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Definition. A ring (R,+, ·) is a set with two binary operations, + and ·, such that

1–4) (R,+) is an abelian group.

4) a(bc) = (ab)c for every a, b, c ∈ R.

3) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for every a, b, c ∈ R.

Note. The expression na could be a product of n and a or it could be

n︷ ︸︸ ︷
a+ · · ·+ a. We use

n · a to denote a+ · · ·+ a, while notation without · indicates the binary operation.

Definition. Beyond associativity, there are no requirements for multiplication in a ring R.

1) If multiplication is commutative, we call R a commutative ring.

2) If multiplication has an identity element, it is called a unity or identity.

3) If a nonzero element in a ring with a unity has a multiplicative inverse, it is called a
unit of the ring.

4) In a commutative ring, a nonzero element a divides b (a | b) if there is a c ∈ R such
that b = ac.

Verify that each of the following sets with indicated binary operations are rings and state if
it has additional properties.

Example. (Z,+, ·), (Q,+, ·), (R,+, ·)

Example. (Zn,+, ·)

Example. (Mn(Z),+, ·), (Mn(Q),+, ·), (Mn(R),+, ·): n× n matrices with entries in spec-
ified set.

Example. If R1, . . . , Rn are rings, we can construct the direct sum of rings R1 ⊕ · · · ⊕ Rn

which is the set R1 × · · · × Rn with componentwise multiplication and addition.
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Example. Z[x], Q[x], R[x]: polynomials in a single variable x with coefficients in a given
set. (Polynomials are not functions here, rather, they are abstract expressions that involve
an x with established rules for addition and multiplication.)

Theorem 12.1. Let a, b, c ∈ R. Then

1) a0=0a=0

2) a(−b) = (−a)b = −(ab)

3) (−a)(−b) = ab

4) a(b− c) = ab− ac
(b− c)a = ba− ca

If, additionally, R has unity 1, then

5) (−1)a = −a

6) (−1)(−1)a = 1

Proof.

Theorem 12.2. If a ring has a unity, it is unique. If a ring element has a multiplicative
inverse, it is unique.

Proof. Same as for groups.

Definition. A subset S of a ring R is subring of R if S is itself a ring with operations of R.

Theorem 12.3. A nonempty subset S of a ring R is a subring if and only if for every
a, b ∈ S, a+ b, −a and ab are in S.

Example. Many examples above using same idea (polynomials, matrices) but with different
underlying sets of coefficients are subrings.

Example. kZ is a subring of Z.
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13 Integral Domains

and Fields

Definition. A zero-divisor is a nonzero element a of a commutative ring R such that there
is a nonzero element b ∈ R for which ab = 0.

Definition. An integral domain is a commutative ring with unity and no zero divisors.
Equivalently, a ring R is an integral domain if it is commutative, has a unity, and whenever
ab = 0 for some a, b ∈ R, then a = 0 or b = 0.

Example. Lots of examples from section 12 are integral domains: (Z,+, ·), (Q,+, ·),
(R,+, ·), Z[x], Q[x], R[x].

Example. (Mn(Z),+, ·), (Mn(Q),+, ·), (Mn(R),+, ·) are not integral domains because they
are not commutative. They also have elements A,B such that AB = 0, but A,B 6= 0.

Example. Z⊕ Z is not an integral domain.

Example. Zn is an integral domain if and only if n is prime.

Cancellation Theorem 13.1. Let a, b, c ∈ R, where R is an integral domain. If a 6= 0 and
ab = ac, then b = c.

Proof.
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Definition. A field is a commutative ring with multiplicative identity in which every nonzero
element has a multiplicative inverse.

Example. Q, R, C are all fields. They contain subfields such as {a + b
√
2 | a, b ∈ Q} or

{a+ b 3
√
2 + c 3

√
4 | a, b, c ∈ Q}.

Example. Q[x],R[x] are not fields.

Theorem 13.2. A finite integral domain is a field.

Proof.

Corollary. (Zp,+, ·) is a field whose multiplicative group is U(p).

Example. Which of Z2[i] = {a+ bi | a, b ∈ Z2} and Z3[i] = {a+ bi | a, b ∈ Z3} is a field?

Sec.13-2



Definition. The characteristic charR of a ring R is the least positive integer n such that
n · x = 0 for all x ∈ R. If no such integer exists, we say charR = 0.

Note. If R is finite, charR ≤ |R| because the characteristic will be the maximal additive
order of all elements in R.

Example. charZn = n

Example. charZ3[x] = 3, even though it is an infinite ring.

Theorem 13.3. Let R be a ring with unity 1. If 1 has infinite order under addition, then
charR = 0. If 1 has order n under addition, then charR = n.

Proof.

Theorem 13.4. The characteristic of an integral domain is prime.

Proof.

Sec.13-3



Modern Algebra 2 — Lecture notes
MAT 514/614, Spring 2025 — D. Ivanšić 14 Ideals and Quotient Rings

Definition. A subring A of a ring R is called a (two-sided) ideal if for every a ∈ A and
r ∈ R, ar ∈ A and ra ∈ A.

Theorem 14.1. A nonempty subset A of a ring R is an ideal if for every a, b ∈ A and r ∈ R

1) a+ b ∈ A, −a ∈ A

2) ar, ra ∈ A (note this also implies A is closed under multiplication)

Example. {0} and R are ideals of a ring R.

Example. kZ is an ideal of Z.

Example. Not every subring is an ideal: {kI | k ∈ Z} is a subring of Mn(Z), but not an
ideal.

Example. In a commutative ring with unity, set 〈a〉 = {ra | r ∈ R}. Then 〈a〉 is an ideal
of R called the principal ideal generated by a.

Note. 〈a〉 can mean principal ideal or additive subgroup generated by a, and often they are
not the same. It will be clear which one we mean from context.

Example. Show that in Z[x] the additive subroup generated by polynomial x and principal
ideal generated by x are not same.

Example. Similarly, we can define the ideal generated by a1, . . . , an: 〈a1, . . . , an〉 =
{r1a1 + · · ·+ rnan | r1, . . . rn ∈ R}. This is the smallest ideal that contains a1, . . . , an.
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Since a ring R is a commutative group under addition, for every subring A we can form the
quotient group R/A with induced addition. Does multiplicaton of cosets work if we define
it as (x+ A)(y + A) = xy + A?

Theorem 14.2. Let R be a ring and A a subring of R Then the additive quotient group
R/A is a ring with multiplication (x+A)(y +A) = xy +A if and only if A is an ideal of R.

Proof.

Definition. For a ring R and its ideal A, the set R/A with operations (x+A) + (y +A) =
x+ y + A and (x+ A)(y + A) = xy + A is a ring, called the quotient ring of R by ideal A.

Example. Describe the quotient ring Z/nZ.

Example. Describe the quotient ring Z[i]/ 〈3 + 2i〉.

Sec.14-2



Example. Describe the quotient ring R[x]/ 〈1 + x2〉.

Definition. A prime ideal A of a commutative ring R is a proper ideal of R such that for
every a, b ∈ R, if ab ∈ A then a ∈ A or b ∈ A. A maximal ideal A of a commutative ring R
is a proper ideal not contained in any other proper ideal, that is, if B is an ideal and A ⊆ B,
then B = A or B = R.

Example. The ideal kZ of Z is prime if and only if k is prime. The ideal kZ is maximal if
and only if k is prime.
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Example. The ideal 〈x2 + 1〉 is maximal in R[x].

Theorem 14.3. Let R be a commutative ring with unity and let A be an ideal of R. Then
R/A is an integral domain if and only if A is a prime ideal.

Proof.

Theorem 14.4. Let R be a commutative ring with unity and let A be an ideal of R. Then
R/A is a field if and only if A is a maximal ideal.

Proof.
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Definition. Let R and S be rings and ϕ : R → S a mapping. We say ϕ is a ring homomor-
phism if it preserves the two ring operations, that is, if for every a, b ∈ R

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)

A bijective ring homomorphism is called a ring isomorphism.

Example. ϕ : C → C, ϕ(z) = z is a ring isomorphism.

Example. Let a ∈ R, and define ϕ : R[x] → R by ϕ(f) = f(a). Then ϕ is a homomorphism
(evaluation homomorphism).

Example. Let R be a ring of characteristic 2. Then x 7→ x2 is a ring homomorphism.

Example. The ring 2Z is isomorphic to Z as an additive group, but they are not ring-
isomorphic. Why?

Example. For any ring R and element a ∈ R, show there exists a ring homomorphism
ϕ : Zn → R such that ϕ(1) = a if and only if:

1) the additive order |a| divides n (needed for ϕ to be an additive homomorphism)

2) a2 = a (additionally needed for ϕ to be a multiplicative homomorphism)
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Theorem 15.1. Let ϕ : R → S be a ring homomorphism and let A be a subring of R and
B and ideal of S.

1) For any r ∈ R and n ∈ N, ϕ(n · x) = n · ϕ(x) and ϕ(xn) = ϕ(x)n.

2) ϕ(A) is a subring of S.

3) If A is an ideal and ϕ is onto, then ϕ(A) is an ideal of S.

4) ϕ−1(B) is an ideal of R.

5) If R is commutative, then ϕ(R) is commutative.

6) If R has a unity 1, ϕ is onto and S 6= {0}, then ϕ(1) is the unity of S.

7) ϕ is an isomorphism if and only if ϕ is onto and ker ϕ = {0}.
8) If ϕ is an isomorphism, then ϕ−1 : S → R is an isomorphism.

Proofs. are analogous to proofs of statements about homomorphisms of groups.
Just like the following statements.

Theorem 15.2. Let ϕ : R → S be a ring homomorphism. Then ker ϕ is an ideal of R.

First Isomorphism Theorem for Rings 15.3. Let ϕ : R → S be a ring homomorphism,
A = kerϕ (an ideal). Then the mapping R/A → S given by x + A 7→ ϕ(x) is a ring
isomorphism, so R/ kerϕ ≈ ϕ(R).

Theorem 15.4. Every ideal A of a ring R is the kernel of some homomorphism, in particular
the quotient homomorphism q : R → R/A.

Proof.
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Theorem 15.5. Let R be a ring with unity 1. Then the mapping ϕ : Z → R given by
ϕ(k) = k ·1 is a ring homomorphism. More generally, like in the example above, the mapping
ϕ(k) = k · a is a ring homomorphism if and only if a2 = a.

Proof.

Corollary.

1) If R is a ring with unity and charR = n, n ≥ 0, then R contains a subring S that is
isomorphic to Zn (note that Z0 = Z/0Z = Z).

2) Zm is a ring-homomorphic image of Z.

3) If F is a field with char p > 0, then F contains a subfield isomorphic to Zp.
If charF = 0, then F contains a subfield isomorphic to Q.

Proof.

Theorem 15.6. Let D be an integral domain. Then there exists a field F called the field of
quotients of D that contains a subring isomorphic to D. (In other words, an integral domain
can always be extended to a field.)

The field is constructed as follows: let S = {(a, b) | a, b ∈ D, b 6= 0}. Using the equivalence
relation (a, b) ≡ (c, d) if ad = bc, we set F to be the set of equivalence classes S/ ≡. If x

y

denotes the equivalence class of (x, y), we define addition and multiplication on F as:

a

b
+

c

d
=

ad+ bc

bd

a

b

c

d
=

ac

bd
(bd 6= 0 because D is an integral domain)
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Proof.
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Definition. Let R be a commutative ring. The ring of polynomials R[x] over R is the set
of formal expresssions (or sequences) of form

as formal expression as a sequence
anx

n + an−1x
n−1 + · · ·+ a1x+ a0 (a0, a1, . . . , an−1, an, 0, 0, . . . )

where ai ∈ R, n ∈ Z, n ≥ 0. (We consider ai = 0 for i > n.) Two elements

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 and g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

are equal if n = m and ai = bi for i = 0, . . . , n.

Addition of polynomials is “componentwise:”

(f+g)(x) = (as+bs)x
s+(as−1+bs−1)x

s−1+ · · ·+(a1+b1)x+(a0+b0), where s = max{m,n}

Multiplication is defined by

(fg)(x) = cm+nx
m+n+cm+n−1x

m+n−1+· · ·+c1x+c0, where ck = akb0+ak−1b1+· · ·+a1bk−1+a0bk

Proposition. The set (R[x],+, ·) is a commutative ring. If R has unity 1, the unity in R[x]
is the polynomial 1.

Proof. Involved but not hard. Believable because the operations mimic multiplication of
polynomials in the usual way.

Note. Here polynomials are not considered as functions. For example, in Z3[x], f(x) = x3

and g(x) = x are the same function Z3 → Z3, but the polynomials x3 and x are different, as
(0, 0, 1, 0, . . . ) 6= (1, 0, 0, 0 . . . ).

Terminology. For f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 we define:

degree of f is n if an 6= 0 and ak = 0 for k > n (the 0-polynomial has no degree)
coefficients of f are a0, . . . , an
leading coefficient is an
constant polynomial is f(x) = a0
monic polynomial is one where an = 1

Definition. Let f ∈ R[x], a ∈ R, f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0. We define
f(a) = ana

n + an−1a
n−1 + · · · + a1a + a0 ∈ R. It is not hard to see that for a fixed a ∈ R,

the map f 7→ f(a) is a ring homomorphism R[x] → R.
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Theorem 16.1. If D is an integral domain, then D[x] is an integral domain.

Proof.

Theorem 16.2. Let F be a field and let f, g ∈ F [x] with g 6= 0. Then there exist unique
polynomials q, r ∈ F [x] such that f = gq + r and deg r < deg g or r = 0.

The polynomials q and r are called the quotient and remainder in the division of f by g.

Proof.
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Example. For f, g ∈ Z5[x], determine the quotient and remainder in division of f by g:
f(x) = 2x4+4x2+3x+1, g(x) = x2+3x+1. (Essentially, do long division of polynomials.)

Definition. Let D be an integral domain, f, g ∈ D[x].

1) We say g divides f if there exists a polynomial h such that f = gh. We call g a factor
of f .

2) a ∈ D is the zero of polynomial f if f(a) = 0.

3) When D = F is a field, we say a is a zero of multiplicity k of f if (x− a)k is a factor
of f and (x− a)k+1 is not a factor of f .

Corollary. Let F be a field, a ∈ F , f ∈ F [x].

1) f(a) is the remainder in the division of f by x− a.

2) a is a zero of f if and only if x− a is a factor of f .

Proof.
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Theorem 16.3. A polynomial over a field has at most n zeroes, counting multiplicity.

Proof.

Definition. A principal ideal domain (PID) is an integral domain R in which every ideal
has form 〈a〉 = {ra | r ∈ R} for some a ∈ R.

Theorem 16.4. Let F be a field. Then F [x] is a principal ideal domain.

Proof.

Theorem 16.5. Let F be a field, I a nonzero ideal in F [x], and g ∈ F [x]. Then I = 〈g〉 if
and only if g is a nonzero polynomial of minimum degree in I.
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17 Factorization of

Polynomials

In previous mathematical schooling we are taught factorization of polynomials as a way to
find their zeroes (i.e. where f(a) = 0). We now consider the general question of factoring a
polynomial, that is, writing it as a product of polynomials in a nontrivial way.

Definition. Let D be an integral domain. We say that a nonzero polynomial f ∈ D[x] is
irreducible over D if, whenever f = gh and g, h ∈ D[x] then g or h is a unit in D[x]. A
nonzero, nonunit polynomial is reducible over D if it is not irreducible over D, that is, if it
can be written as product of two nonunit polynomials.

Note. In D[x], the only unit elements are constant polynomials, where the constant is a
unit from D. Since in a field F , every nonzero element is unit, a polynomial f ∈ F [x] is
irreducible if and only if it cannot be expressed as a product of lower-degree polynomials.
In particular, polynomials of degree 0 or 1 in F [x] is irreducible.

Note. A polynomial f ∈ F [x] is irreducible if and only if af is irreducible for some a 6= 0
in F .

Example. Consider the polynomials 6, 2x− 6 and 2x2 − 6 as elements of Z[x] or Q[x]. Are
they irreducible over Z or Q?

Example. Consider the polynomials 2x2 − 6 and 2x2 + 6 as elements of R[x] or C[x]. Are
they irreducible over R or C?
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Example. Consider the polynomial x2 + 1 as element of Z3[x] or Z5[x]. Is it irreducible
over Z3 or Z5?

Theorem 17.1. If f ∈ F [x], where F is a field, and deg f = 2 or 3, then f is reducible over
F if and only if f has a zero in F .

Proof.

Note. A degree-4 polynomial may be reducible even if has no zeroes. For example,
x4 + 5x2 + 6 = (x2 + 2)(x2 + 3), so it is reducible over R, but has no real zeroes.

Definition. The content of a nonzero polynomial anx
n+ · · ·+a1x+a0 ∈ Z[x] is the greatest

common divisor of an, . . . , a0. A primitive polynomial in Z[x] is one whose content is 1.

Example. The content of 24x3 − 18x2 + 12x2 + 30 is

Gauss’ Lemma. The product of two primitive polynomials is primitive.

Proof.
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Theorem 17.2. Let f ∈ Z[x]. If f is reducible over Q, then f is reducible over Z.

Proof.

Example. Follow the proof on the example of f(x) = 4x2 +8x− 5, which has 1
2
as its zero.

Theorem 17.3. Let p be a prime and f ∈ Z[x] with deg f ≥ 1. Let f ∈ Zp[x] be the image
of f under the mod p homomorphism. If f is irreducible over Zp, and deg f = deg f , then
f is irreducible over Q.

Proof.
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Example. Show that f(x) = 4x3 + 5x2 + 5x− 2 is irreducible over Q.

Note. For some p, f may be reducible over Zp while f is irreducible over Q, so it is worth
trying several p’s. However, x4 + 1 is reducible for every p, but irreducible over Q.

Eisenstein’s Criterion Theorem 17.4. Let anx
n + · · · + a1x + a0 ∈ Z[x]. If there is a

prime p such that p 6 |an while p|an−1, . . . , p|a1, p|a0 but p2 6 |a0, then f is irreducible over Q.

Proof.
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Corollary. For every prime p, the cyclotomic polynomial
xp − 1

x− 1
= xp−1+xp−2+ · · ·+x+1

is irreducible over Q.

Proof.

Theorem 17.5. Let F be a field, p ∈ F [x]. Then 〈p〉 is maximal ideal in F [x] if and only
if p is irreducible over F .

Proof.

Corollary. Let F be a field.

1) If p ∈ F [x] is irreducible over F , then F [x]/〈p〉 is a field.

2) If p, a, b ∈ F [x], p is irreducible over F and p|ab, then p|a or p|b.
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Proof.

Example. Let f(x) = 4x3 + 5x2 + 5x + 5 ∈ Z7[x]. We have already shown that f is
irreducible over Z7, so Z7[x]/I is a field, where I = 〈f〉. How many elements does it have?
Multiply x2 + 4x+ 3 + I with 5x+ 2 + I in Z7[x]/I.

Theorem 17.6. Every nonzero and nonunit polynomial in Z[x] can be written in the form
b1 . . . bsp1 . . . pm, where b1, . . . , bs are irreducible polynomials of degree 0 (that is, primes)
and p1, . . . , pm are irreducible polynomials over Z of positive degree. This factorization is
unique up to order and sign of the factors.

Proof. See book.

Sec.17-6


