$\frac{2.1 \; \text{Introduction to}}{\text{Measure Theory}}$

We wish to define a function (measure)

$$m: \{\text{some subsets of } \mathbf{R}\} \to [0, \infty]$$

which captures the idea of "size," which in \mathbf{R} is "length." (If we were working in \mathbf{R}^2 or \mathbf{R}^3 , "size" would be "area" or "volume.")

Definition. Let \mathcal{A} be a σ -algebra of subsets of \mathbf{R} that contains all intervals. A function $m: \mathcal{A} \to [0, \infty] = [0, \infty) \cup \{\infty\}$ is called a *Lebesgue measure* if it possesses these properties:

- 1) Meausure of an interval is its length. If I is an interval (a,b), [a,b), (a,b], [a,b], where open bounds could be ∞ then m(I) =length of I (possibly ∞)
- 2) Measure is translation-invariant. If $E \in \mathcal{A}$, then for every $y \in \mathbf{R}$, $E + y = \{e + y \mid e \in E\}$ is also in \mathcal{A} and m(E + y) = m(E).
- 3) Measure is countably additive over countable disjoint unions. If $\{E_k, k \in \mathbf{N}\}$ is a disjoint collection of sets in \mathcal{A} , then $m\left(\bigcup_{k \in \mathbf{N}} E_k\right) = \sum_{k=1}^{\infty} m(E_k)$ (disjoint collection means for every $i \neq j$, $E_i \cap E_j = \emptyset$).

It turns out, it is not possible to achieve this for $\mathcal{A} = \mathcal{P}(\mathbf{R}) = \text{all subsets of } \mathbf{R}$, but it is for a smaller collection, a σ -algebra called *Lebesgue measurable* sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called *outer measure*.

2.2 Lebesgue Outer Measure

Definition. Let I be an open interval, I = (a, b), where $a \in \{-\infty\} \cup \mathbf{R}$ and $b \in \mathbf{R} \cup \{\infty\}$. The *length of* I, $\ell(I)$, is defined as:

$$\ell(I) = \begin{cases} b - a, & \text{if } a, b \in \mathbf{R} \\ \infty, & \text{if } a = -\infty \text{ or } b = \infty \end{cases}$$

Definition. Let $A \subseteq \mathbf{R}$. The outer measure of A, $m^*(A)$ or m^*A , is defined as

$$m^*A = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) \mid A \subseteq \bigcup_{k=1}^{\infty} I_k, \quad \text{where } \{I_k, k \in \mathbf{N}\} \text{ is a cover of } A \text{ by open intervals } \right\}$$

Note. 1) $m^*\emptyset = 0$

2) If $A \subseteq B$, then $m^*A \le m^*B$.

Example. If A is countable, then $m^*A = 0$.

Proposition 2.1. If I is an interval, then $m^*I = \ell(I)$.

Proposition 2.2. Outer measure is translation-invariant, that is, for every $A \subseteq \mathbf{R}, y \in \mathbf{R}, m^*(A+y) = m^*A$.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collection $\{E_k, k \in \mathbf{N}\}$ of subsets of \mathbf{R} , $m^* \left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^* E_k$.

2.3 Lebesgue Measurable Sets

For an outer measure m^* , we know that $m^*(A \cup B) \leq m^*A + m^*B$ holds. However, there exist disjoint sets for which

 $m^*(A \cup B) < m^*A + m^*B$, which is not desirable for a measure.

Setting E = A, $C = A \cup B$, this can be rewritten as

 $m^*(C) < m^*(E \cap C) + m^*(E^c \cap C)$, again, not desirable for a measure.

Definition. A set E is measurable if for any set A

$$m^*A = m^*(A \cap E) + m^*(A \cap E^c)$$

It immediately follows that if one of A, B is measurable and A, B are disjoint, then $m^*(A \cup B) = m^*A + m^*B$.

Note.

- 1) Since $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$, to show E is measurable we only need to show the opposite inequality: $m^*(A \cap E) + m^*(A \cap E^c) \leq m^*(A)$.
- 2) E is measurable if and only if E^c is measurable.
- 3) \emptyset and \mathbf{R} are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable sets are measurable.

Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a σ -algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let E_1, \ldots, E_n be disjoint measurable sets and $A \subseteq \mathbf{R}$. Then

$$m^*\left(A\cap\left(\bigcup_{k=1}^n E_k\right)\right) = \sum_{k=1}^n m^*(A\cap E_k)$$
 and $m^*\left(\bigcup_{k=1}^n E_k\right) = \sum_{k=1}^n m^*E_k$

Proposition 2.7. The union of a countable collection of measurable sets is a σ -algebra.	asurable s	ets is	measurable
Proof.			
Proposition 2.8. Every interval is measurable.			
Proof.			

Note.

- 1) The collection of measurable sets is a σ -algebra.
- 2) Every open set is measurable it is a countable union of open intervals.
- 3) Every closed set is measurable it is a complement of an open set.
- 4) Every F_{σ} and G_{δ} set is measurable they are intersections and unions of countable collections of closed and open sets
- 5) Every Borel set is measurable it is in the smallest σ -algebra that contains open sets and measurable sets are one σ -algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a σ -algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

2.4 Outer/Inner Approx. of Lebesgue Measurable Sets

Let A be measurable, $m^*A < \infty$. Then for any set $B \supseteq A$ we have

$$m^*(B-A) = m^*B - m * A$$
 the excision property

Theorem 2.11. Let E be any set. Then measurability of E is equivalent to any of the following four conditions.

Outer approximation by open and G_{δ} sets:

- 1) For every $\varepsilon > 0$ there is an open set $U \supseteq E$ such that $m^*(U E) < \varepsilon$.
- 2) There exists a G_{δ} -set $G \supseteq E$ such that $m^*(G E) = 0$.

Inner approximation by closed and F_{σ} sets:

- 3) For every $\varepsilon > 0$ there is a closed set $F \subseteq E$ such that $m^*(E F) < \varepsilon$.
- 4) There exists an F_{σ} -set $F \subseteq E$ such that $m^*(E F) = 0$.

Note. The theorem implies that measurable sets have form $E = G - Y = F \cup Z$ where G is a G_{δ} -set, F is an F_{σ} -set and Y and Z are sets of measure zero.

Note. For any set E there is an open set $U = \bigcup_{k=1}^{\infty} I_k$ such that $m^*U < m^*E + \varepsilon$, so assuming m^*E is finite, $m^*U - m^*E < \varepsilon$, but this does not mean that $m^*(U - E) < \varepsilon$ because $m^*(U - E) = m^*U - m^*E$ is valid only for measurable sets E.

Theorem 2.12. Let E be measurable and $m^*E < \infty$. Then for every $\varepsilon > 0$ there is a disjoint collection of open intervals I_1, \ldots, I_n such that

$$m^*(E-U) + m^*(U-E) < \varepsilon$$
, where $U = I_1 \cup \cdots \cup I_n$.

2.5 Countable Additivity, Continuity, Borel-Cantelli

Definition. Let \mathcal{M} be the σ -algebra of measurable subsets of \mathbf{R} .

The function $m: \mathcal{M} \to [0, \infty]$ defined by $mE = m^*E$ is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if $\{E_k, k \in \mathbb{N}\}$ is a disjoint collection of measurable sets, then

$$\bigcup_{k=1}^{\infty} E_k \text{ is measurable and } m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} mE_k$$

Proof.

Theorem 2.14. The function $m: \mathcal{M} \to [0, \infty]$ is a Lebesgue measure as defined in 2.1 (assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If $\{A_k, k \in \mathbf{N}\}$ is an ascending collection of measurable sets, then

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} mA_k$$

2) If $\{B_k, k \in \mathbf{N}\}$ is a descending collection of measurable sets and $mB_1 < \infty$, then

$$m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} mB_k$$

Proof.

Definition. If E is measurable, we say a property \mathcal{P} holds almost everywhere on E (a.e. on E, holds for almost all $x \in E$) if there is a subset $E_0 \subseteq E$ such that $mE_0 = 0$ and \mathcal{P} holds for all $x \in E - E_0$.

The Borel Cantelli Lemma. Let $\{E_k, k \in \mathbb{N}\}$ be a collection of measurable sets satisfying $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the sets E_k .

2.6 Nonmeasurable sets

Lemma 2.16. Let $E \subseteq \mathbf{R}$ be bounded and measurable. Suppose there is a bounded, countably infinite (= denumerable) set of numbers Λ such that the collection $\{E + \lambda, \lambda \in \Lambda\}$ is disjoint. Then mE = 0.

Proof.

Example. Let $E = \left\{ \frac{m}{2^n} \mid m, n \in \mathbb{N}, m \text{ odd} \right\} \cap [0, 1]$ and $\Lambda = \left\{ \frac{1}{3^k} \mid k \geq 1 \right\}$. E is measurable since it is countable and Λ is countably infinite. Then the collection $\{E + \lambda, \lambda \in \Lambda\}$ is disjoint.

Definition. On an $E \subseteq \mathbf{R}$ define the relation of rational equivalence: x and y are rationally equivalent $(x \sim y)$ if $x - y \in \mathbf{Q}$. This is an equivalence relation.

The equivalence relation partitions E into equivalence classes. Let C_E be a set of class representatives (choice set), one element from every class.

Then C_E satisfies:

- i) If $a, b \in C_E$, then $a b \notin \mathbf{Q}$.
- ii) For every $x \in E$ there exists a $c \in C_E$ such that $x \sim c$, so x = c + q for some $q \in \mathbf{Q}$.

This implies that for any subset $\Lambda \subseteq \mathbf{Q}$, the collection $\{C_E + \lambda, \lambda \in \Lambda\}$ is disjoint.

Example. Let E = [0, 1]. Then C_E consist of one rational number and a collection of irrational ones. Show that C_E is uncountable.

Vitali's Theorem 2.17. Any set of real numbers E with $m^*E > 0$ contains a subset that is not measurable.

Theorem 2.18. There exist disjoint sets of real numbers A and B such that

$$m^*(A \cup B) < m^*A + m^*B$$

2.7 The Cantor Set and the Cantor-Lebesgue Function

Definition. We construct the Cantor set. Let I = [0, 1] and define $\{C_k, k \in \mathbb{N}\}$ recursively:

$$C_1 = I - \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$C_2 = C_1 - \left(\left(\frac{1}{9}, \frac{2}{9} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \right)$$

$$C_3 = C_2 - \left(\left(\frac{1}{27}, \frac{2}{27} \right) \cup \left(\frac{7}{27}, \frac{8}{27} \right) \cup \left(\frac{19}{27}, \frac{20}{27} \right) \cup \left(\frac{25}{27}, \frac{26}{27} \right) \right)$$

 $C_{k+1} = C_k$ – (open middle thirds of intervals in C_k)

We see that:

- C_k is a union of 2^k disjoint intervals of length $\frac{1}{3^k}$.
- $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$, so $\{C_k, k \in \mathbf{N}\}$ is a descending sequence of closed sets.

We define the Cantor set C as $C = \bigcap_{k=1}^{\infty} C_k$.

Note that C is nonempty for any of these reasons:

- the Nested Set Theorem: intersection of a bounded descending collection of closed sets is nonempty.
- $-0, 1 \in C_k$ for every k, so $0, 1 \in C$.
- More generally, if a is an endpoint of one of the intervals in C_k , then $a \in C_{k+1}$, and thus $a \in C_n$ for all $n \ge k$, it follows that $a \in C$.

Proposition 2.19. The Cantor set C is a closed uncountable set of measure 0.

Note. The Cantor set is an example of an uncountable set of measure 0 (so far, only such examples have been countable sets).

Note. The following holds for every $x \in [0, 1]$:

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \text{ for some } a_k \in \{0, 1, 2\}$$
 $x \in C \iff x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \text{ for some } a_k \in \{0, 2\}$

The first statement is essentially writing x as a decimal with base 3. The second statement is not hard to see because $a_k = 0, 2$ if and only if $x \in C_k$. (Also note that endpoints of the intervals in C_k are sums where a_k is constant, 0 or 2, from some index on.) Since this representation of elements of the Cantor set is unique, it gives a bijection between C and sequences of 0s and 2s, of which there are uncountably many.

Definition. Let $U_k = I - C_k$.

Since C_k consists of 2^k disjoint closed intervals, U_k consists of $2^k - 1$ disjoint open intervals. Define $\varphi_k(x) = \frac{i}{2^k}$ if x is in the i-th interval of U_k . Thus, φ_k is constant on every interval of U_k and takes on the values $\frac{1}{2^k}, \frac{2}{2^k}, \dots, \frac{2^k-1}{2^k}$, which can be rewritten as $\frac{2}{2^{k+1}}, \frac{4}{2^{k+1}}, \dots, \frac{2(2^k-1)}{2^{k+1}}$. Because the $2^{k+1}-1$ intervals of U_k+1 are obtained from the 2^k-1 intervals of U_k by inserting a new interval between every two intervals of U_k and two at the end $(2^k-1+2^k-1+1=2^{k+1}-1)$, the i-th interval of U_k becomes the 2^i -th interval of U_{k+1} , so $\varphi_k(x) = \varphi_{k+1}(x)$ for $x \in U_k$.

This justifies that the following function φ is well-defined:

$$U = \bigcup_{k=1}^{\infty} U_k = \bigcup_{k=1}^{\infty} (I - C_k) = I - \bigcap_{k=1}^{\infty} C_k = I - C, \quad \varphi : U \to [0, 1], \quad \varphi(x) = \varphi_k(x) \text{ if } x \in U_k$$

and we extend this function to the Cantor-Lebesgue function

$$\varphi: [0,1] \to [0,1], \quad \varphi(x) = \left\{ \begin{array}{ll} \varphi(x), & \text{if } x \in U \\ 0, & \text{if } x = 0 \\ \sup\{\varphi(t) \mid t \in U, t < x\}, & \text{if } x \in C - \{0\} \end{array} \right.$$

Proposition 2.20. The Cantor-Lebesgue function $\varphi : [0,1] \to [0,1]$ is increasing, continuous, surjective and $\varphi' = 0$ on U, where U = [0,1] - C and mU = 1.

