$\frac{2.1 \; \text{Introduction to}}{\text{Measure Theory}}$ We wish to define a function (measure) $$m: \{\text{some subsets of } \mathbf{R}\} \to [0, \infty]$$ which captures the idea of "size," which in \mathbf{R} is "length." (If we were working in \mathbf{R}^2 or \mathbf{R}^3 , "size" would be "area" or "volume.") **Definition.** Let \mathcal{A} be a σ -algebra of subsets of \mathbf{R} that contains all intervals. A function $m: \mathcal{A} \to [0, \infty] = [0, \infty) \cup \{\infty\}$ is called a *Lebesgue measure* if it possesses these properties: - 1) Meausure of an interval is its length. If I is an interval (a,b), [a,b), (a,b], [a,b], where open bounds could be ∞ then m(I) =length of I (possibly ∞) - 2) Measure is translation-invariant. If $E \in \mathcal{A}$, then for every $y \in \mathbf{R}$, $E + y = \{e + y \mid e \in E\}$ is also in \mathcal{A} and m(E + y) = m(E). - 3) Measure is countably additive over countable disjoint unions. If $\{E_k, k \in \mathbf{N}\}$ is a disjoint collection of sets in \mathcal{A} , then $m\left(\bigcup_{k \in \mathbf{N}} E_k\right) = \sum_{k=1}^{\infty} m(E_k)$ (disjoint collection means for every $i \neq j$, $E_i \cap E_j = \emptyset$). It turns out, it is not possible to achieve this for $\mathcal{A} = \mathcal{P}(\mathbf{R}) = \text{all subsets of } \mathbf{R}$, but it is for a smaller collection, a σ -algebra called *Lebesgue measurable* sets, which contain the Borel sets. To prove existence of such a measure function, we start with a function called *outer measure*. ## 2.2 Lebesgue Outer Measure **Definition.** Let I be an open interval, I = (a, b), where $a \in \{-\infty\} \cup \mathbf{R}$ and $b \in \mathbf{R} \cup \{\infty\}$. The *length of* I, $\ell(I)$, is defined as: $$\ell(I) = \begin{cases} b - a, & \text{if } a, b \in \mathbf{R} \\ \infty, & \text{if } a = -\infty \text{ or } b = \infty \end{cases}$$ **Definition.** Let $A \subseteq \mathbf{R}$. The outer measure of A, $m^*(A)$ or m^*A , is defined as $$m^*A = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) \mid A \subseteq \bigcup_{k=1}^{\infty} I_k, \quad \text{where } \{I_k, k \in \mathbf{N}\} \text{ is a cover of } A \text{ by open intervals } \right\}$$ Note. 1) $m^*\emptyset = 0$ 2) If $A \subseteq B$, then $m^*A \le m^*B$. **Example.** If A is countable, then $m^*A = 0$. **Proposition 2.1.** If I is an interval, then $m^*I = \ell(I)$. **Proposition 2.2.** Outer measure is translation-invariant, that is, for every $A \subseteq \mathbf{R}, y \in \mathbf{R}, m^*(A+y) = m^*A$. Proof. **Theorem 2.3.** Outer measure is countably subadditive, that is, for every countable collection $\{E_k, k \in \mathbf{N}\}$ of subsets of \mathbf{R} , $m^* \left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^* E_k$. ## 2.3 Lebesgue Measurable Sets For an outer measure m^* , we know that $m^*(A \cup B) \leq m^*A + m^*B$ holds. However, there exist disjoint sets for which $m^*(A \cup B) < m^*A + m^*B$, which is not desirable for a measure. Setting E = A, $C = A \cup B$, this can be rewritten as $m^*(C) < m^*(E \cap C) + m^*(E^c \cap C)$, again, not desirable for a measure. **Definition.** A set E is measurable if for any set A $$m^*A = m^*(A \cap E) + m^*(A \cap E^c)$$ It immediately follows that if one of A, B is measurable and A, B are disjoint, then $m^*(A \cup B) = m^*A + m^*B$. #### Note. - 1) Since $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$, to show E is measurable we only need to show the opposite inequality: $m^*(A \cap E) + m^*(A \cap E^c) \leq m^*(A)$. - 2) E is measurable if and only if E^c is measurable. - 3) \emptyset and \mathbf{R} are measurable. **Proposition 2.4.** Any set of outer measure zero is measurable. In particular, all countable sets are measurable. **Proposition 2.5.** The union of a finite collection of sets is measurable. Proof. Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a σ -algebra, except with closure with respect to finite unions instead of countable). **Proposition 2.6.** Let E_1, \ldots, E_n be disjoint measurable sets and $A \subseteq \mathbf{R}$. Then $$m^*\left(A\cap\left(\bigcup_{k=1}^n E_k\right)\right) = \sum_{k=1}^n m^*(A\cap E_k)$$ and $m^*\left(\bigcup_{k=1}^n E_k\right) = \sum_{k=1}^n m^*E_k$ | Proposition 2.7. The union of a countable collection of measurable sets is a σ -algebra. | asurable s | ets is | measurable | |--|------------|--------|------------| | Proof. | Proposition 2.8. Every interval is measurable. | | | | | Proof. | #### Note. - 1) The collection of measurable sets is a σ -algebra. - 2) Every open set is measurable it is a countable union of open intervals. - 3) Every closed set is measurable it is a complement of an open set. - 4) Every F_{σ} and G_{δ} set is measurable they are intersections and unions of countable collections of closed and open sets - 5) Every Borel set is measurable it is in the smallest σ -algebra that contains open sets and measurable sets are one σ -algebra that contains open sets. Thus we have proved: **Theorem 2.9.** The collection of measurable sets is a σ -algebra that contains the Borel sets. **Proposition 2.10.** The translate of a measurable set is measurable. ## 2.4 Outer/Inner Approx. of Lebesgue Measurable Sets Let A be measurable, $m^*A < \infty$. Then for any set $B \supseteq A$ we have $$m^*(B-A) = m^*B - m * A$$ the excision property **Theorem 2.11.** Let E be any set. Then measurability of E is equivalent to any of the following four conditions. Outer approximation by open and G_{δ} sets: - 1) For every $\varepsilon > 0$ there is an open set $U \supseteq E$ such that $m^*(U E) < \varepsilon$. - 2) There exists a G_{δ} -set $G \supseteq E$ such that $m^*(G E) = 0$. Inner approximation by closed and F_{σ} sets: - 3) For every $\varepsilon > 0$ there is a closed set $F \subseteq E$ such that $m^*(E F) < \varepsilon$. - 4) There exists an F_{σ} -set $F \subseteq E$ such that $m^*(E F) = 0$. **Note.** The theorem implies that measurable sets have form $E = G - Y = F \cup Z$ where G is a G_{δ} -set, F is an F_{σ} -set and Y and Z are sets of measure zero. **Note.** For any set E there is an open set $U = \bigcup_{k=1}^{\infty} I_k$ such that $m^*U < m^*E + \varepsilon$, so assuming m^*E is finite, $m^*U - m^*E < \varepsilon$, but this does not mean that $m^*(U - E) < \varepsilon$ because $m^*(U - E) = m^*U - m^*E$ is valid only for measurable sets E. **Theorem 2.12.** Let E be measurable and $m^*E < \infty$. Then for every $\varepsilon > 0$ there is a disjoint collection of open intervals I_1, \ldots, I_n such that $$m^*(E-U) + m^*(U-E) < \varepsilon$$, where $U = I_1 \cup \cdots \cup I_n$. 2.5 Countable Additivity, Continuity, Borel-Cantelli **Definition.** Let \mathcal{M} be the σ -algebra of measurable subsets of \mathbf{R} . The function $m: \mathcal{M} \to [0, \infty]$ defined by $mE = m^*E$ is called the Lebesgue measure. **Theorem 2.13.** Lebesgue measure is countably additive, that is, if $\{E_k, k \in \mathbb{N}\}$ is a disjoint collection of measurable sets, then $$\bigcup_{k=1}^{\infty} E_k \text{ is measurable and } m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} mE_k$$ Proof. **Theorem 2.14.** The function $m: \mathcal{M} \to [0, \infty]$ is a Lebesgue measure as defined in 2.1 (assigns length to any interval, is translation invariant and countably additive). ### Theorem 2.15 (continuity of measure). 1) If $\{A_k, k \in \mathbf{N}\}$ is an ascending collection of measurable sets, then $$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} mA_k$$ 2) If $\{B_k, k \in \mathbf{N}\}$ is a descending collection of measurable sets and $mB_1 < \infty$, then $$m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} mB_k$$ Proof. **Definition.** If E is measurable, we say a property \mathcal{P} holds almost everywhere on E (a.e. on E, holds for almost all $x \in E$) if there is a subset $E_0 \subseteq E$ such that $mE_0 = 0$ and \mathcal{P} holds for all $x \in E - E_0$. The Borel Cantelli Lemma. Let $\{E_k, k \in \mathbb{N}\}$ be a collection of measurable sets satisfying $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the sets E_k . ### 2.6 Nonmeasurable sets **Lemma 2.16.** Let $E \subseteq \mathbf{R}$ be bounded and measurable. Suppose there is a bounded, countably infinite (= denumerable) set of numbers Λ such that the collection $\{E + \lambda, \lambda \in \Lambda\}$ is disjoint. Then mE = 0. Proof. **Example.** Let $E = \left\{ \frac{m}{2^n} \mid m, n \in \mathbb{N}, m \text{ odd} \right\} \cap [0, 1]$ and $\Lambda = \left\{ \frac{1}{3^k} \mid k \geq 1 \right\}$. E is measurable since it is countable and Λ is countably infinite. Then the collection $\{E + \lambda, \lambda \in \Lambda\}$ is disjoint. **Definition.** On an $E \subseteq \mathbf{R}$ define the relation of rational equivalence: x and y are rationally equivalent $(x \sim y)$ if $x - y \in \mathbf{Q}$. This is an equivalence relation. The equivalence relation partitions E into equivalence classes. Let C_E be a set of class representatives (choice set), one element from every class. Then C_E satisfies: - i) If $a, b \in C_E$, then $a b \notin \mathbf{Q}$. - ii) For every $x \in E$ there exists a $c \in C_E$ such that $x \sim c$, so x = c + q for some $q \in \mathbf{Q}$. This implies that for any subset $\Lambda \subseteq \mathbf{Q}$, the collection $\{C_E + \lambda, \lambda \in \Lambda\}$ is disjoint. **Example.** Let E = [0, 1]. Then C_E consist of one rational number and a collection of irrational ones. Show that C_E is uncountable. Vitali's Theorem 2.17. Any set of real numbers E with $m^*E > 0$ contains a subset that is not measurable. **Theorem 2.18.** There exist disjoint sets of real numbers A and B such that $$m^*(A \cup B) < m^*A + m^*B$$ # 2.7 The Cantor Set and the Cantor-Lebesgue Function **Definition.** We construct the Cantor set. Let I = [0, 1] and define $\{C_k, k \in \mathbb{N}\}$ recursively: $$C_1 = I - \left(\frac{1}{3}, \frac{2}{3}\right)$$ $$C_2 = C_1 - \left(\left(\frac{1}{9}, \frac{2}{9} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \right)$$ _____ $$C_3 = C_2 - \left(\left(\frac{1}{27}, \frac{2}{27} \right) \cup \left(\frac{7}{27}, \frac{8}{27} \right) \cup \left(\frac{19}{27}, \frac{20}{27} \right) \cup \left(\frac{25}{27}, \frac{26}{27} \right) \right)$$ $C_{k+1} = C_k$ – (open middle thirds of intervals in C_k) We see that: - C_k is a union of 2^k disjoint intervals of length $\frac{1}{3^k}$. - $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$, so $\{C_k, k \in \mathbf{N}\}$ is a descending sequence of closed sets. We define the Cantor set C as $C = \bigcap_{k=1}^{\infty} C_k$. Note that C is nonempty for any of these reasons: - the Nested Set Theorem: intersection of a bounded descending collection of closed sets is nonempty. - $-0, 1 \in C_k$ for every k, so $0, 1 \in C$. - More generally, if a is an endpoint of one of the intervals in C_k , then $a \in C_{k+1}$, and thus $a \in C_n$ for all $n \ge k$, it follows that $a \in C$. **Proposition 2.19.** The Cantor set C is a closed uncountable set of measure 0. **Note.** The Cantor set is an example of an uncountable set of measure 0 (so far, only such examples have been countable sets). **Note.** The following holds for every $x \in [0, 1]$: $$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \text{ for some } a_k \in \{0, 1, 2\}$$ $x \in C \iff x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \text{ for some } a_k \in \{0, 2\}$ The first statement is essentially writing x as a decimal with base 3. The second statement is not hard to see because $a_k = 0, 2$ if and only if $x \in C_k$. (Also note that endpoints of the intervals in C_k are sums where a_k is constant, 0 or 2, from some index on.) Since this representation of elements of the Cantor set is unique, it gives a bijection between C and sequences of 0s and 2s, of which there are uncountably many. **Definition.** Let $U_k = I - C_k$. Since C_k consists of 2^k disjoint closed intervals, U_k consists of $2^k - 1$ disjoint open intervals. Define $\varphi_k(x) = \frac{i}{2^k}$ if x is in the i-th interval of U_k . Thus, φ_k is constant on every interval of U_k and takes on the values $\frac{1}{2^k}, \frac{2}{2^k}, \dots, \frac{2^k-1}{2^k}$, which can be rewritten as $\frac{2}{2^{k+1}}, \frac{4}{2^{k+1}}, \dots, \frac{2(2^k-1)}{2^{k+1}}$. Because the $2^{k+1}-1$ intervals of U_k+1 are obtained from the 2^k-1 intervals of U_k by inserting a new interval between every two intervals of U_k and two at the end $(2^k-1+2^k-1+1=2^{k+1}-1)$, the i-th interval of U_k becomes the 2^i -th interval of U_{k+1} , so $\varphi_k(x) = \varphi_{k+1}(x)$ for $x \in U_k$. This justifies that the following function φ is well-defined: $$U = \bigcup_{k=1}^{\infty} U_k = \bigcup_{k=1}^{\infty} (I - C_k) = I - \bigcap_{k=1}^{\infty} C_k = I - C, \quad \varphi : U \to [0, 1], \quad \varphi(x) = \varphi_k(x) \text{ if } x \in U_k$$ and we extend this function to the Cantor-Lebesgue function $$\varphi: [0,1] \to [0,1], \quad \varphi(x) = \left\{ \begin{array}{ll} \varphi(x), & \text{if } x \in U \\ 0, & \text{if } x = 0 \\ \sup\{\varphi(t) \mid t \in U, t < x\}, & \text{if } x \in C - \{0\} \end{array} \right.$$ **Proposition 2.20.** The Cantor-Lebesgue function $\varphi : [0,1] \to [0,1]$ is increasing, continuous, surjective and $\varphi' = 0$ on U, where U = [0,1] - C and mU = 1.