Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f: I \to \mathbf{R}$ has a relative maximum at a number *c*.

Theory 2. (3pts) Define the *n*-th Taylor polynomial at x_0 for a function f .

Theory 3. (3pts) State the Cauchy Mean Value Theorem.

Type A problems (5pts each)

A1. Show this function is differentiable at 0 and find $f'(0)$: $f(x) =$ $\sqrt{ }$ $\frac{1}{2}$ \mathbf{I} $\sin x$, if $x > 0$ *e ^x −* 1*,* if *x <* 0 0, if $x = 0$ **A2.** Find the limit: $\lim_{x \to 0+} \ln(x+1) \ln x$.

A3. Derive the quotient rule from the product rule as follows: let $h(x) = \frac{f(x)}{g(x)}$, then $h(x)g(x) = f(x)$. Assume *h* is differentiable and get *h*^{\prime} from the second equation after applying the product rule.

A4. Use the Mean Value Theorem to show $|\tan x - \tan y| \ge |x - y|$ for all $x, y \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$.

A5. Let $f(x) = \sqrt[3]{1 + x}$. a) Write the Taylor polynomials P_1 and P_2 for f at $x_0 = 0$. b) Show that for $x > 0$, $P_2(x) \leq \sqrt[3]{1 + x} \leq P_1(x)$.

A6. Let *I* be an open interval, $a \in I$, and let $f: I \to \mathbf{R}$ be differentiable. Show: if $\lim_{x\to a} f'(x)$ exists, it is equal to $f'(a)$.

Type B problems (8pts each)

B1. Let $f : [-1, 1] \to \mathbb{R}$ be the piecewise-linear function, where, for $n = 2, 3, \ldots$

$$
f(x) = \begin{cases} \text{line between points } \left(\frac{1}{n}, \frac{1}{n^2}\right) \text{ and } \left(\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ if } x \in \left(\frac{1}{n}, \frac{1}{n-1}\right] \\ \text{line between points } \left(-\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ and } \left(-\frac{1}{n}, \frac{1}{n^2}\right) \text{ if } x \in \left[-\frac{1}{n-1}, -\frac{1}{n}\right) \\ 0, \text{ if } x = 0. \end{cases}
$$

Show that f is differentiable at 0. (Best to use an ϵ - δ argument and inequality involving the function.)

B2. Let $f : [-1, 4] \to \mathbb{R}$ be continuous on $[-1, 4]$ and differentiable on $(-1, 4)$, and suppose that $-2 \le f'(x) \le 7$ for all $x \in (-1, 4)$. If $f(-1) = 21$, use the Mean Value Theorem to establish the range of values that $f(4)$ can take. Give examples to show that the upper and lower bound for *f*(4) can be achieved.

B3. Let $f(x) = x^2 \sin x$ 1 $\frac{1}{x}$ and $g(x) = x$. Show that $\lim_{x \to 0}$ *f*(*x*) $\frac{f(x)}{g(x)}$ exists, but $\lim_{x\to 0}$ $f'(x)$ $g'(x)$ does not. Does this contradict L'Hospital's rule?

B4. Let $f: \mathbf{R} \to \mathbf{R}$ be a function such that f''' is continuous and for some $c \in \mathbf{R}$, $f'(c) = f''(c) = 0$ and $f'''(c) > 0$. Use Taylor's theorem to show that *f* does not have a local extreme at *c*.

B5. Use a Taylor polynomial to get a rational number (you do not have to simplify it) that approximates $\cos \frac{2}{3}$ with accuracy 10⁻³.

B6. Show that the equation $x^3 + 3x^2 + 7x + 2 = 0$ has a solution and find an interval in which Newton's method converges regardless of the starting point.

Type C problems (12pts each)

C1. Let *I* be an open interval and let $f: I \to \mathbf{R}$ be differentiable and convex. Note we are not assuming that f'' exists. Show that f' is an increasing function as follows: let $a, b \in I$, $a < b$ and let $x_t = (1 - t)a + tb$. Then $f'(a) = \lim_{x_t \to a^+}$ $f(x_t) - f(a)$ *x^t − a* . Turn the limit into a limit by *t* and apply convexity to get an inequality that will help you show $f'(a) < f'(b)$.