Modern Algebra 1 — Handout MAT 514/614, Spring 2025 — D. Ivanšić

Test Knowledge

Sections 9-13

Definitions Normal subgroup (9)

Quotient group and its operation, quotient map (9)

Partition of a natural number n (11)

Ring, commutative ring, unity, unit element (12)

Subring (12)

Zero-divisor, integral domain (13)

Field (13)

Characteristic of a ring (13)

Theorems

H is normal if and only if $aHa^{-1} \subseteq H$ for all $a \in G$ (Theorem 9.1)

If H is normal, then G/H is a group (Theorem 9.2) Cauchy's Theorem on Abelian Groups (Theorem 9.5)

If H, K normal, HK = G, $H \cap G = \{e\}$ then $G \approx H \times K$ (example in 9)

Every group of order p^2 , p prime, is \mathbf{Z}_{p^2} or $\mathbf{Z}_p \times \mathbf{Z}_p$ (Theorem 9.7)

Image, inverse image of normal subgroup is normal (Theorem 10.2)

First Isomorphism Theorem (Theorem 10.3)

 $|\phi(G)|$ divides |G| (Corollary to 10.3)

 $G/Z(G) \approx \operatorname{Inn}(G)$ (Theorem 9.4)

Fundamental Theorem of Finite Abelian Groups (Theorem 11.1)

alternate version: $G \approx \mathbf{Z}_{r_1} \times \mathbf{Z}_{r_2} \times \cdots \times \mathbf{Z}_{r_s}$, where r_i divides r_{i-1} (11)

G abelian, if $m \mid |G|$, then G has subgroup of order m (Corollary to 11.1)

Additional operations' properties in rings (Theorem 12.1)

In an integral domain, ab = ac implies b = c (Cancellation Theorem 13.1)

S is a subring if $a+b, -a, ab \in S$ for every $a, b \in S$ (Theorem 12.3)

 \mathbf{Z}_n is an integral domain if and only if n is prime (13)

Finite integral domain is a field (Theorem 13.2)

In a ring with unity, char R = |1|, essentially (Theorem 13.3)

Characteristic of an integral domain is prime (Theorem 13.4)

Proofs

If H is normal, then G/H is a group (Theorem 9.2)

If H, K normal, $HK = G, H \cap G = \{e\}$ then $G \approx H \times K$ (example in 9)

First Isomorphism Theorem (Theorem 10.3)

 \mathbf{Z}_n is an integral domain if and only if n is prime (13)

In a ring with unity, char R = |1|, essentially (Theorem 13.3)

Characteristic of an integral domain is prime (Theorem 13.4)

B-problems

section 9: 22, 24, 41&53, 63, 64, 67, 72

section 10: 8, 12, 41&42, 45, 54, 65, 66

section 11: 1&2&3, 6&7&8, 11, 22, 32

section 12: 11, 15&17, 30, 40&41, 47, 48

section 13: 5&7, 16, 24&25, 30, 39&40, 45, 51, 54, 61, 65

Modern Algebra 1 — Handout MAT 514/614, Spring 2025 — D. Ivanšić

Test Knowledge

Sections 14–17

Definitions	Ideal, principal ideal $\langle a \rangle$, ideal generated by a_1, \ldots, a_n (14) Prime ideal, maximal ideal (14) Ring homomorphism (15) Evaluation homomorphism $R[x] \to R$, $f \mapsto f(a)$ (15) Field of quotients (15) Polynomial ring $R[x]$, $F[x]$ (16) When $g \in D[x]$ divides $f \in D[x]$, factor of a polynomial (16) Multiplicity of a zero of $f \in D[x]$ (16) Irreducibility, reducibility over D , F (17)
Theorems	R/A is a ring if and only if A is an ideal (Theorem 14.2) R/A is an integral domain if and only if A is prime (Theorem 14.3) R/A is a field if and only if A is maximal (Theorem 14.4) Properties of ring homomorphisms (Theorem 15.1) First isomorphism theorem for rings (Theorem 15.3) \exists ring homomorphism $\mathbf{Z}_n \to R$, $1 \mapsto a$ iff $ a $ divides n and $a^2 = a$ (15) \exists ring homomorphism $\mathbf{Z} \to R$, $1 \mapsto a$ iff $a^2 = a$ (Theorem 15.5) If char $R = n$, R contains \mathbf{Z}_n ; if char $F = p$, F contains \mathbf{Z}_n ; if char $F = p$, F contains \mathbf{Z}_n ; if char $F = p$, F contains is contained in a field (Theorem 15.6) If D is an integral domain, so is $D[x]$ (Theorem 16.1) If $f, g \in F[x]$, $g \neq 0$ then $f = gq + r$ where $\deg r < \deg g$ (Theorem 16.2) $f(a)$ is remainder in division by $x - a$, a is a zero if and only if $x - a$ is a factor of f (Corollares to 16.2) Polynomial of degree n in $F[x]$ has at most n zeroes (Theorem 16.3) In $F[x]$, every ideal is a principal ideal $\langle f \rangle$ (Theorem 16.4) $\deg 2, 3$ polynomials in $F[x]$ are reducible iff they have a zero (Theorem 17.1) For $f \in \mathbf{Z}[x]$, if f is reducible over \mathbf{Q} , then f is irred. over \mathbf{Q} (Theorem 17.3) Eisenstein's Criterion (Theorem 17.4) $x^{p-1} + x^{p-2} + \cdots + x + 1$ is irred. over \mathbf{Q} for prime f (Corollary to 17.4) For $f \in F[x]$, $\langle p \rangle$ is maximal iff f is irreducible over f (Theorem 17.5) Unique factorization in $\mathbf{Z}[x]$ (Theorem 17.6)
Proofs	R/A is a ring if and only if A is an ideal (Theorem 14.2) Every integral domain is contained in a field (Theorem 15.6) Every integral domain is contained in a field (Theorem 15.6) If $f,g\in F[x],\ g\neq 0$ then $f=gq+r$ where $\deg r<\deg g$ (Theorem 16.2) In $F[x]$, every ideal is a principal ideal $\langle f\rangle$ (Theorem 16.4) For $f\in \mathbf{Z}[x]$, if $f\mod p$ is irred. over \mathbf{Z}_p , then f is irred. over \mathbf{Q} (Theorem 17.3)
B-problems section 14: section 15: section 16: section 17:	6, 11, 22, 35, 39, 40, 48, 63, 64, 65 7iso&61, 10&50, 12, 21, 32&33, 56, 57, 58, 59, 63 14&24, 23, 26, 35&38, 39&40, 49, 55 14bd, 15, 16, 17&25, 31, 35, 36

Modern Algebra 1 — Handout MAT 514/614, Spring 2025 — D. Ivanšić

Test Knowledge

Sections 20, 32

Definitions Extension field (20)

Smallest subfield containing F and a_1, \ldots, a_n : $F(a_1, \ldots, a_n)$ (20)

 $f \in F[x]$ splits in E over F, splitting field of f over F (20)

Degree [E:F] of extension E over F (32, 21 in book)

Galois group Gal(E/F) of E over F (32, 21 in book)

Fixed field of a subgroup $H \leq \operatorname{Gal}(E/F)$ (32)

Mappings between subgroups of Gal(E/F) and fields $K, F \subseteq K \subseteq E$ (32)

Solvability by radicals of $f \in F[x]$ over F(32)

Solvable group (32)

Theorems For $f \in F[x]$ there is an extension field of F in which f has a zero (Theorem 20.1)

For $f \in F[x]$ there exists a splitting field of f over F (Theorem 20.2)

Technical lemma about extending isomorphisms $F \to F'$ to $F(a) \to F'(b)$

and extension fields (Lemma and Theorem 20.4)

Every two splitting fields over F of an $f \in F[x]$

are isomorphic (Corollary to Theorem 20.4)

Fundamental Theorem of Galois Theory (Theorem 32.1)

For splitting field E of $x^n - a$ over F, Gal(E/F) is solvable (Theorem 32.2)

Quotient group of a solvable group is solvable (Theorem 32.3)

If G/N and N are solvable, then so is G (Theorem 32.4)

Theorem 32.5

Example of a polynomial of degree 5 that is not solvable by radicals over \mathbf{Q} (32)

Proofs For $f \in F[x]$ there is an extension field of F in which f has a zero (Theorem 20.1)

Example of a polynomial of degree 5 that is not solvable by radicals over Q (32)

B-problems

section 20: 5, 8&9&10, 13, 16, 20, 25, 28, 36, 42

section 32: 6, 9, 16, 17, 27, 32