### 12 Introduction to Rings

**Definition.** A ring  $(R, +, \cdot)$  is a set with two binary operations, + and  $\cdot$ , such that

- (R, +) is an abelian group.
  - 4) a(bc) = (ab)c for every  $a, b, c \in R$ .
  - 3) a(b+c) = ab + ac and (b+c)a = ba + ca for every  $a, b, c \in R$ .

**Note.** The expression na could be a product of n and a or it could be  $a + \cdots + a$ . We use  $n \cdot a$  to denote  $a + \cdots + a$ , while notation without  $\cdot$  indicates the binary operation.

**Definition.** Beyond associativity, there are no requirements for multiplication in a ring R.

- 1) If multiplication is commutative, we call R a commutative ring.
- 2) If multiplication has an identity element, it is called a unity or identity.
- 3) If a nonzero element in a ring with a unity has a multiplicative inverse, it is called a unit of the ring.
- 4) In a commutative ring, a nonzero element a divides b  $(a \mid b)$  if there is a  $c \in R$  such that b = ac.

Verify that each of the following sets with indicated binary operations are rings and state if it has additional properties.

Example.  $(\mathbf{Z}, +, \cdot), (\mathbf{Q}, +, \cdot), (\mathbf{R}, +, \cdot)$ 

Example.  $(\mathbf{Z}_n, +, \cdot)$ 

**Example.**  $(M_n(\mathbf{Z}), +, \cdot), (M_n(\mathbf{Q}), +, \cdot), (M_n(\mathbf{R}), +, \cdot): n \times n$  matrices with entries in specified set.

**Example.** If  $R_1, \ldots, R_n$  are rings, we can construct the *direct sum* of rings  $R_1 \oplus \cdots \oplus R_n$  which is the set  $R_1 \times \cdots \times R_n$  with componentwise multiplication and addition.

**Example.**  $\mathbf{Z}[x]$ ,  $\mathbf{Q}[x]$ ,  $\mathbf{R}[x]$ : polynomials in a single variable x with coefficients in a given set. (Polynomials are not functions here, rather, they are abstract expressions that involve an x with established rules for addition and multiplication.)

**Theorem 12.1.** Let  $a, b, c \in R$ . Then

1) 
$$a0=0a=0$$

2) 
$$a(-b) = (-a)b = -(ab)$$

$$3) (-a)(-b) = ab$$

4) 
$$a(b-c) = ab - ac$$
  
 $(b-c)a = ba - ca$ 

If, additionally, R has unity 1, then

5) 
$$(-1)a = -a$$

6) 
$$(-1)(-1)a = 1$$

Proof.

**Theorem 12.2.** If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

*Proof.* Same as for groups.

**Definition.** A subset S of a ring R is subring of R if S is itself a ring with operations of R.

**Theorem 12.3.** A nonempty subset S of a ring R is a subring if and only if for every  $a, b \in S$ , a + b, -a and ab are in S.

**Example.** Many examples above using same idea (polynomials, matrices) but with different underlying sets of coefficients are subrings.

**Example.**  $k\mathbf{Z}$  is a subring of  $\mathbf{Z}$ .

# 13 Integral Domains and Fields

**Definition.** A zero-divisor is a nonzero element a of a commutative ring R such that there is a nonzero element  $b \in R$  for which ab = 0.

**Definition.** An *integral domain* is a commutative ring with unity and no zero divisors. Equivalently, a ring R is an integral domain if it is commutative, has a unity, and whenever ab = 0 for some  $a, b \in R$ , then a = 0 or b = 0.

**Example.** Lots of examples from section 12 are integral domains:  $(\mathbf{Z}, +, \cdot)$ ,  $(\mathbf{Q}, +, \cdot)$ ,  $(\mathbf{R}, +, \cdot)$ ,  $\mathbf{Z}[x]$ ,  $\mathbf{Q}[x]$ ,  $\mathbf{R}[x]$ .

**Example.**  $(M_n(\mathbf{Z}), +, \cdot), (M_n(\mathbf{Q}), +, \cdot), (M_n(\mathbf{R}), +, \cdot)$  are not integral domains because they are not commutative. They also have elements A, B such that AB = 0, but  $A, B \neq 0$ .

**Example.**  $\mathbf{Z} \oplus \mathbf{Z}$  is not an integral domain.

**Example.**  $\mathbb{Z}_n$  is an integral domain if and only if n is prime.

**Cancellation Theorem 13.1.** Let  $a, b, c \in R$ , where R is an integral domain. If  $a \neq 0$  and ab = ac, then b = c.

**Definition.** A *field* is a commutative ring with multiplicative identity in which every nonzero element has a multiplicative inverse.

**Example.**  $\mathbf{Q}$ ,  $\mathbf{R}$ ,  $\mathbf{C}$  are all fields. They contain subfields such as  $\{a+b\sqrt{2}\mid a,b\in\mathbf{Q}\}$  or  $\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\mid a,b,c\in\mathbf{Q}\}.$ 

**Example.** Q[x], R[x] are not fields.

**Theorem 13.2.** A finite integral domain is a field.

Proof.

Corollary.  $(\mathbf{Z}_p, +, \cdot)$  is a field whose multiplicative group is U(p).

**Example.** Which of  $Z_2[i] = \{a + bi \mid a, b \in \mathbf{Z}_2\}$  and  $Z_3[i] = \{a + bi \mid a, b \in \mathbf{Z}_3\}$  is a field?

**Definition.** The characteristic char R of a ring R is the least positive integer n such that  $n \cdot x = 0$  for all  $x \in R$ . If no such integer exists, we say char R = 0.

**Note.** If R is finite, char  $R \leq |R|$  because the characteristic will be the maximal additive order of all elements in R.

Example. char  $\mathbf{Z}_n = n$ 

**Example.** char  $\mathbb{Z}_3[x] = 3$ , even though it is an infinite ring.

**Theorem 13.3.** Let R be a ring with unity 1. If 1 has infinite order under addition, then char R = 0. If 1 has order n under addition, then char R = n.

Proof.

**Theorem 13.4.** The characteristic of an integral domain is prime.

Modern Algebra 2 — Lecture notes MAT 514/614, Spring 2025 — D. Ivanšić 14 Ideals and Quotient Rings

**Definition.** A subring A of a ring R is called a (two-sided) ideal if for every  $a \in A$  and  $r \in R$ ,  $ar \in A$  and  $ra \in A$ .

**Theorem 14.1.** A nonempty subset A of a ring R is an ideal if for every  $a, b \in A$  and  $r \in R$ 

- 1)  $a+b \in A, -a \in A$
- 2)  $ar, ra \in A$  (note this also implies A is closed under multiplication)

**Example.**  $\{0\}$  and R are ideals of a ring R.

**Example.**  $k\mathbf{Z}$  is an ideal of  $\mathbf{Z}$ .

**Example.** Not every subring is an ideal:  $\{kI \mid k \in \mathbf{Z}\}$  is a subring of  $M_n(\mathbf{Z})$ , but not an ideal.

**Example.** In a commutative ring with unity, set  $\langle a \rangle = \{ra \mid r \in R\}$ . Then  $\langle a \rangle$  is an ideal of R called the principal ideal generated by a.

**Note.**  $\langle a \rangle$  can mean principal ideal or additive subgroup generated by a, and often they are not the same. It will be clear which one we mean from context.

**Example.** Show that in  $\mathbf{Z}[x]$  the additive subroup generated by polynomial x and principal ideal generated by x are not same.

**Example.** Similarly, we can define the ideal generated by  $a_1, \ldots, a_n$ :  $\langle a_1, \ldots, a_n \rangle =$  $\{r_1a_1 + \cdots + r_na_n \mid r_1, \dots r_n \in R\}$ . This is the smallest ideal that contains  $a_1, \dots, a_n$ . Since a ring R is a commutative group under addition, for every subring A we can form the quotient group R/A with induced addition. Does multiplication of cosets work if we define it as (x + A)(y + A) = xy + A?

**Theorem 14.2.** Let R be a ring and A a subring of R. Then the additive quotient group R/A is a ring with multiplication (x + A)(y + A) = xy + A if and only if A is an ideal of R. *Proof.* 

**Definition.** For a ring R and its ideal A, the set R/A with operations (x + A) + (y + A) = x + y + A and (x + A)(y + A) = xy + A is a ring, called the *quotient ring of* R by ideal A.

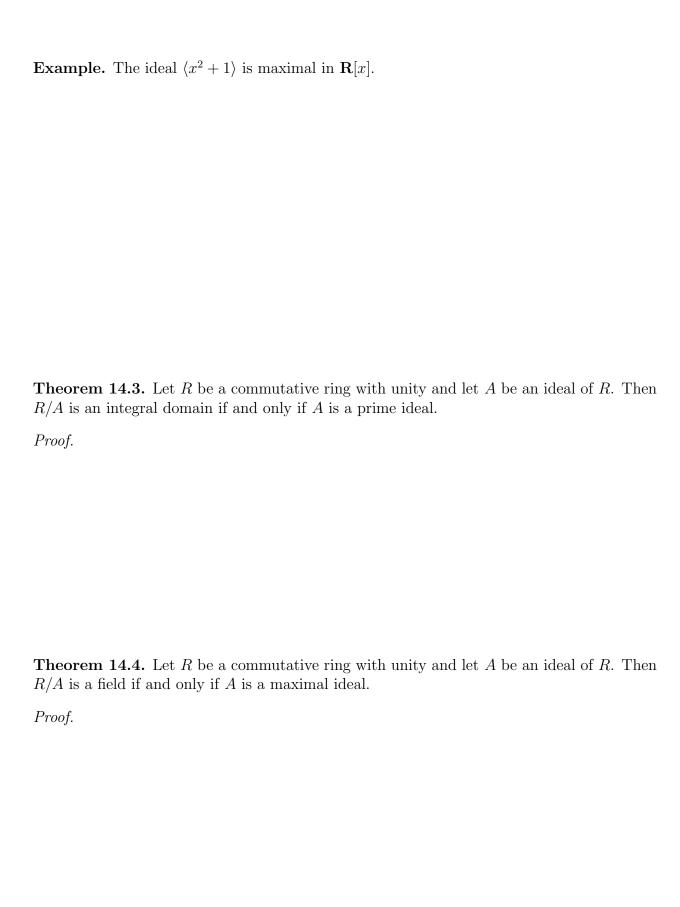
**Example.** Describe the quotient ring  $\mathbb{Z}/n\mathbb{Z}$ .

**Example.** Describe the quotient ring  $\mathbf{Z}[i]/\langle 3+2i\rangle$ .

**Example.** Describe the quotient ring  $\mathbf{R}[x]/\langle 1+x^2\rangle$ .

**Definition.** A prime ideal A of a commutative ring R is a proper ideal of R such that for every  $a, b \in R$ , if  $ab \in A$  then  $a \in A$  or  $b \in A$ . A maximal ideal A of a commutative ring R is a proper ideal not contained in any other proper ideal, that is, if B is an ideal and  $A \subseteq B$ , then B = A or B = R.

**Example.** The ideal kZ of Z is prime if and only if k is prime. The ideal kZ is maximal if and only if k is prime.



### 15 Ring Homomorphisms

**Definition.** Let R and S be rings and  $\phi: R \to S$  a mapping. We say  $\phi$  is a *ring homomorphism* if it preserves the two ring operations, that is, if for every  $a, b \in R$ 

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and  $\phi(ab) = \phi(a)\phi(b)$ 

A bijective ring homomorphism is called a ring isomorphism.

**Example.**  $\phi: \mathbf{C} \to \mathbf{C}, \ \phi(z) = \overline{z}$  is a ring isomorphism.

**Example.** Let  $a \in \mathbf{R}$ , and define  $\phi : \mathbf{R}[x] \to \mathbf{R}$  by  $\phi(f) = f(a)$ . Then  $\phi$  is a homomorphism (evaluation homomorphism).

**Example.** Let R be a ring of characteristic 2. Then  $x \mapsto x^2$  is a ring homomorphism.

**Example.** The ring  $2\mathbf{Z}$  is isomorphic to  $\mathbf{Z}$  as an additive group, but they are not ring-isomorphic. Why?

**Example.** For any ring R and element  $a \in R$ , show there exists a ring homomorphism  $\phi : \mathbf{Z}_n \to R$  such that  $\phi(1) = a$  if and only if:

- 1) the additive order |a| divides n (needed for  $\phi$  to be an additive homomorphism)
- 2)  $a^2 = a$  (additionally needed for  $\phi$  to be a multiplicative homomorphism)

**Theorem 15.1.** Let  $\phi: R \to S$  be a ring homomorphism and let A be a subring of R and B and ideal of S.

- 1) For any  $r \in R$  and  $n \in \mathbb{N}$ ,  $\phi(n \cdot x) = n \cdot \phi(x)$  and  $\phi(x^n) = \phi(x)^n$ .
- 2)  $\phi(A)$  is a subring of S.
- 3) If A is an ideal and  $\phi$  is onto, then  $\phi(A)$  is an ideal of S.
- 4)  $\phi^{-1}(B)$  is an ideal of R.
- 5) If R is commutative, then  $\phi(R)$  is commutative.
- 6) If R has a unity 1,  $\phi$  is onto and  $S \neq \{0\}$ , then  $\phi(1)$  is the unity of S.
- 7)  $\phi$  is an isomorphism if and only if  $\phi$  is onto and ker  $\phi = \{0\}$ .
- 8) If  $\phi$  is an isomorphism, then  $\phi^{-1}: S \to R$  is an isomorphism.

*Proofs.* are analogous to proofs of statements about homomorphisms of groups. Just like the following statements.

**Theorem 15.2.** Let  $\phi: R \to S$  be a ring homomorphism. Then ker  $\phi$  is an ideal of R.

First Isomorphism Theorem for Rings 15.3. Let  $\phi: R \to S$  be a ring homomorphism,  $A = \ker \phi$  (an ideal). Then the mapping  $R/A \to S$  given by  $x + A \mapsto \phi(x)$  is a ring isomorphism, so  $R/\ker \phi \approx \phi(R)$ .

**Theorem 15.4.** Every ideal A of a ring R is the kernel of some homomorphism, in particular the quotient homomorphism  $q: R \to R/A$ .

**Theorem 15.5.** Let R be a ring with unity 1. Then the mapping  $\phi : \mathbf{Z} \to R$  given by  $\phi(k) = k \cdot 1$  is a ring homomorphism. More generally, like in the example above, the mapping  $\phi(k) = k \cdot a$  is a ring homomorphism if and only if  $a^2 = a$ .

Proof.

#### Corollary.

- 1) If R is a ring with unity and char R = n,  $n \ge 0$ , then R contains a subring S that is isomorphic to  $\mathbf{Z}_n$  (note that  $\mathbf{Z}_0 = \mathbf{Z}/0\mathbf{Z} = \mathbf{Z}$ ).
- 2)  $\mathbf{Z}_m$  is a ring-homomorphic image of  $\mathbf{Z}$ .
- 3) If F is a field with char p > 0, then F contains a subfield isomorphic to  $\mathbf{Z}_p$ . If char F = 0, then F contains a subfield isomorphic to  $\mathbf{Q}$ .

Proof.

**Theorem 15.6.** Let D be an integral domain. Then there exists a field F called the field of quotients of D that contains a subring isomorphic to D. (In other words, an integral domain can always be extended to a field.)

The field is constructed as follows: let  $S = \{(a,b) \mid a,b \in D, b \neq 0\}$ . Using the equivalence relation  $(a,b) \equiv (c,d)$  if ad = bc, we set F to be the set of equivalence classes  $S/\equiv$ . If  $\frac{x}{y}$  denotes the equivalence class of (x,y), we define addition and multiplication on F as:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
  $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$  ( $bd \neq 0$  because  $D$  is an integral domain)

#### 16 Polynomial Rings

**Definition.** Let R be a commutative ring. The ring of polynomials R[x] over R is the set of formal expressions (or sequences) of form

as formal expression as a sequence 
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
  $(a_0, a_1, \dots, a_{n-1}, a_n, 0, 0, \dots)$ 

where  $a_i \in R$ ,  $n \in \mathbb{Z}$ ,  $n \geq 0$ . (We consider  $a_i = 0$  for i > n.) Two elements

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 and  $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$   
are equal if  $n = m$  and  $a_i = b_i$  for  $i = 0, \dots, n$ .

Addition of polynomials is "componentwise:"

$$(f+g)(x) = (a_s+b_s)x^s + (a_{s-1}+b_{s-1})x^{s-1} + \dots + (a_1+b_1)x + (a_0+b_0), \text{ where } s = \max\{m, n\}$$

Multiplication is defined by

$$(fg)(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_1x + c_0$$
, where  $c_k = a_kb_0 + a_{k-1}b_1 + \dots + a_1b_{k-1} + a_0b_k$ 

**Proposition.** The set  $(R[x], +, \cdot)$  is a commutative ring. If R has unity 1, the unity in R[x] is the polynomial 1.

*Proof.* Involved but not hard. Believable because the operations mimic multiplication of polynomials in the usual way.

**Note.** Here polynomials are not considered as functions. For example, in  $\mathbb{Z}_3[x]$ ,  $f(x) = x^3$  and g(x) = x are the same function  $\mathbb{Z}_3 \to \mathbb{Z}_3$ , but the polynomials  $x^3$  and x are different, as  $(0,0,1,0,\ldots) \neq (1,0,0,0,\ldots)$ .

**Terminology.** For  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  we define:

degree of f is n if  $a_n \neq 0$  and  $a_k = 0$  for k > n (the 0-polynomial has no degree) are  $a_0, \ldots, a_n$ 

leading coefficient is  $a_n$ 

constant polynomial is  $f(x) = a_0$ 

monic polynomial is one where  $a_n = 1$ 

**Definition.** Let  $f \in R[x]$ ,  $a \in R$ ,  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ . We define  $f(a) = a_n a^n + a_{n-1} a^{n-1} + \cdots + a_1 a + a_0 \in R$ . It is not hard to see that for a fixed  $a \in \mathbf{R}$ , the map  $f \mapsto f(a)$  is a ring homomorphism  $R[x] \to R$ .

**Theorem 16.1.** If D is an integral domain, then D[x] is an integral domain. *Proof.* 

**Theorem 16.2.** Let F be a field and let  $f, g \in F[x]$  with  $g \neq 0$ . Then there exist unique polynomials  $q, r \in F[x]$  such that f = gq + r and  $\deg r < \deg g$  or r = 0.

The polynomials q and r are called the quotient and remainder in the division of f by g.

Proof.

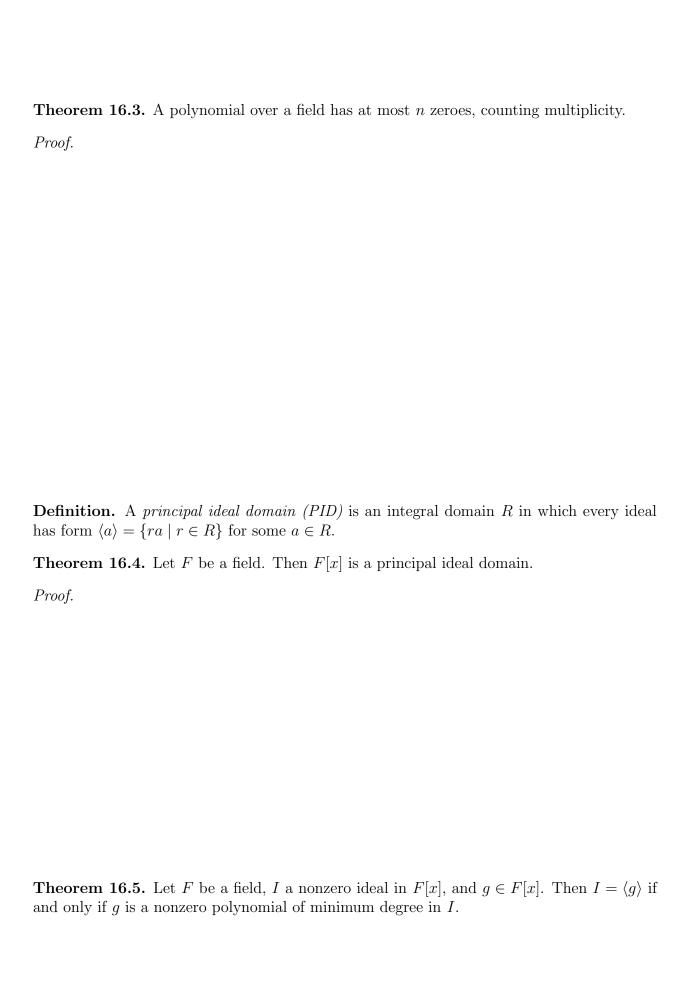
**Example.** For  $f, g \in \mathbf{Z}_5[x]$ , determine the quotient and remainder in division of f by g:  $f(x) = 2x^4 + 4x^2 + 3x + 1$ ,  $g(x) = x^2 + 3x + 1$ . (Essentially, do long division of polynomials.)

**Definition.** Let D be an integral domain,  $f, g \in D[x]$ .

- 1) We say g divides f if there exists a polynomial h such that f = gh. We call g a factor of f.
- 2)  $a \in D$  is the zero of polynomial f if f(a) = 0.
- 3) When D = F is a field, we say a is a zero of multiplicity k of f if  $(x a)^k$  is a factor of f and  $(x a)^{k+1}$  is not a factor of f.

Corollary. Let F be a field,  $a \in F$ ,  $f \in F[x]$ .

- 1) f(a) is the remainder in the division of f by x a.
- 2) a is a zero of f if and only if x a is a factor of f.



# 17 Factorization of Polynomials

In previous mathematical schooling we are taught factorization of polynomials as a way to find their zeroes (i.e. where f(a) = 0). We now consider the general question of factoring a polynomial, that is, writing it as a product of polynomials in a nontrivial way.

**Definition.** Let D be an integral domain. We say that a nonzero polynomial  $f \in D[x]$  is irreducible over D if, whenever f = gh and  $g, h \in D[x]$  then g or h is a unit in D[x]. A nonzero, nonunit polynomial is reducible over D if it is not irreducible over D, that is, if it can be written as product of two nonunit polynomials.

**Note.** In D[x], the only unit elements are constant polynomials, where the constant is a unit from D. Since in a field F, every nonzero element is unit, a polynomial  $f \in F[x]$  is irreducible if and only if it cannot be expressed as a product of lower-degree polynomials. In particular, polynomials of degree 0 or 1 in F[x] is irreducible.

**Note.** A polynomial  $f \in F[x]$  is irreducible if and only if af is irreducible for some  $a \neq 0$  in F.

**Example.** Consider the polynomials 6, 2x - 6 and  $2x^2 - 6$  as elements of  $\mathbf{Z}[x]$  or  $\mathbf{Q}[x]$ . Are they irreducible over  $\mathbf{Z}$  or  $\mathbf{Q}$ ?

**Example.** Consider the polynomials  $2x^2 - 6$  and  $2x^2 + 6$  as elements of  $\mathbf{R}[x]$  or  $\mathbf{C}[x]$ . Are they irreducible over  $\mathbf{R}$  or  $\mathbf{C}$ ?

**Example.** Consider the polynomial  $x^2 + 1$  as element of  $\mathbf{Z}_3[x]$  or  $\mathbf{Z}_5[x]$ . Is it irreducible over  $\mathbf{Z}_3$  or  $\mathbf{Z}_5$ ?

**Theorem 17.1.** If  $f \in F[x]$ , where F is a field, and deg f = 2 or 3, then f is reducible over F if and only if f has a zero in F.

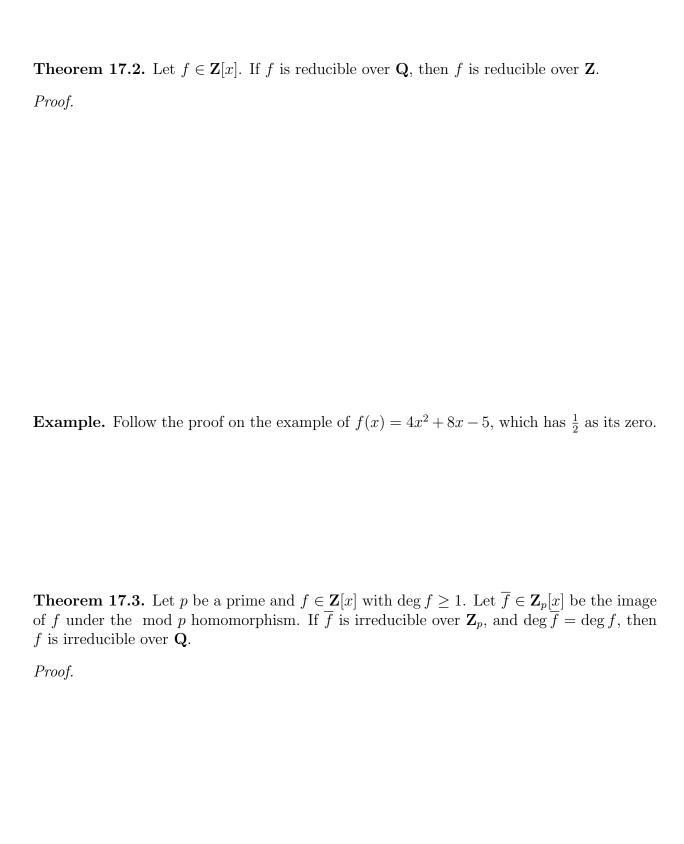
Proof.

**Note.** A degree-4 polynomial may be reducible even if has no zeroes. For example,  $x^4 + 5x^2 + 6 = (x^2 + 2)(x^2 + 3)$ , so it is reducible over R, but has no real zeroes.

**Definition.** The *content* of a nonzero polynomial  $a_n x^n + \cdots + a_1 x + a_0 \in \mathbf{Z}[x]$  is the greatest common divisor of  $a_n, \ldots, a_0$ . A *primitive polynomial* in  $\mathbf{Z}[x]$  is one whose content is 1.

**Example.** The content of  $24x^3 - 18x^2 + 12x^2 + 30$  is

Gauss' Lemma. The product of two primitive polynomials is primitive.



**Example.** Show that  $f(x) = 4x^3 + 5x^2 + 5x - 2$  is irreducible over **Q**.

**Note.** For some p,  $\overline{f}$  may be reducible over  $\mathbf{Z}_p$  while f is irreducible over  $\mathbf{Q}$ , so it is worth trying several p's. However,  $x^4 + 1$  is reducible for every p, but irreducible over  $\mathbf{Q}$ .

**Eisenstein's Criterion Theorem 17.4.** Let  $a_n x^n + \cdots + a_1 x + a_0 \in \mathbf{Z}[x]$ . If there is a prime p such that  $p \not| a_n$  while  $p | a_{n-1}, \ldots, p | a_1, p | a_0$  but  $p^2 \not| a_0$ , then f is irreducible over  $\mathbf{Q}$ . *Proof.* 

| <b>Corollary.</b> For every prime $p$ , the cyclotomic polynomial $\frac{x^p-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible over ${\bf Q}$ .         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proof.                                                                                                                                                   |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
| <b>Theorem 17.5.</b> Let $F$ be a field, $p \in F[x]$ . Then $\langle p \rangle$ is maximal ideal in $F[x]$ if and only if $p$ is irreducible over $F$ . |
| Proof.                                                                                                                                                   |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
| Corollary. Let $F$ be a field.                                                                                                                           |
| 1) If $p \in F[x]$ is irreducible over $F$ , then $F[x]/\langle p \rangle$ is a field.                                                                   |
| 2) If $p, a, b \in F[x]$ , p is irreducible over F and $p ab$ , then $p a$ or $p b$ .                                                                    |



**Example.** Let  $f(x) = 4x^3 + 5x^2 + 5x + 5 \in \mathbf{Z}_7[x]$ . We have already shown that f is irreducible over  $\mathbf{Z}_7$ , so  $\mathbf{Z}_7[x]/I$  is a field, where  $I = \langle f \rangle$ . How many elements does it have? Multiply  $x^2 + 4x + 3 + I$  with 5x + 2 + I in  $\mathbf{Z}_7[x]/I$ .

**Theorem 17.6.** Every nonzero and nonunit polynomial in  $\mathbf{Z}[x]$  can be written in the form  $b_1 \dots b_s p_1 \dots p_m$ , where  $b_1, \dots, b_s$  are irreducible polynomials of degree 0 (that is, primes) and  $p_1, \dots, p_m$  are irreducible polynomials over  $\mathbf{Z}$  of positive degree. This factorization is unique up to order and sign of the factors.

*Proof.* See book.