
Trigonometry — Lecture notes
MAT 145, Spring 2025 — D. Ivanšić 8.1 Law of Sines

At the beginning of the course, we solved right triangles. This meant, given two independent
pieces of information about a right triangle (a side and an angle, or two sides) we found
all the sides and all the angles. (Note that the two acute angles in a right triangle are not
independent due to β = 90◦ − α.)

Now we wish to solve oblique triangles, the triangles that are not right.

Two shapes of oblique
triangles are possible:

Note a triangle cannot have more than
one obtuse angle, since otherwise the
sum of all angles exceeds 180◦.

We adopt the usual labeling standard,
where angles A,B,C are opposite sides
a, b, c, respectively.

all angles acute one angle obtuse (> 90◦)

For an oblique triangle, three independent pieces of information about the triangle are
needed. (For a right triangle, it is really the same, it’s just that the third piece of in-
formation is that one angle is 90◦.) The following three pieces of information determine a
triangle.

ASA AAS SSA
side and two angles

adjacent to it
two angles and side
opposite one of them

two sides and angle
opposite one side

SAS SSS
two sides and angle

between them
three sides

Ch.8-1



Our first tool in solving triangles is:

Law of sines. In a triangle with angles A,B,C opposite sides a, b, c we have:

a

sinA
=

b

sinB
=

c

sinC

Proof.

Example. Solve the ASA triangle where c = 5, A = 35◦, B = 70◦. First explain why there
is exactly one solution.
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Example. Solve the AAS triangle where a = 7, A = 45◦, B = 40◦. First explain why there
is exactly one solution.

Example. Solving an SSA triangle involves several possibilities:

1) Side opposite the angle is
too short: no solution.

2) Side opposite the angle is
just long enough to reach the
base: one solution or none

3) Side opposite the angle
is smaller than the adja-
cent side and reaches base in
two places: two solutions or
none.

4) Side opposite the angle
is shorter than the adjacent
side: one solution.
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Example. Solve the SSA triangle where A = 40◦, a = 2, b = 4.

Example. Solve the SSA triangle where C = 50◦, a = 5, c = 4.

Example. Solve the SSA triangle where B = 60◦, b = 7, c = 5.
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Area of a triangle. The area of a triangle equals half of product of lengths of two sides
and the sine of the angle between them. (Note that all the variables are different letters.)

Area =
1

2
ab sinC

Proof.

Example. Find the area of the triangle where c = 8 in, B = 38◦, C = 123◦.
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Trigonometry — Lecture notes
MAT 145, Spring 2025 — D. Ivanšić 8.2 Law of Cosines

Note that the Law of Sines does not help with SAS or SSS triangles, buecause we get
equations with more than one unknown.

Law of Cosines. In a triangle with angles A,B,C opposite sides a, b, c we have:

c2 = a2 + b2 − 2ab cosC b2 = a2 + c2 − 2ac cosB a2 = b2 + c2 − 2bc cosA

Proof.
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Example. Solve the SAS triangle where a = 3, b = 4, C = 55◦. First explain why there is
exactly one solution.

Example. Solve the SSS triangle where a = 3, b = 7, c = 5. First explain why there is
exactly one solution, as long as the sum of lengths of every pair of sides is bigger than the
third one.
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Trigonometry — Lecture notes
MAT 145, Spring 2025 — D. Ivanšić 8.4 Polar Coordinates

To specify the position of a point in the plane, we have so far used rectangular (Cartesian)
coordinates.

Fix a ray, called the polar axis, along which we will place the
initial side of an angle, usually the positive x-axis. We may also
specify the position of a point by giving

1) the angle θ on whose terminal side point is located.

2) the distance r from the origin.

We say (r, θ) are polar coordinates of the point P .

Example. Sketch the points with polar coordinates:(
5,

π

2

) (
3,−5π

6

)
(4, 180◦)

In polar coordinates, we allow r to be negative (so, r is “directed distance”). If r < 0 we go
distance |r| from the origin along the ray that is opposite to terminal side of angle θ.

Example. Sketch the points with polar coordinates:(
−2,

π

2

)
(−3, π) (−4, 30◦)

Example. In contrast to rectangular coordinates, every point has many polar coordinates.

List all the possible coordinates of the point with polar coordinates
(
4,

π

3

)
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Converting coordinates. Using formu-
las x

r
= cos θ and y

r
= sin θ we get the

conversion formulas at right.

polar → rectangular rectangular → polar

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ =
y

x

Example. Convert to rectangular coordinates.(
5,

5π

6

)
(−3, 60◦)

Example. Convert to polar coordinates.

(2, 2) (−3,
√
3) (−3,−7)

Convert the following equations to polar coordinates.

Example. x2 + y2 = 9

Example. y = 3x+ 5
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Convert the following equations to rectangular coordinates.

Example. r = sin θ

Example. r = sin(2θ)

Curves with basic equations in r, θ can be drawn fairly easily.

Example. Sketch the curves given by the following equations.

r = 2 θ =
π

3

A polar equation typically has the form r = f(θ), so r
varies as a function of θ. We can imagine the curve as the
path of a bead moving back an forth along the terminal
side of the angle as it circles around the origin.

Graph the following polar equations.

Example. r = 1 + sin θ, θ in [0, 2π]
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Example. r = cos(2θ), θ in [0, 2π]

Example. r = 4 sin(3θ), θ in [0, 2π]

r = a sin(nθ)
r = a cos(nθ)

}
is a rose with

{
n petals, if n is odd (traversed once for 0 ≤ θ ≤ π)
2n petals, if n is even (traversed once for 0 ≤ θ ≤ 2π)

Example. r = θ, θ in [0,∞]

Example. r = f(θ), where f is given by the graph below.
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