ = —_ =

Since O}, consists of 2% disjoint closed intervals, Uy consists of 2¥ — 1 disjoint open intervals.
Define ¢y (z) = or if @ is in the i-th interval of Uy. Thus, ¢y is constant on every interval

k_ . . 2(2F -1
of U, and takes on the values Qik, 2%, cee 22k 1 which can be rewritten as %%, 2,;%, e %

Because the 281 —1 intervals of U are obtained from the 2% —1 intervals of U}, by inserting a
new interval between every two intervals of Uy and two at the end (28 —1+2F—1+1 = 2k+1 1),
the i-th interval of Uy becomes the 2i-th interval of Uy, 80 pr(x) = pry1(z) for x € Uy.

This justifies that the following function ¢ is well-defined:

U=JUu=JU-C)=T1-Ce=1-C, ¢:U=0,1, ¢(x)=pr)if z € Uy
k=1

k=1 k=1
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and we extend this function to the Cantor-Lebesgue function

o(x), ifrelU
¢:[0,1] = [0,1], () =4 0, if =0
sup{p(t) |t e Ut <z}, ifx e C—{0}

Proposition 2.20. The Cantor-Lebesgue function ¢ : [0,1] — [0, 1] is increasing, continu-
ous, surjective and ¢’ =0 on U, where U = [0,1] — C and mU = 1.
Proof.
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Proposition 2.21. Let ¢ : [0,1] — [0, 1] be the Cantor-Lebesgue function and set
¥ :[0,1] = R, ¢¥(z) = x + ¢(x). Then ¢ is a strictly increasing and continuous function,
and ¥([0,1]) = [0, 2]. Furthermore,

i) ¥(C) is a measurable set of positive measure.

ii) ¢ maps a measurable subset of C' onto a nonmeasurable set.

Proof.

Proposition 2.22. There exists a measurable subset of C' that is not a Borel set.

Proof.
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