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9 Normal Subgroups and

Quotient Groups

We have seen in section 7 that, in general, aH 6= Ha for left and right cosets of a subgroup
H in G. The equality of those cosets for all a ∈ G turns out to be a useful property.

Definition. A subgroup H of a group G is called normal if aH = Ha for all a ∈ G.
Notation: H �G.

Theorem 9.1. A subgroup H of G is normal if and only if aHa−1 ⊆ H for all a ∈ G.

Proof.

Example. In an abelian group, every subgrop is normal. The center Z(G) is a normal
subgroup in any group G. The trivial group {e} and G are normal subgroups of G.

Example. If H has index 2 in G, then H is a normal subgroup of G.

Example. SL(n,R) is a normal subgroup of GL(n,R).

Example. In Dn, the subgroup of rotations is normal. If F is a reflection, 〈F 〉 is not a
normal subgroup.
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Example. If H and K are subgroups of G, we have seen that the set HK need not be a
subgroup. However, if either H or K is normal, then HK is a subgroup of G.

Theorem 9.2. Let H be a normal subgroup of group G. Then the set G/H = {aH | a ∈ H}
of all left cosets of H in G is a group under the operation (aH)(bH) = (ab)H.

The group G/H is called the quotient group of G by H and the homomorphism q : G → G/H,
q(g) = gH is called the quotient map. The same is true for right cosets.

Proof.

Example. Write the table of multiplication for Z/4Z. What known group is it identical to?
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Example. Let H ≤ GL(2,R), H =

{
I,

[
1 0
0 −1

]}
. Use the matrix A =

[
1 2
3 1

]
to show

that H is not normal, and then use it again to show that multiplication in GL(2,R)/H is

not well defined: let B = A

[
1 0
0 −1

]
, so B ∈ AH, thus BH = AH. If (AH)(AH) = A2H,

do we get the same answer for (BH)(BH) = B2H?

Theorem 9.3. Let G be a group. If G/Z(G) is cyclic, then G is abelian (so G/Z(G) ≈ {e}).

Proof.

Note. The more often-used version of this theorem is the contrapositive: if G is not abelian,
then G/Z(G) is not cyclic.

Cauchy’s Theorem for Abelian Groups 9.5. Let G be a finite abelian group and let p
be a prime that divides |G|. Then G has an element of order p.

Proof.
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Example. Suppose H and K normal subgroups of G, G = HK and H ∩K = {e}. Then
G ≈ H × K. (This is a simplified example of the book’s discussion on “internal direct
product,” perhaps an unneccessary concept.)

Theorem 9.7. Let p be a prime. Every group of order p2 is isomorphic to either Zp2 or
Zp × Zp. In particular, it is abelian.

Proof.
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Theorem 10.2. Let ϕ : G → G be a homomorphism between groups G and G and let H
be a subgroup of G and K a subgroup of G. Then

4) If H is normal in G, then ϕ(H) is normal in ϕ(G).

8) If K is a normal subgroup of G, then ϕ−1(K) is a normal subgroup of G. In particular,
kerϕ is normal.

Proof.

First Isomorphism Theorem 10.3. Let ϕ : G → G be a homomorphism between groups
G and G. Then the map ϕ : G/ kerϕ → ϕ(G) given by g kerϕ 7→ ϕ(g) is an isomorphism, so
G/ kerϕ ≈ ϕ(G).

Proof.

Example. What group is Z/nZ isomorphic to?
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Example. The set 2πZ is a subgroup of (R,+). What group is R/2πZ isomorphic to?

Example. Show that GL(n,R)/SL(n,R) ≈ R∗.

Corollary. If ϕ : G → G is a homomorphism from a finite group G, then |ϕ(G)| divides G.

Theorem 9.4. Recall that an inner automorphism of G induced by g ∈ G is an automor-
phism of form x 7→ gxg−1. For every group G, G/Z(G) ≈ Inn(G).

Proof.

Note. The First Isomorphism Theorem can be interpreted
this way: Let ϕ : G → G be surjective. Then there exists a
group G̃ and homomorphisms q : G → G̃ and ϕ : G̃ → G
such that ϕ = ϕ ◦ q and ϕ is an isomorphism. We also say ϕ
factors through an isomorphism, meaning it is a composite of
two homomorphisms, one an isomorphism. Pictorially, we say
the diagram commutes.
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Theorem 10.4. Every normal subgroup N of a groupG is the kernel of some homomorphism
from G, in particular the quotient map q : G → G/N .

Proof.

Second Isomorphism Theorem. Let N , K be subgroups of G, where N is normal in G.
Then KN is a subgroup of G, K ∩N is a normal subgroup of K and K/(K ∩N) ≈ KN/N .

Third Isomorphism Theorem. Let M and N be normal subgroups of G and N ≤ M .
Then M/N is a normal subgroup of G/N and (G/N)/(M/N) ≈ G/M .

Proof. Homework!

Sec.10-3



Modern Algebra 2 — Lecture notes
MAT 514/614, Spring 2025 — D. Ivanšić

11. Fundamental Theorem of

Finite Abelian Groups

Commutativity makes life a lot easier when considering groups, so finite abelian groups can
be classified fairly easily.

Definition. A partition of a natural number n is a decreasing sequence of natural numbers
j1, . . . , jm such that j1 + · · ·+ jm = n.

Example. Write all the partitions of the number 3.

Fundamental Theorem of Finite Abelian Groups 11.1. Let G be a finite abelian
group, |G| = pn1

1 pn2
2 . . . pnk

k , where p1, . . . , pk are distinct primes. Then

G ≈ Gp1 ×Gp2 × · · · ×Gpk , where |Gpi | = pni
i , i = 1, . . . , k

and every Gpi has the form

Gpi ≈ Z
p
j1
i
× Z

p
j2
i
× Z

p
jmi
i

, for some partition j1, . . . , jmi
of ni

Moreover, two finite abelian groups are isomorphic if and only if their orders have the same
prime factorizations, and, in the factorizations above, the partitions corresponding to each
of the primes pi are identical.

Example. According to the theorem, every abelian group of order 125 = 53 is isomorphic
to one of Z53 , Z52 ×Z5 and Z5×Z5×Z5, and no two of those are isomorphic. One says they
represent the isomorphism classes of abelian groups of order 125.

Example. Find all the isomorphism classes of groups of order 9680 = 24 · 5 · 112.
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Note. The decomposition into a product can also be done in the following way, which is
more in line with how one would algorithmically find the product into which a given abelian
group factors:

G ≈ Zr1 × Zr2 × · · · × Zrs , where ri divides ri−1 for every i = 2, . . . , s

In the notation of previous theorem, ri = psi1 p
ti
2 . . . pui

k , where si, ti, . . . , ui are the i-th terms
in the partitions of n1, n2, . . . , nk, or 0 if we have already used all the terms.

Example. Write all the isomorphism classes of groups of order 9860 in this way.

Corollary. If m divides the order of a finite abelian group G, then G has a subgroup of
order m.

Proof.

The proof of the Fundamental Theorem of Finite Abelian Groups unfolds in several steps.

Lemma 1. If G is finite abelian and |G| = pnm, where p is prime and does not divide m,
then

G ≈ H ×K, where H = {x ∈ G | xpn = e}, K = {x ∈ G | xm = e}

Moreover, |H| = pn.

Proof.

Sec.11-2



Lemma 2. Let G be finite abelian and |G| = pn, where p is prime, and let a be an element of
maximum order in G. Then G ≈ 〈a〉 ×K for some abelian group K in which the maximum
order of an element is less than or equal to |a|.

Proof.

Corollary 3. Let G be finite abelian and |G| = pn, where p is prime. Then G is a product
of cyclic groups.

Proof.
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Lemma 4. Let G be finite abelian and |G| = pn, where p is prime. If G ≈ H1 × · · · ×Hm

and G ≈ K1×· · ·×Kn where Hi and Ki are all cyclic groups with |H1| ≥ |H2| ≥ · · · ≥ |Hm|
and |K1| ≥ |K2| ≥ · · · ≥ |Kn|, then m = n and |Hi| = |Ki| for all i.

Proof.
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