
Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivanšić 6.1 The Derivative

Definition 6.1.1. Let I ⊆ R, be an interval, f : I → R a function and let c ∈ I. We
say that L is the derivative of f at c if for every ε > 0 there exists a δ > 0 such that if

0 < |x− c| < δ and x ∈ I, then

∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ε. If L exists, we say f is differentiable

at c and write L = f ′(c). In other words

f ′(c) = lim
x→c

f(x)− f(c)

x− c
, if the limit exists.

We can form a function f ′ : J → R, where J ⊆ I is all points x for which f ′(x) exists, and
define f ′(x) = the derivative of f at x.

Note. The point c could be the endpoint of the interval, in which case the limit above is
one-sided.

Example. The constant function f : R → R, f(x) = b, is differentiable at every point, and
f ′(x) = 0.

Example. The identity function f : R → R, f(x) = x, is differentiable at every point, and
f ′(x) = 1.

Example. The absolute value function f : R → R, f(x) = |x|, is differentiable at every
x ̸= 0, and is not differentiable at 0.

Theorem 6.1.2. If f : I → R has a derivative at c ∈ I, then f is continuous at c.

Proof.

Note. A function that is continuous at c need not have a derivative at c, for example |x|
and

√
x are not differentiable at 0.
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Theorem 6.1.3 Differentiation Rules. Let f, g : I → R be differentiable at c ∈ I, α ∈ R.
Then the functions αf , f ± g, fg and f

g
are differentiable at c and:

(αf)′(c) = αf ′(c) (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

(f ± g)′(c) = f ′(c)± g′(c)

(
f

g

)′

(c) =
f ′(c)g(c)− f(c)g′(c)

g(c)2
, assuming g(c) ̸= 0

Proof. These are all limit exercises, we do
f

g
.

Corollary 6.1.4. Let f1, f2, . . . , fn : I → R be differentiable at c ∈ I. Then the functions
f1 + f2 + · · ·+ fn and f1f2 · · · fn are differentiable at c and:

(f1 + f2 + · · ·+ fn)
′(c) = f ′

1(c) + f ′
2(c) + · · ·+ f ′

n(c)

(f1f2 · · · fn)′(c) = f ′
1(c)f2(c) · · · fn(c) + f1(c)f

′
2(c) · · · fn(c) + · · ·+ f1(c)f2(c) · · · f ′

n(c)

Example. Using the corollary, if f(x) = xn, n ∈ N, show that f ′(x) = nxn−1.

Example. If f(x) =
1

xn
= x−n, n ∈ N, establish f ′(x) = −nx−n−1.
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Notation for the derivative of f(x): f ′ = Df =
df

dx
=

d

dx
f(x)

Carathéodory’s Theorem 6.1.5. Let I ⊆ R, be an interval, f : I → R a function and
let c ∈ I. Then f is differentiable at c if and only if there exists a function φ on I that is
continuous at c and satisfies

f(x)− f(c) = φ(x)(x− c) for x ∈ I.

If that is the case, f ′(c) = φ(c).

Proof.

Example. Determine and visualize the function φ for f(x) = x3.

Note. f ′(c) is not the slope of the tangent line (how would you define a tangent line?); rather,
the tangent line at (c, f(c)) is defined as the line through (c, f(c)) whose slope is f ′(c).
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Theorem 6.1.6 (Chain Rule). Let I, J ⊆ R be intervals, and f : I → R, g : J → R
functions such that f(I) ⊆ J and c ∈ I. If f is differentiable at c and g is differentiable at
f(c), then g ◦ f is differentiable at c and

(g ◦ f)′(c) = g′(f(c)) · f ′(c)

Proof.

Example. Show the function f : R → R below is differentiable at 0.

f(x) =

{
x2 sin

1

x
, if x ̸= 0

0, if x = 0
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Nonexample. We can “derive” the rule for inverses with the chain rule.

Theorem 6.1.8. Let I ⊆ R be an interval, f : I → R strictly monotone and continuous.
Let J = f(I) and g : J → R be the strictly monotone and continuous inverse to f . If f is
differentiable at c ∈ I and f ′(c) ̸= 0, then g is differentiable at d = f(c) and

g′(d) =
1

f ′(c)

Proof.

Note. The assumption f ′(c) ̸= 0 is essential. Otherwise, using the chain rule, we would
have g′(d)f ′(c) = 1, which is not possible.
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Theorem 6.1.9. Let I ⊆ R be an interval, f : I → R strictly monotone. Let J = f(I) and
g : J → R be the strictly monotone inverse to f . If f is differentiable on ∈ I and f ′(x) ̸= 0

for x ∈ I, then g is differentiable on J and g′ =
1

f ′ ◦ g
.

Proof.

Example. If g(x) = x
1
n , n ∈ N, show that g′(x) = 1

n
x

1
n
−1.

Example. If f(x) = x
m
n , n ∈ N, m ∈ Z, show that f ′(x) = m

n
x

m
n
−1.

Example. Assuming we know (sin x)′ = cos x, if g(x) = arcsin x, show g′(x) =
1√

1− x2
.
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6.2 The Mean Value

Theorem

Definition Let I be an interval, f : I → R. We
say that

— f has a relative maximum at c ∈ I if
there exists a neighborhood Vδ(c) such that
f(c) ≥ f(x) for all x ∈ Vδ(c) ∩ I.

— f has a relative minimum at c ∈ I if
there exists a neighborhood Vδ(c) such that
f(c) ≤ f(x) for all x ∈ Vδ(c) ∩ I.

We say that f has a relative extremum at c ∈ I if
it has a relative maximum or minimum at c ∈ I.
(The terms “local” or “extreme” are often used
instead of “relative” and “extremum”.)

Interior Extremum Theorem 6.2.1. Let f : I → R have a relative extremum at an
interior point c ∈ I. If f ′(c) exists, then f ′(c) = 0.

Proof.

Note. Theorem implies that if f : I → R is continuous and has a relative extremum at an
interior point, then f ′(c) = 0 or f ′(c) does not exist.

Rolle’s Theorem 6.2.3. Let f : [a, b] → R be
such that

a) f is continuous on [a, b]

b) f is differentiable on (a, b)

c) f(a) = f(b).

Then there exists at least one point c ∈ (a, b) such
that f ′(c) = 0.
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Proof.

Mean Value Theorem 6.2.3. Let f : [a, b] → R
be such that

a) f is continuous on [a, b]

b) f is differentiable on (a, b).

Then there exists at least one point c ∈ (a, b) such
that f(b)− f(a) = f ′(c)(b− a).

Proof.

Theorem 6.2.5. Let I be an interval and f : I → R a continuous function on I that is
differentiable on I except possibly at endpoints. If f ′(x) = 0 for all x where f is differentiable,
then f is constant on I.

Proof.
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Corollary 6.2.6. Let I be an interval and f, g : I → R continuous functions on I that are
differentiable on I except possibly at endpoints. If f ′(x) = g′(x) for all x where f and g are
differentiable, then f(x) = g(x) + C for all x ∈ I.

Proof.

Theorem 6.2.7. Let f : I → R be
differentiable on the interval I. Then:

1) f is increasing on I if and only if
f ′(x) ≥ 0 for all x ∈ I.

2) f is decreasing on I if and only
if f ′(x) ≤ 0 for all x ∈ I.

Proof.

Note. Proof shows that if f ′(x) > 0, then f is strictly increasing on I. The converse is not
true: f can be strictly increasing on I, but f ′(x) > 0 does not follow. Example: f(x) = x3.

Example (Generalization of Bernoulli’s Inequality). For α ∈ Q, α ≥ 1, show that
(1 + x)α ≥ 1 + αx for all x > −1, where the equality holds only for x = 0.
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Read Theorem 6.2.8, First Derivative Test.

Lemma 6.2.11. Let f : I → R be differentiable at c ∈ I.

1) If f ′(c) > 0, then there exists a δ > 0 such that f(x) > f(c) for x ∈ I ∩ (c, c + δ) and
f(x) < f(c) for x ∈ I ∩ (c− δ, c).

2) If f ′(c) > 0, then there exists a δ > 0 such that f(x) < f(c) for x ∈ I ∩ (c, c + δ) and
f(x) > f(c) for x ∈ I ∩ (c− δ, c).

Proof.

Darboux’s Theorem 6.2.12 (Intermediate Value Theorem for derivatives). Let
f : [a, b] → R be differentiable on [a, b]. If k is a number strictly between f ′(a) and f ′(b),
then there exists at least one point c ∈ (a, b) such that f ′(c) = k.

Proof.
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Example. The function below does not satisfy the intermediate value property, so it is not
the derivative of any function f : R → R. A similar argument can be made for: if f ′(x)
exists on an interval containing c, then f ′ cannot have a jump discontinuity at c. Thus, every
derivative function cannot have a jump discontinuity.

f(x) =

{
−1, if x < 0
1, if x ≥ 0

Example. The function below is differentiable, and its derivative satisfies the intermediate
value property. Note that f ′ is not continuous at 0, but the discontinuity is not jump.

f(x) =

{
x2 sin

1

x
, if x ̸= 0

0, if x = 0
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Theorem 6.3.1. Let f, g : [a, b] → R, f(a) = g(a) = 0, g(x) ̸= 0 for x ∈ (a, b). If f and g
are differentiable at a and if g′(a) ̸= 0, then the following limit exists, and

lim
x→a+

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof.

This formulation of L’Hospital’s rule resolves many limits of form
0

0
.

Example. lim
x→0

sin x

x
=

Example. lim
x→0

ex − 1

x
=

Note. The theorem cannot be used on limits like lim
x→0+

sin x√
x

or lim
x→0+

x ln x = lim
x→0+

ln x
1
x

.

Cauchy Mean Value Theorem 6.3.2. Let f, g : [a, b] → R be continuous on [a, b] and
differentiable on (a, b), and let g(x) ̸= 0 for x ∈ (a, b). Then there exists a c ∈ (a, b) such
that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
.

Proof.
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Note. For g(x) = x, this is the Mean Value Theorem.

Note. Visualizing the theorem, we get a result similar to the Mean Value Theorem for
parametrized curves in the plane. Let (f(t), g(t)), t ∈ [a, b] be the parametrization of a curve.

Then f(b)−f(a)
g(b)−g(a)

= f ′(c)
g′(c)

can be interpreted as saying that vectors ⟨f(b)− f(a), g(b)− g(a)⟩ and
⟨f ′(c), g′(c)⟩ are parallel for some c ∈ (a, b).

L’Hospital’s Rule I 6.3.3. Let −∞ ≤ a < b ≤ ∞ and let f, g : (a, b) → R be differentiable
on (a, b) such that g′(x) ̸= 0 for x ∈ (a, b). Suppose that lim

x→a+
f(x) = lim

x→a+
g(x) = 0. Then

if lim
x→a+

f ′(x)

g′(x)
= L, then lim

x→a+

f(x)

g(x)
= L, where L ∈ R ∪ {−∞,∞}

Proof.
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Example. lim
x→0+

sin x√
x

=

Example. lim
x→0

x− sin x

x3
=

L’Hospital’s Rule II 6.3.5. Let −∞ ≤ a < b ≤ ∞ and let f, g : (a, b) → R be dif-
ferentiable on (a, b) such that g′(x) ̸= 0 for x ∈ (a, b). Suppose that lim

x→a+
g(x) = ±∞.

Then

if lim
x→a+

f ′(x)

g′(x)
= L, then lim

x→a+

f(x)

g(x)
= L, where L ∈ R ∪ {−∞,∞}

This theorem helps us deal with forms
∞
∞

. (Proof omitted.)

Example. lim
x→0+

x ln x =
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Example. (α > 0) lim
x→∞

xα

ex
=

Example. (α > 0) lim
x→∞

ln x

xα
=

Other indeterminate forms are ∞−∞, 0·∞, 1∞, 00, ∞0. We can typically apply L’Hospital’s
rule by converting them to form 0

0
or ∞

∞ through some algebra.

Example. lim
x→0

(1 + x)
1
x =
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Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivanšić 6.4 Taylor’s Theorem

Definition. Suppose f is defined on an interval I around c and that f ′(x) exists for every
x ∈ I. If f ′(x) is differentiable at c, we call its derivative the second derivative of f at c,
denoted f ′′(c). Similarly, if f ′′(x) exists for every x ∈ I and if f ′′(x) is differentiable at c, we
call the derivative of f ′′ at c the third derivative of f at c. We can continue in this way to
get f ′′(c), f ′′′(c), f (4)(c), . . . Note that the existence of f (n)(c) requires existence of f (n−1)(x)
on an interval around c.

Definition. Suppose f ′, f ′′, . . . , f (n) are all defined on an interval I containing x0. Then we
can form the Taylor polynomial for f at x0:

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

It is easy to see that Pn(x) and f(x) have the same 0th, 1st, 2nd,. . . , n-th derivative at x0

so we expect that Pn(x) is a good approximation of f(x) for values of x close to x0.

Taylor’s Theorem 6.4.1. Let f : [a, b] → R be such that f, f ′, f ′′, . . . , f (n) all exist and
are continuous on [a, b] and that f (n+1) exists on (a, b). If x0 ∈ [a, b] then for any x ∈ [a, b]
there exists a point c between x0 and x such that

f(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)

2+· · ·+ f (n)(x0)

n!
(x−x0)

n+
f (n+1)(c)

(n+ 1)!
(x−x0)

n+1.

Note. This looks like a higher-order version of the Mean Value Theorem, and it is: for
n = 0 the statement is that theorem.

Definition. If we set Rn(x) =
f (n+1)(c)

(n+ 1)!
(x−x0)

n+1, then Taylor’s theorem says that f(x) =

Pn(x)+Rn(x), thus we can think of Rn(x) as a — presumably small — add-on to the Taylor
polynomial to get the function, hence, a remainder. The expression Rn(x) is called the
Lagrange or derivative form of the remainder.
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Proof.
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Example. Use P4(x) to approximate f(x) =
√
x near x0 = 4 and estimate the size of the

remainder on [2, 6].

Theorem 6.4.4. Let x0 be an interior point of an interval I, n ≥ 2. Suppose that
f, f ′, f ′′, . . . , f (n) all exist and are continuous on a neighborhood of x0 and that
f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0, but f (n)(x0) ̸= 0. Then

1) If n is even and f (n)(x0) > 0, then there f has a relative minimum at x0.

2) If n is even and f (n)(x0) < 0, then there f has a relative maximum at x0.

3) If n is odd, then f does not have a relative extremum at x0.
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Proof.

Definition 6.4.5. Let I be an interval. A
function f : I → R is called convex on I if for
any two points x1, x2 ∈ I and every t ∈ [0, 1]
we have

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2).

Note. A convex function was called “concave up” in calculus, defined as where the graph
is locally above the tangent line.

Theorem 6.4.6. Let I be an open interval and let f : I → R have a second derivative on I.
Then f is convex on I if and only if f ′′(x) > 0 for all x ∈ I.

Proof.
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Newton’s Method is a way of solving the
equation f(x) = 0. Essentially, one “rides the
tangent line” to the x-intercept. We form the
recursive sequence

xn+1 = xn −
f(xn)

f ′(xn)

which, hopefully, converges to the zero of f .

Theorem 6.4.7. Let I = [a, b] and let f : I → R be twice differentiable on I. Suppose
f(a)f(b) < 0 and there exist constants m,M such that |f ′(x)| ≥ m > 0 and |f ′′(x)| ≤ M
for all x ∈ I. Let K = M

2m
. Then there exists a subinterval I∗ ⊆ I containing the zero r of f

such that for any x1 ∈ I∗ the sequence recursively defined by xn+1 = xn − f(xn)
f ′(xn)

stays in I∗

and converges to r. Furthermore |xn+1 − r| ≤ K|xn − r|2.

Note. The inequality assures rapid convergence. If |xn − r| < 10−k, then |xn+1 − r| <
K · 10−2k, so method “doubles the number of correct decimals” at every step.

Proof.
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Example. Use Newton’s method to approximate 3
√
2, the solution of x3 − 2 = 0.
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