Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivansié 6.1 The Derivative

Definition 6.1.1. Let I C R, be an interval, f : I — R a function and let ¢ € I. We
say that L is the derivative of f at c if for every € > 0 there exists a 6 > 0 such that if

0<|z—c| <dandx €I, then M — L‘ < e. If L exists, we say f is differentiable
r—c
at ¢ and write L = f’(c¢). In other words
f'(¢) = lim M, if the limit exists.
z—c T —c

We can form a function f’: J — R, where J C [ is all points x for which f’(x) exists, and
define f’(x) = the derivative of f at x.

Note. The point ¢ could be the endpoint of the interval, in which case the limit above is
one-sided.

Example. The constant function f: R — R, f(z) = b, is differentiable at every point, and
f'(x) =0

Example. The identity function f : R — R, f(x) = z, is differentiable at every point, and
f'(z) =1

Example. The absolute value function f : R — R, f(z) = |z|, is differentiable at every
x # 0, and is not differentiable at 0.

Theorem 6.1.2. If f: I — R has a derivative at ¢ € I, then f is continuous at c.

Proof.

Note. A function that is continuous at ¢ need not have a derivative at ¢, for example |z|
and +/z are not differentiable at 0.
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Theorem 6.1.3 Differentiation Rules. Let f,g: I — R be differentiable at ¢ € I, a € R.
Then the functions af, f + g, fg and % are differentiable at ¢ and:

(af)(e) = af'(c) (f9)() = F(e)g(e) + F(e)g(c)
(f £9)(c) = f(©) £ ¢ (0 (g) (=1 '@g(c;(;)f 99 ssuming g(c) # 0

Proof. These are all limit exercises, we do —.
g

Corollary 6.1.4. Let fi, fo,..., fn : I — R be differentiable at ¢ € I. Then the functions
fi+ fo+--+ fnand fifs--- f, are differentiable at ¢ and:

(fit+fat o+ fu)(c) = file) + fole) + -+ fr(c)
(fifa-- fu)(c) = fie) fale) -~ fule) + fi(e) fa(c) - - fule) + -+ + fi(e) fale) -~ fr(c)

Example. Using the corollary, if f(z) = 2", n € N, show that f'(z) = nz"!.

1
Example. If f(z) = — = 27", n € N, establish f'(z) = —nz""%
I'n

Ch.6-2



Notation for the derivative of f(x): f'=Df = % = %f(x)

Carathéodory’s Theorem 6.1.5. Let I C R, be an interval, f : I — R a function and
let ¢ € I. Then f is differentiable at ¢ if and only if there exists a function ¢ on [ that is
continuous at ¢ and satisfies

flz)— fle) = p(x)(x —c) for x € I.
If that is the case, f'(¢) = ¢(c).
Proof.

Example. Determine and visualize the function ¢ for f(z) = z3.

Note. f'(c)isnot the slope of the tangent line (how would you define a tangent line?); rather,
the tangent line at (¢, f(c)) is defined as the line through (¢, f(c)) whose slope is f(c).
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Theorem 6.1.6 (Chain Rule). Let I,J C R be intervals, and f : I - R, g:J = R
functions such that f(I) C J and ¢ € I. If f is differentiable at ¢ and ¢ is differentiable at
f(c), then g o f is differentiable at ¢ and

(g0 f)(c) =g'(f(c)- f(c)

Proof.

Example. Show the function f : R — R below is differentiable at 0.

1
f(x) = 2? sin 2 ifex#0
0, ifex=20
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Nonexample. We can “derive” the rule for inverses with the chain rule.

Theorem 6.1.8. Let I C R be an interval, f : I — R strictly monotone and continuous.
Let J = f(I) and g : J — R be the strictly monotone and continuous inverse to f. If f is
differentiable at ¢ € I and f’(c) # 0, then g is differentiable at d = f(c) and

Proof.

Note. The assumption f’(c) # 0 is essential. Otherwise, using the chain rule, we would
have ¢'(d)f'(c) = 1, which is not possible.

Ch.6-5



Theorem 6.1.9. Let I C R be an interval, f : I — R strictly monotone. Let J = f(I) and
g : J — R be the strictly monotone inverse to f. If f is differentiable on € I and f'(x) # 0

for x € I, then g is differentiable on J and ¢’ = Fog
©g

Proof.

Example. If g(z) = x%, n € N, show that ¢'(z) = %xz

m -1

Example. If f(g;) = ;p%7 n & N, m &€ Z7 show that f/($) = —In

n

1
Example. Assuming we know (sinx) = cosz, if g(x) = arcsinz, show ¢ (1) = ——.
p g (sin ) g(x) g'(x) Vi
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Advanced Calculus 2 — Lecture notes 6.2 The Mean Value
MAT 526/626, Spring 2024 — D. Ivansié¢ Theorem

Definition Let I be an interval, f: I — R. We
say that
— [ has a relative mazimum at ¢ € [ if
there exists a neighborhood Vj(c) such that
f(e) > f(z) for all x € Vs(c)N 1.
— f has a relative minimum at ¢ € I if
there exists a neighborhood Vj(c) such that
fle) < f(z) for all x € Vs(c)N 1.
We say that f has a relative extremum at ¢ € I if
it has a relative maximum or minimum at ¢ € I.
(The terms “local” or “extreme” are often used
instead of “relative” and “extremum”.)

Interior Extremum Theorem 6.2.1. Let f : I — R have a relative extremum at an
interior point ¢ € I. If f’(c) exists, then f’'(c) = 0.

Proof.

Note. Theorem implies that if f: I — R is continuous and has a relative extremum at an
interior point, then f'(c) =0 or f’(c) does not exist.

Rolle’s Theorem 6.2.3. Let f : [a,b] - R be
such that

a) f is continuous on [a, b]

b) f is differentiable on (a,b)

c) fla) = f(b).
Then there exists at least one point ¢ € (a, b) such
that f'(c) = 0.
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Proof.

Mean Value Theorem 6.2.3. Let f : [a,b] - R
be such that

a) f is continuous on [a, b]

b) f is differentiable on (a,b).
Then there exists at least one point ¢ € (a, b) such

that f(b) — f(a) = f/(c)(b — a).
Proof.

Theorem 6.2.5. Let [ be an interval and f : I — R a continuous function on I that is
differentiable on I except possibly at endpoints. If f/'(x) = 0 for all z where f is differentiable,
then f is constant on I.

Proof.
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Corollary 6.2.6. Let I be an interval and f,g: I — R continuous functions on I that are
differentiable on I except possibly at endpoints. If f'(z) = ¢'(x) for all x where f and g are
differentiable, then f(z) = g(z) + C for all z € [.

Proof.

Theorem 6.2.7. Let f: I — R be
differentiable on the interval I. Then:

1) fisincreasing on [ if and only if
f'(z) >0 forall z el.

2) f is decreasing on [ if and only
if f'(x) <0 forall x € 1.

Proof.

Note. Proof shows that if f'(z) > 0, then f is strictly increasing on I. The converse is not

true: f can be strictly increasing on I, but f/(z) > 0 does not follow. Example: f(x) = 3.

Example (Generalization of Bernoulli’s Inequality). For a € Q, o > 1, show that
(14 2)* > 14 ax for all z > —1, where the equality holds only for z = 0.
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Read Theorem 6.2.8, First Derivative Test.

Lemma 6.2.11. Let f: I — R be differentiable at ¢ € [.

1) If f’(¢) > 0, then there exists a § > 0 such that f(z) > f(c) for z € I N (¢, ¢+ J) and
f(x) < f(e) for z € IN(c—9,c).

2) If f'(c¢) > 0, then there exists a 6 > 0 such that f(z) < f(c¢) for x € I N (¢,c+ §) and
f(z) > f(e) for x € I N (c—9,c).

Proof.

Darboux’s Theorem 6.2.12 (Intermediate Value Theorem for derivatives). Let
f : [a,b] — R be differentiable on [a,b]. If k is a number strictly between f’(a) and f'(b),
then there exists at least one point ¢ € (a,b) such that f'(c) = k.

Proof.
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Example. The function below does not satisfy the intermediate value property, so it is not
the derivative of any function f : R — R. A similar argument can be made for: if f'(x)
exists on an interval containing ¢, then f’ cannot have a jump discontinuity at ¢. Thus, every
derivative function cannot have a jump discontinuity.

-1, ifz <0
f(x)_{ 1, ifz>0

Example. The function below is differentiable, and its derivative satisfies the intermediate
value property. Note that f’ is not continuous at 0, but the discontinuity is not jump.

1
f(x) = 22 sin = ifx#0
0, ifxr=20
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Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivansié 6.3 L’Hospital’s Rules

Theorem 6.3.1. Let f,g:[a,0] = R, f(a) = g(a) =0, g(x) # 0 for = € (a,b). If f and ¢
are differentiable at a and if ¢'(a) # 0, then the following limit exists, and

lim @ = f'a)

woat g(z)  g'(a)

Proof.

0
This formulation of L’Hospital’s rule resolves many limits of form o

. sinz
Example. lim =

z—0

et —1
Example. lim =

r—0 x

o . sinzx . . Inzx
Note. The theorem cannot be used on limits like lim or lim rlnz = lim ——.
z—0+ \/E z—0+ z—=0+ =

T

Cauchy Mean Value Theorem 6.3.2. Let f,g : [a,b] — R be continuous on [a,b] and
differentiable on (a,b), and let g(z) # 0 for x € (a,b). Then there exists a ¢ € (a,b) such

that
f(b) = fla) _ f'(c)
g(b) —gla)  g'(c)

Proof.
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Note. For g(z) = z, this is the Mean Value Theorem.

Note. Visualizing the theorem, we get a result similar to the Mean Value Theorem for
parametrized curves in the plane. Let (f(¢), g(t)), t € [a, b] be the parametrization of a curve.

Then ’;EZ;:;EZ)) = 58 can be interpreted as saying that vectors (f(b) — f(a), g(b) — g(a)) and

(f'(c),d'(c)) are parallel for some ¢ € (a,b).

L’Hospital’s Rule 1 6.3.3. Let —oo < a < b < oo andlet f,g : (a,b) — R be differentiable
on (a,b) such that ¢'(z) # 0 for z € (a,b). Suppose that lim+f(x) = hm+ g(x) = 0. Then
Tr—a r—a

/
if lim f(z) = L, then lim

= [, wh LeR —
A A , where . € RU {—00, 00}

Proof.
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Example. lim ST

z—0+ \/E

. x—sinx
Example. lim —— =
z—0 x3

L’Hospital’s Rule II 6.3.5. Let —o0o < a < b < oo and let f,g : (a,b) — R be dif-
ferentiable on (a,b) such that ¢'(z) # 0 for © € (a,b). Suppose that 1im+g(x) = +o0.
r—a

Then ,
if lim fz) = L, then lim ) = L, where L € RU{—00,00}
r—a+ g/(gj) r—a+ g(;ﬁ)

This theorem helps us deal with forms >, (Proof omitted.)
00

Example. lim zlnz =
z—04
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xa

Example. (a >0) lim — =

r—o00 e¥

1
Example. (« >0) lim e

r—o0 ¢

Other indeterminate forms are 0o —o0, 0-00, 1°°, 0°, 0o®. We can typically apply L'Hospital’s

rule by converting them to form % or 2 through some algebra.

8=

Example. lim(1 + )
z—0
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Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivansi¢ 6.4 Taylor’s Theorem

Definition. Suppose f is defined on an interval I around ¢ and that f’(x) exists for every
x € I. If f'(x) is differentiable at ¢, we call its derivative the second derivative of f at c,
denoted f”(c). Similarly, if f”(z) exists for every x € I and if f”(z) is differentiable at ¢, we
call the derivative of f” at ¢ the third derivative of f at c. We can continue in this way to
get f7(c), f"(c), f®(c),... Note that the existence of f(™(c) requires existence of f"=1(z)
on an interval around c.

Definition. Suppose f', f”,..., f™ are all defined on an interval I containing . Then we
can form the Taylor polynomial for f at x:
J" (o) £ (o)

Po(z) = f(xo) + f'(z0)(x — x0) + (x—xo)2+---+

(x — )"

21 n!

It is easy to see that P,(x) and f(x) have the same Oth, 1st, 2nd,. .., n-th derivative at xo
so we expect that P,(x) is a good approximation of f(x) for values of x close to .

Taylor’s Theorem 6.4.1. Let f : [a,b] — R be such that f, f/, f",..., f™ all exist and
are continuous on [a,b] and that f("*Y exists on (a,b). If o € [a,b] then for any x € [a, b]
there exists a point ¢ between xy and z such that

f/l(xo)
2!

f(n) (z0)

n!

B , : DL C Y.
F(@) = Fo)+F (w0) (@ —0)+ e (=) P4+ (=) |

(x—10)

Note. This looks like a higher-order version of the Mean Value Theorem, and it is: for
n = 0 the statement is that theorem.

(n+1)
Definition. If we set R, (z) = {Tl(;)(m —20)""!, then Taylor’s theorem says that f(z) =
n !
P,(x)+ R,(z), thus we can think of R, (x) as a — presumably small — add-on to the Taylor
polynomial to get the function, hence, a remainder. The expression R,(z) is called the

Lagrange or derivative form of the remainder.
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Proof.
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Example. Use Py(x) to approximate f(x) = y/z near xy = 4 and estimate the size of the

remainder on [2, 6].

Theorem 6.4. 4 Let zp be an interior point of an interval I, n > 2. Suppose that

f, ', f", ..., f™ all exist and are continuous on a neighborhood of z and that

f(@o) = /(o) = -+ = f" D (w) = 0, but f(20) # 0. Then

1) If n is even and f™(z0) > 0, then there f has a relative minimum at .
2) If n is even and f(™(x4) < 0, then there f has a relative maximum at .

3) If n is odd, then f does not have a relative extremum at z.
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Proof.

Definition 6.4.5. Let I be an interval. A
function f : I — R is called convex on I if for
any two points z1,z9 € I and every t € [0, 1]
we have

fIA=t)xy +txg) < (1 —1) f(z1) + Lf(22).

Note. A convex function was called “concave up” in calculus, defined as where the graph
is locally above the tangent line.

Theorem 6.4.6. Let I be an open interval and let f : I — R have a second derivative on I.
Then f is convex on [ if and only if f”(x) > 0 for all x € I.

Proof.
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Newton’s Method is a way of solving the
equation f(x) = 0. Essentially, one “rides the
tangent line” to the z-intercept. We form the
recursive sequence

f(zn)

Pt = T )
n

which, hopefully, converges to the zero of f.

Theorem 6.4.7. Let [ = [a,b] and let f : I — R be twice differentiable on /. Suppose
f(a)f(b) < 0 and there exist constants m, M such that |f'(z)| > m > 0 and |f"(x)] < M
forall x € I. Let K = QM Then there exists a subinterval I* C [ containing the zero r of f

such that for any x; € I* the sequence recursively defined by z,, 11 = x,, — }C’((ZZ)) stays in [*

and converges to r. Furthermore |z, — 7| < K|z, —r|%.

Note. The inequality assures rapid convergence. If |z, —r| < 107%, then |z, — 7| <
K -1072*, so method “doubles the number of correct decimals” at every step.

Proof.

Ch.6-20



Example. Use Newton’s method to approximate v/2, the solution of z® — 2 = 0.
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