
Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivanšić 7.1 Riemann Integral

We wish to precisely define
∫ b

a
f(x)dx.

Definition. Let I = [a, b]. A partition of I is a finite ordered set P = (x0, x1, . . . , xn) where

a = x0 < x1 < · · · < xn = b.

The points of P divide I into subintervals [x0, x1], [x1, x2], . . . [xn−1, xn] of lengths ∆x1,∆x2, . . .∆xn,
where ∆xi = xi − xi−1.

The norm (mesh) of a partition is ||P|| = max{∆x1,∆x2, . . . ,∆xn} (biggest subinterval
length).

If we choose numbers ti ∈ [xi−1, xi], i = 1, . . . , n, then the ti’s are called tags of the subinter-
vals [xi−1, xi]. A tagged partition Ṗ is a partition P along with a set of tags ti ∈ [xi−1, xi],
i = 1, . . . , n. (Formally: Ṗ = {([xi−1, xi], ti) | xi ∈ P , i = 1, . . . , n}.) We define the norm a
tagged partition as ||Ṗ|| = ||P||.

Definition. The Riemann sum of a function f : [a, b] → R corresponding to the tagged
partition Ṗ is

S(f, Ṗ) =
n∑

i=1

f(ti)∆xi.

(Use same notation if Ṗ is a subpartition.)

Definition 7.1.1. A function f : [a, b] → R is Riemann integrable on [a, b] if there exists a
number L ∈ R such that for every ϵ > 0 there exists a δ > 0 s.t. if Ṗ is any tagged partition
of [a, b] with ||Ṗ|| < δ, then |S(f, Ṗ)− L| < ϵ.
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Definition. If a function f is Riemann integrable, the number L above is denoted
∫ b

a
f or∫ b

a
f(x) dx, and called the Riemann integral of f over [a, b].

R[a, b]= the set of all Riemann-integrable functions on [a, b]

Theorem 7.1.2 If f is Riemann-integrable over [a, b], then the value of the integral is
uniquely determined.

Proof.

Example. If f(x) = k, then f ∈ R[a, b] and
∫ b

a
f = k(b− a).

Example. Let f(x) =

{
2, if x ∈ [0, 1]
5, if x ∈ (1, 3].

Then f is Riemann-integrable and
∫ 3

0
f = 12.
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Example.
∫ 4

0
x dx = 8

Ch.7-3



Example. Let E ⊂ [a, b] be a set of k elements and define f(x) =

{
1, if x ∈ E
0, if x ∈ [a, b]− E.

Then
∫ b

a
f = 0.

Theorem 7.1.5. Let f, g ∈ R[a, b]. Then

1) If k ∈ R, then kf ∈ R[a, b] and
∫ b

a
kf = k

∫ b

a
f .

2) f + g ∈ R[a, b] and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

3) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a
f ≤

∫ b

a
g.

Proof.
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Theorem 7.1.6. If f ∈ R[a, b], then f is bounded on [a, b].

Proof.
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7.2 Riemann-Integrable

Functions

Cauchy Criterion 7.2.1. The function f : [a, b] → R is in R[a, b] if and only if for every
ϵ > 0 there exists a δ > 0 such that if Ṗ and Q̇ are any tagged partitions of [a, b] with
min{||Ṗ||, ||Q̇||} < δ then |S(f, Ṗ)− S(f, Q̇)| < ϵ.

Proof.

Ch.7-6



Example. The Cauchy criterion is often useful to prove that a function is not Riemann-
integrable.

Note: f /∈ R[a, b] ⇐⇒ there exists an ϵ0 > 0 such that for every δ > 0
there exist tagged partitions Ṗ , Q̇ with ||Ṗ||, ||Q̇|| < δ
and |S(f, Ṗ)− S(f, Q̇)| ≥ ϵ0

Let f(x) =

{
1, if x ∈ Q
0, if x /∈ Q.

This is not a Riemann-integrable function.

Squeeze Theorem 7.2.3. f ∈ R[a, b] if and only if for every ϵ > 0 there exist functions

α, ω ∈ R[a, b] such that α(x) ≤ f(x) ≤ ω(x) on [a, b] and
∫ b

a
ω − α < ϵ.

Proof.

Lemma 7.2.4. Let J ⊆ [a, b] be an interval with endpoints c ≤ d and set

ϕ(x) =

{
1, if x ∈ J
0, if x ∈ [a, b]− J.

Then ϕ ∈ R[a, b] and
∫ b

a
ϕ = d− c. (Note one or both endpoints need not be included in J .)
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Recall Definition 5.4.9: a function ϕ : [a, b] → R is called a step function if there exists a

collection of disjoint intervals J1, . . . Jn (open, closed or half-open) such that
n⋃

k=1

Jk = [a, b]

and s is constant on Jk, k = 1, . . . n. If ϕ1, . . . , ϕn are functions like in above lemma (ϕk is 1

on Jk, elsewhere 0), then ϕ =
n∑

j=1

kjϕj. Note that step functions only have finitely many

values.

Theorem 7.2.5. Any step function ϕ : [a, b] → R is Riemann-integrable.

Proof. It is a linear combination of integrable functions.

Theorem 7.2.7. If f : [a, b] → R is continuous, then f ∈ R[a, b].

Proof.

Theorem 7.2.8. If f : [a, b] → R is monotone, then f ∈ R[a, b].

Proof. Essentially same idea as above.
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Additivity Theorem 7.2.9. Let f : [a, b] → R, c ∈ (a, b). Then f ∈ R[a, b] if and
only if the restrictions of f to [a, c] and [c, b] are both Riemann-integrable. In that case,∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Proof.
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Corollary 7.2.10. If f ∈ R[a, b] and [c, d] ⊆ [a, b], then the restriction f |[c,d] ∈ R[c, d].

Proof.

Definition 7.2.12. If f ∈ R[a, b] and α, β ∈ [a, b] with α < β, we define
∫ α

β
f = −

∫ β

a
f and∫ α

α
f = 0.

Theorem 7.2.13. Let f : [a, b] → R, α, β, γ ∈ (a, b). Then
∫ β

α
f =

∫ γ

α
f +

∫ β

γ
f .

Proof.
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7.3 The Fundamental

Theorem

The Fundamental Theorem of Calculus (First form) 7.3.1. Suppose E ⊂ [a, b] is a
finite set, and f, F : [a, b] → R are functions with properties:

1) F is continuous on [a, b].

2) F ′(x) = f(x) for all x ∈ [a, b]− E.

3) f ∈ R[a, b].

Then

∫ b

a

f = F (b)− F (a).

Proof.

Example. Compute
∫ 5

−3
f using the fundamental theorem of calculus, if f : R → R is given

by (f(x) = sign(x))

f(x) =


1, if x > 0
−1, if x < 0
0, if x = 0.
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Example. Let F : R → R be given by

F (x) =

{
x2 cos

1

x2
, if x ̸= 0

0, if x = 0.

Definition 7.3.3. If f ∈ R[a, b], we can define

F (x) =

∫ x

a

f , for x ∈ [a, b].

F is called the indefinite integral of f with basepoint a.

Theorem 7.3.4. The indefinite integral F is continuous on [a, b].
Furthermore, if |f(x)| ≤ M on [a, b], then |F (x)−F (u)| ≤ M |x− u| for all x, u ∈ [a, b], that
is, the function F is Lipschitz (and therefore continuous).

Proof.

The Fundamental Theorem of Calculus (Second form) 7.3.5. If f ∈ R[a, b] is
continuous at c ∈ [a, b], then the indefinite integral F is differentiable at c and F ′(c) = f(c).

Proof.

Theorem 7.3.6. If f is continuous on [a, b], then the indefinite integral F is differentiable
on [a, b] and F ′ = f .
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Example. If f : R → R is given by f(x) = sign(x), find the indefinite integral with
basepoint −2.

Substitution Theorem 7.3.8. Let J = [α, β], and let ϕ : J → R be a function that has a
continuous derivative. If f : I → R is continuous and ϕ(J) ⊆ I, then∫ β

α

f(ϕ(t))ϕ′(t) dt =

∫ ϕ(β)

ϕ(α)

f(x) dx

Proof.

Example. Note that ϕ need not be injective.∫ 5π
2

0

cos t

2 + sin t
dt =

Example. Can you use substitution on this integral?∫ 4

0

sin
√
t√

t
dt =
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Definition 7.3.10.

a) A set Z ⊆ R is a null set (not same as empty set) if for every ϵ > 0 there exists a
countable collection {(ak, bk)}∞k=1 of open intervals so that

Z ⊆
∞⋃
k=1

(ak, bk) and
∞∑
k=1

(bk − ak) < ϵ.

b) A statement about an x ∈ I is said to hold almost everywhere (a.e.) if it holds for all
x ∈ I − Z, where Z ⊆ I is a null set.

Example.

{
1,

1

2
,
1

3
, . . .

}
is a null set.

Example. Q1 = Q ∩ [0, 1] is a null set.

Lebesgue’s Integrability Criterion 7.3.12. A bounded function f : [a, b] → R is
Riemann-integrable if and only if it is continuous almost everywhere on [a, b].

Example. f : [0, 1] → R

f(x) =

{
1, if x ∈ Q
0, if x /∈ Q.
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Example. f : [0, 1] → R given by:

f(x) =

{
1, if x = 1

n
for some n ∈ N

0, otherwise.

Example. Thomae’s function f : [0, 1] → R.

f(x) =

{
1
n
, if x = m

n
for some m,n ∈ N

0, if x /∈ Q.

The Composition Theorem 7.3.14. Let f ∈ R[a, b], f([a, b]) ⊆ [c, d] and let
ϕ : [c, d] → R be a continuous function. Then ϕ ◦ f ∈ R[a, b].

Proof.

Corollary 7.3.15. Let f ∈ R[a, b], and |f | ≤ M on [a, b]. Then |f | ∈ R[a, b] and∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f | ≤ M(b− a).

Proof.

The Product Theorem 7.3.16. If f, g ∈ R[a, b], then f · g ∈ R[a, b].

Proof.
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Integration by Parts 7.3.17. Let F,G : [a, b] → R be differentiable on [a, b], f = F ′,
g = G′, so that f, g ∈ R[a, b]. Then∫ b

a

fG = FG
∣∣∣b
a
−

∫ b

a

Fg

Proof.

Taylor’s theorem with remainder in integral form 7.3.18. Let f : [a, b] → R and
suppose f ′, f ′′, . . . , f (n+1) exist, and f (n+1) ∈ R[a, b]. Then

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 + · · ·+ f (n)(a)

n!
(b− a)n +Rn,

where Rn =
1

n!

∫ b

a

f (n+1)(t)(b− t)n dt.

Proof.
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7.5 Approximate

Integration

Example. Evaluate
∫ 1

0
sin x2 dx.

Using the fundamental theorem of calculus, we’d have to find the antiderivative of sin x2.
Unfortunately, it can be shown that this antiderivative is not expressible using elementary
functions, so we will resort to approximating the integral using Riemann sums.

Note. The fact that sin x2 does not have an elementary antiderivative is not surprising
or profound, but merely the result of what functions we call “elementary.” If our world
of functions was only rational functions, many would not have an antiderivative in this
world. For example, antiderivatives of 1

x
or 1

1+x2 are ln x and arctan x, which are not rational
functions.

We consider Riemann sums with equal-length subintervals and consistently choose the sample
points to be left, right or midpoints of the subintervals.

Definition. Set h =
b− a

n
. We give the following names to certain Riemann sums

n∑
i=1

f(ti)h:

Left sum (approximation) Ln: uses ti = xi−1 (left endpoint of each subinterval)

Right sum (approximation) Rn: uses ti = xi (right endpoint of each subinterval)

Midpoint sum (approximation) Mn: uses ti =
xi−1 + xi

2
(midpoint of each subinterval)

Trapezoid sum (approximation) Tn =
Ln +Rn

2
: not a Riemann sum, but sum of areas

of approximating trapezoids.

Note. The mid-
point rectangle has
the same area as a
“tangent trapezoid”
at the midpoint.
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How good are these estimates? Let’s start with an increasing function f :

Theorem 7.5.1. If f : [a, b] → R is monotone, then∣∣∣∣∫ b

a

f − Tn

∣∣∣∣ ≤ |f(b)− f(a)|b− a

2n

Example. Use this estimate on
∫ 1

0
sin x2 dx to see how many subintervals are needed for

accuracy 10−5.

Theorems 7.5.3, 7.5.4, 7.5.6, 7.5.7. Let f : [a, b] → R be such that f ′′ is continuous
on [a, b] and let B2 be such that |f ′′(x)| ≤ B2 for all x ∈ [a, b]. Then there exist points
c, d ∈ [a, b] such that

Tn −
∫ b

a

f =
(b− a)h2

12
· f ′′(c) and

∫ b

a

f −Mn =
(b− a)h2

24
· f ′′(d)

which implies∣∣∣∣Tn −
∫ b

a

f

∣∣∣∣ ≤ B2(b− a)h2

12
=

B2(b− a)3

12n2
and

∣∣∣∣Mn −
∫ b

a

f

∣∣∣∣ ≤ B2(b− a)h2

24
=

B2(b− a)3

24n2
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Proof of midpoint formula.

Example. Use the trapezoid estimate on
∫ 1

0
sin x2 dx to see how many subintervals are

needed for accuracy 10−5.
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Simpson’s Rule. Presumably we will get better accuracy if we approximate curvy areas
with curvy objects such as parabolas.

The Simpson approximation is given by (n even):

Sn =
1

3
h(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn))
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Theorems 7.5.8, 7.5.9. Let f : [a, b] → R be such that f (4) is continuous on [a, b] and
let B4 be such that |f (4)(x)| ≤ B4 for all x ∈ [a, b]. Then there exists a point c ∈ [a, b] such
that

Sn −
∫ b

a

f =
(b− a)h4

180
· f (4)(c), implying

∣∣∣∣Sn −
∫ b

a

f

∣∣∣∣ ≤ B4(b− a)h4

180
=

B4(b− a)5

180n4

Proof omitted.

Example. Use the Simpson’s rule estimate on
∫ 1

0
sin x2 dx to see how many subintervals are

needed for accuracy 10−5.
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