Calculus 1 — Exam 5
MAT 250, Spring 2024 — D. Ivanšić

Name:

Show all your work!

Find the following antiderivatives or definite integrals.

1. (3pts)
$$\int \frac{1}{\sqrt[4]{x}} dx =$$

2. (3pts)
$$\int \sin(2x - \pi) dx =$$

3. (6pts)
$$\int (u^2 - 3\sqrt{u})u^3 du =$$

4. (5pts)
$$\int_0^{\frac{\pi}{4}} 3 \sec^2 \theta \, d\theta =$$

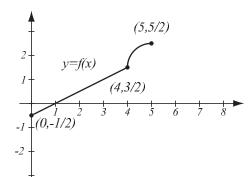
5. (6pts)
$$\int_{\sqrt{e}}^{e} x - \frac{1}{x} dx =$$

6. (6pts) Find
$$f(x)$$
 if $f'(x) = e^x - \cos x$ and $f(0) = 4$.

- 7. (15pts) The function $f(x) = x^2 2$ is given on the interval [0,3].
- a) Write the Riemann sum M_6 for this function with six subintervals, taking sample points to be midpoints. Do not evaluate the expression.
- b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does M_6 represent?

- **8.** (13pts) Find $\int_{-2}^{2} 2x 2 dx$ in two ways (they'd better give you the same answer!): a) Using the "area" interpretation of the integral. Draw a picture.
- b) Using the Evaluation Theorem.

9. (10pts) The graph of a function f, consisting of lines and parts of circles, is shown. Evaluate the integrals.



$$\int_0^4 f(x) \, dx =$$

$$\int_4^5 f(x) \, dx =$$

$$\int_0^5 f(x) \, dx =$$

- **10.** (16pts) Consider the integral $\int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} \sin x \, dx$.
- a) Use the inequality $m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$, where $m \leq f(x) \leq M$ on [a,b], to give an estimate of the integral. (A graph of $\sin x$ will help you find m and M.)
- b) Evaluate the integral and verify your estimate from a).

11. (7pts) Write using sigma notation:

$$\frac{1}{4} + \frac{3}{8} + \frac{5}{16} + \dots + \frac{13}{256} =$$

- 12. (10pts) The rate at which temperature in an oven is changing is $\sqrt{t} + 2$ degrees Fahrenheit per minute.
- a) Use the Net Change Theorem to find how much temperature changed from t=4 to t=9 minutes
- b) If at time t=4 minutes the temperature in the oven was 180°F, what is the temperature at t=9 minutes?

Bonus. (10pts) Show that $\sum_{i=1}^{n} (2i-1) = n^2$. (This is $1+3+5+\cdots+(2n-1)=n^2$.) Use either a picture with beads (what is a good way to picture n^2 beads?) that is cleverly divided up, or show it algebraically, for which you may find the formula $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ useful.