Modern Algebra 2 — Lecture notes
MAT 514/614, Spring 2025 — D. Ivansié 20 Extension Fields

Definition. A field E is an extension field of a field F' if F C E and the operations of F
are operations on F restricted to F'.

Examples.

{a+bv2|a,be Q} is an ext. field of Q {a+bi|a,be R} is an ext. field of R

Fundamental Theorem of Field Theory 20.1. Let F' be a field and f € F[z] a noncon-
stant polynomial. Then there exists an extension field £ of F' in which f has a zero.

Proof.

Example. Let f(x) = (22 +1)(2% 4 22 +2) € Z3[z], where the factors are irreducible. Show
there is an extension field of F containing a zero of f with 9 elements and there is one with
27 elements.

Definition. Let E be an extension field of F, and let aq,...,a, € E. We set

F(ay,...,a,) = ﬂ G,

field GCE, {a1,...,an}CG

the smallest subfield of F' that contains {ay,...,a,}.
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Definition. Let E be an extension field of F' and let f € F[z], deg f > 1. We say f splits
in F if there are elements a € F' and aq, ..., a, such that

flz)=alx —ay)...(x —a,)
We call E a splitting field for f over F'if E = F(ay,...,a,).

Note. One can’t say “F is a splitting field for f” — the underlying field needs to be specified,
so “FE is a splitting field for f over F' —- just like one doesn’t say “f is irreducible,” but “f
is irreducible over F.”

Example. Let p(x) = 2? — 2, which is irreducible over Q. Show that p splits in R, but a
splitting field for p over Q is Q[v/2].

Theorem 20.2. Let F' be a field and f € F[z] nonconstant. Then there exists a splitting
field E for f over F.

Proof.
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Example. Construct the splitting field of 23 + 2z + 1 € Zs[x] over Zs.

Example. Construct the splitting field of (2 — 3)(z* + 5) € Q[z] over Q.
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Theorem 20.3. Let F' be a field and let p € F[z] be irreducible over F'. If a is a zero of p
in some extension E of F', then F(a) is isomorphic to F[z]/ (p). Furthermore, if deg f = n,
then every element of F'(a) can be uniquely expressed as

~1 -2
Cna10"" "+ Cp_oad” “ + -+ cra+ co

for some cg,...,c,—1 € F.

Proof.

Corollary. Let F be a field and let p € F[z] be irreducible over F. If a is a zero of p in some
extension E of F' and b is a zero of p in some extension E’ of F', then the fields F(a) C E
and F'(b) C E’ are isomorphic.

Proof.

If F and I’ are fields and ¢ : F — F’ is a ring homomorphism, we can build a natural
extension ¢ : F[x] — F'[z] that is also a ring homomorphism.

Lemma. Let F' be a field, let p € F[z] be irreducible over F' and let a be a zero of p in
some extension of F. If ¢ : FF — F’ is a field isomorphism and b is a zero of ¢(p) in some
extension of F’, then there is an isomorphism from F'(a) to F'(b) that agrees with ¢ on F
and sends a to b.
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Proof.

Theorem 20.4. Let ¢ : ' — F’ be a field isomorphism and let f € F[z]. If E is a splitting
field for f over F' and E’ is a splitting field for ¢(f) over F”, then there is an isomorphism
from F to E’ that agrees with ¢ on F.

Proof.

Corollary. Let F be a field and let f € F[z]. Then any two splitting fields of f over F are
isomorphic.

Proof.
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Modern Algebra 2 — Lecture notes 32 Introduction to
MAT 514/614, Spring 2025 — D. Ivansié Galois Theory

Definition. Let F be an extension field of the field F'. Then we may view F as a vector
space over the field F'. The degree [E : F| of the extension E over F' is the dimension of
that E has as a vector space over F. If [E : F] is finite, then we call E a finite extension
of F', otherwise it is said to be an infinite extension of F.

Example. C is a degree-2 extension of R.

Example. If p € F[z] is an irreducible polynomial of degree n, then F[z]/(p) is a degree-n
extension of F.

Example. R is an infinite extension of Q. To verify, show that for every n € N,
n n 2 n -1 . . .
{V2,2°,..., V2" } is a linearly independent set over Q.

Definition. Let E be an extension field of the field F. The Galois group of E over F,
denoted Gal(FE/F), is the set of all automorphisms of E that keep the elements of F' fixed.
For a subgroup H < Gal(E/F), we define the fized field of H as

Ey={xecE|¢(x)=xforal ¢ €c H} (note that F' C Ey for every H)

Note. There is no actual or implied quotient in Gal(E/F), this is simply how the notation
for this group — unfortunately — evolved.

Note. If F is an extension of Q, any automorphism of E automatically fixes Q, so

Gal(E/Q) = Aut(E).

Proposition. Let E be an extension field of F'.

1) For any polynomial f € F[z], if a is a zero of f in E, then for any ¢ € Gal(E/F),
¢(«) is also a zero of f.

2) Let p € Fl[z] be irreducible over F, K = F(«a) =~ F[z]/(p) an extension of F. If
¢ : F— F is any automorphism of F' and f € K a zero of p, then there exists an
extension ¢ : K — K such that ¢(«) = 8 and ¢|p = . If degp = n, gb(zzol a; ) =
Z?;ol w(a)B".

3) Let p € F[z] be irreducible over F', and a € E a zero of p. If every zero of p in E is
in F(a), then for every ¢ € Gal(E/F') we have ¢(F(«a)) = F(«).
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Proof.

Example. Consider the extension Q C Q(v/3). Find all elements of Gal(Q(v/3)/Q).

Example. Consider the extension Q C Q(v/3,/5). Find all elements of Gal(Q(+v/3,v5)/Q).
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Example. Consider the extension Q C Q(\‘"/ﬁ, w), where w = cos
third root of 1. Find all elements of Gal(Q(v/2,w)/Q).

2% +isin 2 is the primitive
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In previous examples, we observed a correspondence between the lattice of subfields of E
containing F' and the lattice of subgroups of Gal(E/F'). We consider the general situation.

Definition. Let F be an extension field of the field F. Let F = {K | F C K C E} be
the collection of subfields “between” F' and E and let G be the collection of subgroups of
Gal(E/F).
1) Define i : F — G by i(K) = Gal(E/K). Note that Gal(E/K) < Gal(E/F).
2) Define j : G — F by j(H) = Ep, the subfield of E on which every element of H is
fixed. Note that F' C Ey for every H C Gal(E/F).
3) For K,L € F and G, H € G it is easy to see that if K C L, then i(K) D i(L) and if
G C H, then j(G) 2 j(H), so i,j are inclusion-reversing maps between F and G.
4) Furthermore, ji(K) 2 K and ij(H) O H.

The following theorem states that, when E is a certain type of extension of F', the maps 7
and j are inverses of each other.

Fundamental Theorem of Galois Theory 32.1. Let F' be a field of characteristic 0 or
a finite field. If E is the splitting field over F' of some polynomial in F[z], then the mapping
1: F — G is a bijection. Furthermore, for any subfield K, FF C K C E, we have:

1) [E: K|=|Gal(E/K)|and [K : F] = Gal(E/F)/ Gal(E/K), so the index of Gal(E/K)
in Gal(E/F) is the degree of K over F.

2) If K is the splitting field of some polynomial in F[z], then Gal(E/K) is a normal
subgroup of Gal(E/F) and Gal(K/F) ~ Gal(E/F)/ Gal(E/K).

3) K = Egag/k), in other words ji = id.
4) If H < Gal(E/F), then H = Gal(E/Epg), in other words ij = id.
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Definition. Let F' be a field, f € F[z]. We say that f is solvable by radicals over F if f
splits in some extension F'(aq,...,a,) of F and there exist ki, ..., k, € N such that a]fl er
and af" € Flay,...,a;—q1) fori=2,...,n.

Example. Every degree-2 polynomial is solvable by radicals over Q. Show this on the
example of p(x) = 22 — 2 — 1. Note that ay, ..., a, need not be zeros of f.

Solvability by radicals means that every zero of f can be written as an expression using
addition, subtraction, multiplication and division of elements of F' and roots of elements
of F. We know the quadratic formula gives the zeros of a degree-2 polynomial as such an
expression in terms of the polynomial’s coefficients. Formulas of this type also exist for
degree-3 and -4 polynomials. What about a general degree-n polynomial?

Definition. We say a group G is solvable if there exists a normal series of subgroups
{e}=H,CH CH,C---CH,=G

such that H; is normal in H;,, and H;y,/H; is abelian for all i = 1,...k — 1.

Example. Abelian groups, dihedral groups, groups of order p™ for a prime p are all solv-
able. A nonabelian group containing no normal subgroups other than the trivial ones is not
solvable.

Example. The splitting field of 2" — 1 over Q is Q(w), where w = cos 2;” + 4sin 27” The
splitting field of z™ — a is Q(w,b) where b is such that 0" = a. Note b € R if a > 0. The
roots of 2™ — a are b,wb, ...,w" tb. If F is any characteristic-0 field, then the splitting field
of 2" —a for a € Q C F contains Q(w, b).
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Theorem 32.2. Let f be field of characteristic 0 and let a € F. If E the splitting field of
™ — a over F, then the Galois group Gal(E/F') is solvable.

Proof.

Theorem 32.3. A quotient group of a solvable group is solvable.

Proof.
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Theorem 32.4. Let N be a normal subgroup of a group G. If N and G/N are solvable,
then G is solvable.

Proof.

Theorem 32.5. Let F' be a field of characteristic 0, f € F[z]. Suppose f splits in
F(ay,...,a;) where ai* € F and a;" € F(ay,...,a;—q) for i = 2,...,t. Let E be the
splitting field of f over F'in F'(ay,...,a;). Then Gal(E/F) is solvable.

Proof.
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Proposition. Let f € Q[z] be irreducible over Q and have exactly three distinct real roots.
Let E = Q(ay,...,as) be the splitting field of f over Q. Then Gal(E/Q) is not solvable.

Proof.

Example. Show that 2° — 16z + 2 has exactly three real roots and is irreducible over Q.
Therefore, p is not solvable by radicals over Q since its Gal(E/Q) is not solvable.

Note. The example shows that, in general, zeros of a degree-5 polynomial may not be
expressible using the four algebraic operations, roots and any rational numbers, let alone its
coefficients. (The roots may still be expressible using some other functions in terms of the
coefficients.)
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