
Real Function Theory 1 — Lecture notes
MAT 726, Spring 2025 — D. Ivanšić

2.1 Introduction to

Measure Theory

We wish to define a function (measure)

m : {some subsets of R} → [0,∞]

which captures the idea of “size,” which in R is “length.” (If we were working in R2 or R3,
“size” would be “area” or “volume.”)

Definition. Let A be a σ-algebra of subsets of R that contains all intervals. A function
m : A → [0,∞] = [0,∞)∪ {∞} is called a Lebesgue measure if it possesses these properties:

1) Meausure of an interval is its length. If I is an interval — (a, b), [a, b), (a, b], [a, b],
where open bounds could be ∞ — then m(I) =length of I (possibly ∞)

2) Measure is translation-invariant. If E ∈ A, then for every y ∈ R,
E + y = {e+ y | e ∈ E} is also in A and m(E + y) = m(E).

3) Measure is countably additive over countable disjoint unions. If {Ek, k ∈ N} is a dis-

joint collection of sets in A, then m

(∪
k∈N

Ek

)
=

∞∑
k=1

m(Ek) (disjoint collection means

for every i ̸= j, Ei ∩ Ej = ∅).

It turns out, it is not possible to achieve this for A = P(R) = all subsets of R, but it is for a
smaller collection, a σ-algebra called Lebesgue measurable sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called outer measure.
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2.2 Lebesgue

Outer Measure

Definition. Let I be an open interval, I = (a, b), where a ∈ {−∞} ∪R and b ∈ R ∪ {∞}.
The length of I, ℓ(I), is defined as:

ℓ(I) =

{
b− a, if a, b ∈ R
∞, if a = −∞ or b = ∞

Definition. Let A ⊆ R. The outer measure of A, m∗(A) or m∗A, is defined as

m∗A = inf

{
∞∑
k=1

ℓ(Ik) | A ⊆
∞∪
k=1

Ik,
where {Ik, k ∈ N} is
a cover of A by open intervals

}

Note. 1) m∗∅ = 0 2) If A ⊆ B, then m∗A ≤ m∗B.

Example. If A is countable, then m∗A = 0.

Proposition 2.1. If I is an interval, then m∗I = ℓ(I).

Proof.
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Proposition 2.2. Outer measure is translation-invariant, that is, for every A ⊆ R, y ∈ R,
m∗(A+ y) = m∗A.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collec-

tion {Ek, k ∈ N} of subsets of R, m∗

(
∞∪
k=1

Ek

)
≤

∞∑
k=1

m∗Ek.

Proof.
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2.3 Lebesgue

Measurable Sets

For an outer measure m∗, we know that m∗(A ∪ B) ≤ m∗A +m∗B holds. However, there
exist disjoint sets for which

m∗(A ∪ B) < m∗A+m∗B, which is not desirable for a measure.

Setting E = A, C = A ∪ B, this can be rewritten as

m∗(C) < m∗(E ∩ C) +m∗(Ec ∩ C), again, not desirable for a measure.

Definition. A set E is measurable if for any set A

m∗A = m∗(A ∩ E) +m∗(A ∩ Ec)

It immediately follows that if one of A,B is measurable and A,B are disjoint, then
m∗(A ∪ B) = m∗A+m∗B.

Note.

1) Since m∗(A) ≤ m∗(A ∩ E) + m∗(A ∩ Ec), to show E is measurable we only need to
show the opposite inequality: m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A).

2) E is measurable if and only if Ec is measurable.

3) ∅ and R are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable
sets are measurable.

Proof.
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Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a
σ-algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let E1, . . . , En be disjoint measurable sets and A ⊆ R. Then

m∗

(
A ∩

(
n∪

k=1

Ek

))
=

n∑
k=1

m∗(A ∩ Ek) and m∗

(
n∪

k=1

Ek

)
=

n∑
k=1

m∗Ek

Proof.
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Proposition 2.7. The union of a countable collection of measurable sets is measurable.
The collection of measurable sets is a σ-algebra.

Proof.

Proposition 2.8. Every interval is measurable.

Proof.
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Note.

1) The collection of measurable sets is a σ-algebra.

2) Every open set is measurable — it is a countable union of open intervals.

3) Every closed set is measurable — it is a complement of an open set.

4) Every Fσ and Gδ set is measurable — they are intersections and unions of countable
collections of closed and open sets

5) Every Borel set is measurable — it is in the smallest σ-algebra that contains open sets
and measurable sets are one σ-algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a σ-algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

Proof.
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2.4 Outer/Inner Approx. of

Lebesgue Measurable Sets

Let A be measurable, m∗A <∞. Then for any set B ⊇ A we have

m∗(B − A) = m∗B −m ∗ A the excision property

Theorem 2.11. Let E be any set. Then measurability of E is equivalent to any of the
following four conditions.

Outer approximation by open and Gδ sets:

1) For every ε > 0 there is an open set U ⊇ E such that m∗(U − E) < ε.

2) There exists a Gδ-set G ⊇ E such that m∗(G− E) = 0.

Inner approximation by closed and Fσ sets:

3) For every ε > 0 there is a closed set F ⊆ E such that m∗(E − F ) < ε.

4) There exists an Fσ-set F ⊆ E such that m∗(E − F ) = 0.

Proof.
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Note. The theorem implies that measurable sets have form E = G − Y = F ∪ Z where G
is a Gδ-set, F is an Fσ-set and Y and Z are sets of measure zero.

Note. For any set E there is an open set U =
∪∞

k=1 Ik such that m∗U < m∗E + ε, so
assuming m∗E is finite, m∗U − m∗E < ε, but this does not mean that m∗(U − E) < ε
because m∗(U − E) = m∗U −m∗E is valid only for measurable sets E.
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Theorem 2.12. Let E be measurable and m∗E < ∞. Then for every ε > 0 there is a
disjoint collection of open intervals I1, . . . , In such that

m∗(E − U) +m∗(U − E) < ε, where U = I1 ∪ · · · ∪ In.

Proof.
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2.5 Countable Additivity,

Continuity, Borel-Cantelli

Definition. Let M be the σ-algebra of measurable subsets of R.
The function m : M → [0,∞] defined by mE = m∗E is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if {Ek, k ∈ N} is a disjoint
collection of measurable sets, then

∞∪
k=1

Ek is measurable and m

(
∞∪
k=1

Ek

)
=

∞∑
k=1

mEk

Proof.

Theorem 2.14. The function m : M → [0,∞] is a Lebesgue measure as defined in 2.1
(assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If {Ak, k ∈ N} is an ascending collection
of measurable sets, then

m

(
∞∪
k=1

Ak

)
= lim

k→∞
mAk

2) If {Bk, k ∈ N} is a descending collection
of measurable sets and mB1 <∞, then

m

(
∞∩
k=1

Bk

)
= lim

k→∞
mBk
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Proof.

Definition. If E is measurable, we say a property P holds almost everywhere on E (a.e.
on E, holds for almost all x ∈ E) if there is a subset E0 ⊆ E such that mE0 = 0 and P holds
for all x ∈ E − E0.

Ch.2-13



The Borel Cantelli Lemma. Let {Ek, k ∈ N} be a collection of measurable sets satisfying
∞∑
k=1

m(Ek) <∞. Then almost all x ∈ R belong to at most finitely many of the sets Ek.

Proof.
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Lemma 2.16. Let E ⊆ R be bounded and measurable. Suppose there is a bounded,
countably infinite (= denumerable) set of numbers Λ such that the collection {E+λ, λ ∈ Λ}
is disjoint. Then mE = 0.

Proof.

Example. Let E =
{

m
2n

| m,n ∈ N,m odd
}
∩ [0, 1] and Λ =

{
1
3k

| k ≥ 1
}
. E is measurable

since it is countable and Λ is countably infinite. Then the collection {E + λ, λ ∈ Λ} is
disjoint.

Definition. On an E ⊆ R define the relation of rational equivalence: x and y are rationally
equivalent (x ∼ y) if x− y ∈ Q. This is an equivalence relation.

The equivalence relation partitions E into equivalence classes. Let CE be a set of class
representatives (choice set), one element from every class.
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Then CE satisfies:

i) If a, b ∈ CE, then a− b /∈ Q.

ii) For every x ∈ E there exists a c ∈ CE such that x ∼ c, so x = c+ q for some q ∈ Q.

This implies that for any subset Λ ⊆ Q, the collection {CE + λ, λ ∈ Λ} is disjoint.

Example. Let E = [0, 1]. Then CE consist of one rational number and a collection of
irrational ones. Show that CE is uncountable.

Vitali’s Theorem 2.17. Any set of real numbers E with m∗E > 0 contains a subset that
is not measurable.

Theorem 2.18. There exist disjoint sets of real numbers A and B such that

m∗(A ∪ B) < m∗A+m∗B

Proof.
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2.7 The Cantor Set and the

Cantor-Lebesgue Function

Definition. We construct the Cantor set. Let I = [0, 1] and define {Ck, k ∈ N} recursively:

C1 = I −
(
1
3
, 2
3

)
C2 = C1 −

((
1
9
, 2
9

)
∪
(
7
9
, 8
9

))
C3 = C2 −

((
1
27
, 2
27

)
∪
(

7
27
, 8
27

)
∪
(
19
27
, 20
27

)
∪
(
25
27
, 26
27

))
Ck+1 = Ck − (open middle thirds of intervals in Ck)

We see that:

— Ck is a union of 2k disjoint intervals of length 1
3k
.

— C1 ⊇ C2 ⊇ C3 ⊇ . . . , so {Ck, k ∈ N} is a descending sequence of closed sets.

We define the Cantor set C as C =
∞∩
k=1

Ck.

Note that C is nonempty for any of these reasons:

— the Nested Set Theorem: intersection of a bounded descending collection of closed sets
is nonempty.

— 0, 1 ∈ Ck for every k, so 0, 1 ∈ C.

— More generally, if a is an endpoint of one of the intervals in Ck, then a ∈ Ck+1, and
thus a ∈ Cn for all n ≥ k, it follows that a ∈ C.

Proposition 2.19. The Cantor set C is a closed uncountable set of measure 0.

Proof.
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Note. The Cantor set is an example of an uncountable set of measure 0 (so far, only such
examples have been countable sets).

Note. The following holds for every x ∈ [0, 1]:

x =
∞∑
k=1

ak
3k

for some ak ∈ {0, 1, 2} x ∈ C ⇐⇒ x =
∞∑
k=1

ak
3k

for some ak ∈ {0, 2}

The first statement is essentially writing x as a decimal with base 3. The second statement
is not hard to see because ak = 0, 2 if and only if x ∈ Ck. (Also note that endpoints of
the intervals in Ck are sums where ak is constant, 0 or 2, from some index on.) Since this
representation of elements of the Cantor set is unique, it gives a bijection between C and
sequences of 0s and 2s, of which there are uncountably many.

Definition. Let Uk = I − Ck.

Since Ck consists of 2k disjoint closed intervals, Uk consists of 2k − 1 disjoint open intervals.
Define φk(x) =

i
2k

if x is in the i-th interval of Uk. Thus, φk is constant on every interval

of Uk and takes on the values 1
2k
, 2
2k
, . . . , 2

k−1
2k

, which can be rewritten as 2
2k+1 ,

4
2k+1 , . . . ,

2(2k−1)
2k+1 .

Because the 2k+1−1 intervals of Uk+1 are obtained from the 2k−1 intervals of Uk by inserting a
new interval between every two intervals of Uk and two at the end (2k−1+2k−1+1 = 2k+1−1),
the i-th interval of Uk becomes the 2i-th interval of Uk+1, so φk(x) = φk+1(x) for x ∈ Uk.

This justifies that the following function φ is well-defined:

U =
∞∪
k=1

Uk =
∞∪
k=1

(I − Ck) = I −
∞∩
k=1

Ck = I − C, φ : U → [0, 1], φ(x) = φk(x) if x ∈ Uk
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and we extend this function to the Cantor-Lebesgue function

φ : [0, 1] → [0, 1], φ(x) =


φ(x), if x ∈ U
0, if x = 0
sup{φ(t) | t ∈ U, t < x}, if x ∈ C − {0}

Proposition 2.20. The Cantor-Lebesgue function φ : [0, 1] → [0, 1] is increasing, continu-
ous, surjective and φ′ = 0 on U , where U = [0, 1]− C and mU = 1.

Proof.
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Proposition 2.21. Let φ : [0, 1] → [0, 1] be the Cantor-Lebesgue function and set
ψ : [0, 1] → R, ψ(x) = x + φ(x). Then ψ is a strictly increasing and continuous function,
and ψ([0, 1]) = [0, 2]. Furthermore,

i) ψ(C) is a measurable set of positive measure.

ii) ψ maps a measurable subset of C onto a nonmeasurable set.

Proof.

Proposition 2.22. There exists a measurable subset of C that is not a Borel set.

Proof.
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