Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f: I \to \mathbf{R}$ has a relative maximum at a number c.

Theory 2. (3pts) Define the *n*-th Taylor polynomial at x_0 for a function f.

Theory 3. (3pts) State the Cauchy Mean Value Theorem.

Type A problems (5pts each)

A1. Show this function is differentiable at 0 and find f'(0): $f(x) = \begin{cases} \sin x, \text{ if } x > 0 \\ e^x - 1, \text{ if } x < 0 \\ 0, \text{ if } x = 0 \end{cases}$

A2. Find the limit: $\lim_{x\to 0+} \ln(x+1) \ln x$.

A3. Derive the quotient rule from the product rule as follows: let $h(x) = \frac{f(x)}{g(x)}$, then h(x)g(x) = f(x). Assume h is differentiable and get h' from the second equation after applying the product rule.

A4. Use the Mean Value Theorem to show $|\tan x - \tan y| \ge |x - y|$ for all $x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

A5. Let $f(x) = \sqrt[3]{1+x}$. a) Write the Taylor polynomials P_1 and P_2 for f at $x_0 = 0$. b) Show that for x > 0, $P_2(x) \le \sqrt[3]{1+x} \le P_1(x)$.

A6. Let *I* be an open interval, $a \in I$, and let $f : I \to \mathbf{R}$ be differentiable. Show: if $\lim_{x\to a} f'(x)$ exists, it is equal to f'(a).

TYPE B PROBLEMS (8PTS EACH)

B1. Let $f: [-1,1] \to \mathbf{R}$ be the piecewise-linear function, where, for $n = 2, 3, \ldots$

$$f(x) = \begin{cases} \text{line between points } \left(\frac{1}{n}, \frac{1}{n^2}\right) \text{ and } \left(\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ if } x \in \left(\frac{1}{n}, \frac{1}{n-1}\right] \\ \text{line between points } \left(-\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ and } \left(-\frac{1}{n}, \frac{1}{n^2}\right) \text{ if } x \in \left[-\frac{1}{n-1}, -\frac{1}{n}\right) \\ 0, \text{ if } x = 0. \end{cases}$$

Show that f is differentiable at 0. (Best to use an ϵ - δ argument and inequality involving the function.)

B2. Let $f: [-1,4] \to \mathbf{R}$ be continuous on [-1,4] and differentiable on (-1,4), and suppose that $-2 \leq f'(x) \leq 7$ for all $x \in (-1,4)$. If f(-1) = 21, use the Mean Value Theorem to establish the range of values that f(4) can take. Give examples to show that the upper and lower bound for f(4) can be achieved.

B3. Let $f(x) = x^2 \sin \frac{1}{x}$ and g(x) = x. Show that $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists, but $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not. Does this contradict L'Hospital's rule?

B4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f''' is continuous and for some $c \in \mathbf{R}$, f'(c) = f''(c) = 0 and f'''(c) > 0. Use Taylor's theorem to show that f does not have a local extreme at c.

B5. Use a Taylor polynomial to get a rational number (you do not have to simplify it) that approximates $\cos \frac{2}{3}$ with accuracy 10^{-3} .

B6. Show that the equation $x^3 + 3x^2 + 7x + 2 = 0$ has a solution and find an interval in which Newton's method converges regardless of the starting point.

Type C problems (12pts each)

C1. Let *I* be an open interval and let $f: I \to \mathbf{R}$ be differentiable and convex. Note we are not assuming that f'' exists. Show that f' is an increasing function as follows: let $a, b \in I$, a < b and let $x_t = (1 - t)a + tb$. Then $f'(a) = \lim_{x_t \to a_+} \frac{f(x_t) - f(a)}{x_t - a}$. Turn the limit into a limit by *t* and apply convexity to get an inequality that will help you show f'(a) < f'(b).