Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić 6.1 The Derivative

Definition 6.1.1. Let $I \subseteq \mathbb{R}$, be an interval, $f : I \to \mathbb{R}$ a function and let $c \in I$. We say that *L* is the *derivative of f* at *c* if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$ and $x \in I$, then *f*(*x*) *− f*(*c*) *x − c − L* $\epsilon \in \epsilon$. If *L* exists, we say *f* is differentiable at *c* and write $L = f'(c)$. In other words

$$
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$
, if the limit exists.

We can form a function $f': J \to \mathbf{R}$, where $J \subseteq I$ is all points *x* for which $f'(x)$ exists, and define $f'(x) =$ the derivative of f at x.

Note. The point *c* could be the endpoint of the interval, in which case the limit above is one-sided.

Example. The constant function $f: \mathbf{R} \to \mathbf{R}$, $f(x) = b$, is differentiable at every point, and $f'(x) = 0.$

Example. The identity function $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x$, is differentiable at every point, and $f'(x) = 1.$

Example. The absolute value function $f: \mathbf{R} \to \mathbf{R}$, $f(x) = |x|$, is differentiable at every $x \neq 0$, and is not differentiable at 0.

Theorem 6.1.2. If $f: I \to \mathbb{R}$ has a derivative at $c \in I$, then f is continuous at c. *Proof.*

Note. A function that is continuous at *c* need not have a derivative at *c*, for example *|x|* and \sqrt{x} are not differentiable at 0.

Theorem 6.1.3 Differentiation Rules. Let $f, g: I \to \mathbf{R}$ be differentiable at $c \in I$, $\alpha \in \mathbf{R}$. Then the functions αf , $f \pm g$, fg and $\frac{f}{g}$ are differentiable at *c* and:

$$
(\alpha f)'(c) = \alpha f'(c)
$$
\n
$$
(fg)'(c) = f'(c)g(c) + f(c)g'(c)
$$
\n
$$
(f \pm g)'(c) = f'(c) \pm g'(c)
$$
\n
$$
\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}, \text{ assuming } g(c) \neq 0
$$

Proof. These are all limit exercises, we do *^f g* .

Corollary 6.1.4. Let $f_1, f_2, \ldots, f_n : I \to \mathbf{R}$ be differentiable at $c \in I$. Then the functions $f_1 + f_2 + \cdots + f_n$ and $f_1 f_2 \cdots f_n$ are differentiable at *c* and:

 $(f_1 + f_2 + \cdots + f_n)'(c) = f'_1(c) + f'_2(c) + \cdots + f'_n(c)$ $(f_1f_2\cdots f_n)'(c) = f'_1(c)f_2(c)\cdots f_n(c) + f_1(c)f'_2(c)\cdots f_n(c) + \cdots + f_1(c)f_2(c)\cdots f'_n(c)$

Example. Using the corollary, if $f(x) = x^n$, $n \in \mathbb{N}$, show that $f'(x) = nx^{n-1}$.

Example. If $f(x) = \frac{1}{x}$ $\frac{1}{x^n} = x^{-n}, n \in \mathbb{N}$, establish $f'(x) = -nx^{-n-1}$. Notation for the derivative of $f(x)$: $f' = Df$ *df* $\frac{dy}{dx}$ = *d* $\frac{d}{dx}f(x)$

Carathéodory's Theorem 6.1.5. Let $I \subseteq \mathbb{R}$, be an interval, $f : I \to \mathbb{R}$ a function and let $c \in I$. Then f is differentiable at c if and only if there exists a function φ on I that is continuous at *c* and satisfies

$$
f(x) - f(c) = \varphi(x)(x - c) \text{ for } x \in I.
$$

If that is the case, $f'(c) = \varphi(c)$.

Proof.

Example. Determine and visualize the function φ for $f(x) = x^3$.

Note. $f'(c)$ is not the slope of the tangent line (how would you define a tangent line?); rather, the tangent line at $(c, f(c))$ is defined as the line through $(c, f(c))$ whose slope is $f'(c)$.

Theorem 6.1.6 (Chain Rule). Let $I, J \subseteq \mathbb{R}$ be intervals, and $f : I \to \mathbb{R}$, $g : J \to \mathbb{R}$ functions such that $f(I) \subseteq J$ and $c \in I$. If *f* is differentiable at *c* and *g* is differentiable at $f(c)$, then $g \circ f$ is differentiable at *c* and

$$
(g \circ f)'(c) = g'(f(c)) \cdot f'(c)
$$

Proof.

Example. Show the function $f: \mathbf{R} \to \mathbf{R}$ below is differentiable at 0.

 $f(x) = \begin{cases} x^2 \sin(x) \end{cases}$ 1 $\frac{1}{x}$, if $x \neq 0$ 0, if $x = 0$ **Nonexample.** We can "derive" the rule for inverses with the chain rule.

Theorem 6.1.8. Let $I \subseteq \mathbb{R}$ be an interval, $f : I \to \mathbb{R}$ strictly monotone and continuous. Let $J = f(I)$ and $g: J \to \mathbf{R}$ be the strictly monotone and continuous inverse to f. If f is differentiable at $c \in I$ and $f'(c) \neq 0$, then *g* is differentiable at $d = f(c)$ and

$$
g'(d) = \frac{1}{f'(c)}
$$

Proof.

Note. The assumption $f'(c) \neq 0$ is essential. Otherwise, using the chain rule, we would have $g'(d) f'(c) = 1$, which is not possible.

Theorem 6.1.9. Let $I \subseteq \mathbb{R}$ be an interval, $f : I \to \mathbb{R}$ strictly monotone. Let $J = f(I)$ and $g: J \to \mathbf{R}$ be the strictly monotone inverse to f. If f is differentiable on $\in I$ and $f'(x) \neq 0$ for $x \in I$, then g is differentiable on J and $g' =$ 1 *f ′ ◦ g* .

Proof.

Example. If $g(x) = x^{\frac{1}{n}}$, $n \in \mathbb{N}$, show that $g'(x) = \frac{1}{n}x^{\frac{1}{n}-1}$.

Example. If $f(x) = x^{\frac{m}{n}}$, $n \in \mathbb{N}$, $m \in \mathbb{Z}$, show that $f'(x) = \frac{m}{n} x^{\frac{m}{n}-1}$.

Example. Assuming we know $(\sin x)' = \cos x$, if $g(x) = \arcsin x$, show $g'(x) = \frac{1}{\sqrt{x}}$ $\frac{1}{1-x^2}$.

Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić

Definition Let *I* be an interval, $f: I \to \mathbf{R}$. We say that

- $-$ *f* has a relative maximum at $c \in I$ if there exists a neighborhood $V_\delta(c)$ such that $f(c) > f(x)$ for all $x \in V_\delta(c) \cap I$.
- $-$ *f* has a relative minimum at $c \in I$ if there exists a neighborhood $V_\delta(c)$ such that $f(c) \leq f(x)$ for all $x \in V_\delta(c) \cap I$.

We say that *f has a relative extremum at* $c \in I$ if it has a relative maximum or minimum at $c \in I$. (The terms "local" or "extreme" are often used instead of "relative" and "extremum".)

Interior Extremum Theorem 6.2.1. Let $f: I \to \mathbb{R}$ have a relative extremum at an interior point $c \in I$. If $f'(c)$ exists, then $f'(c) = 0$.

Proof.

Note. Theorem implies that if $f: I \to \mathbf{R}$ is continuous and has a relative extremum at an interior point, then $f'(c) = 0$ or $f'(c)$ does not exist.

Rolle's Theorem 6.2.3. Let $f : [a, b] \rightarrow \mathbb{R}$ be

such that

- a) f is continuous on $[a, b]$
- b) *f* is differentiable on (*a, b*)
- c) $f(a) = f(b)$.

Then there exists at least one point $c \in (a, b)$ such that $f'(c) = 0$.

Proof.

Mean Value Theorem 6.2.3. Let $f : [a, b] \rightarrow \mathbb{R}$ be such that

a) f is continuous on $[a, b]$

b) f is differentiable on (a, b) .

Then there exists at least one point $c \in (a, b)$ such that $f(b) - f(a) = f'(c)(b - a)$.

Proof.

Theorem 6.2.5. Let *I* be an interval and $f: I \to \mathbf{R}$ a continuous function on *I* that is differentiable on *I* except possibly at endpoints. If $f'(x) = 0$ for all *x* where *f* is differentiable, then *f* is constant on *I*.

Corollary 6.2.6. Let *I* be an interval and $f, g: I \to \mathbf{R}$ continuous functions on *I* that are differentiable on *I* except possibly at endpoints. If $f'(x) = g'(x)$ for all *x* where *f* and *g* are differentiable, then $f(x) = g(x) + C$ for all $x \in I$.

Proof.

Theorem 6.2.7. Let $f: I \to \mathbf{R}$ be differentiable on the interval *I*. Then:

- 1) *f* is increasing on *I* if and only if $f'(x) \geq 0$ for all $x \in I$.
- 2) *f* is decreasing on *I* if and only if $f'(x) \leq 0$ for all $x \in I$.

Proof.

Note. Proof shows that if $f'(x) > 0$, then f is strictly increasing on I. The converse is not true: *f* can be strictly increasing on *I*, but $f'(x) > 0$ does not follow. Example: $f(x) = x^3$.

Example (Generalization of Bernoulli's Inequality). For $\alpha \in \mathbb{Q}$, $\alpha \geq 1$, show that $(1+x)^{\alpha} \geq 1 + \alpha x$ for all $x > -1$, where the equality holds only for $x = 0$.

Read Theorem 6.2.8, First Derivative Test.

Lemma 6.2.11. Let $f: I \to \mathbf{R}$ be differentiable at $c \in I$.

- 1) If $f'(c) > 0$, then there exists a $\delta > 0$ such that $f(x) > f(c)$ for $x \in I \cap (c, c + \delta)$ and $f(x) < f(c)$ for $x \in I \cap (c - \delta, c)$.
- 2) If $f'(c) > 0$, then there exists a $\delta > 0$ such that $f(x) < f(c)$ for $x \in I \cap (c, c + \delta)$ and *f*(*x*) > *f*(*c*) for *x* ∈ *I* ∩ (*c* − *δ*, *c*).

Proof.

Darboux's Theorem 6.2.12 (Intermediate Value Theorem for derivatives). Let $f: [a, b] \to \mathbf{R}$ be differentiable on [a, b]. If k is a number strictly between $f'(a)$ and $f'(b)$, then there exists at least one point $c \in (a, b)$ such that $f'(c) = k$.

Example. The function below does not satisfy the intermediate value property, so it is not the derivative of any function $f: \mathbf{R} \to \mathbf{R}$. A similar argument can be made for: if $f'(x)$ exists on an interval containing *c*, then *f ′* cannot have a jump discontinuity at *c*. Thus, every derivative function cannot have a jump discontinuity.

$$
f(x) = \begin{cases} -1, & \text{if } x < 0\\ 1, & \text{if } x \ge 0 \end{cases}
$$

Example. The function below is differentiable, and its derivative satisfies the intermediate value property. Note that f' is not continuous at 0, but the discontinuity is not jump.

$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}
$$

Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić 6.3 **L'Hospital's** Rules

Theorem 6.3.1. Let $f, g : [a, b] \to \mathbb{R}$, $f(a) = g(a) = 0$, $g(x) \neq 0$ for $x \in (a, b)$. If f and g are differentiable at *a* and if $g'(a) \neq 0$, then the following limit exists, and

$$
\lim_{x \to a+} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.
$$

Proof.

This formulation of L'Hospital's rule resolves many limits of form $\frac{0}{0}$ 0 .

Example. $\lim_{x\to 0}$ sin *x x* = **Example.** $\lim_{x\to 0}$ $e^x - 1$ *x* =

Note. The theorem cannot be used on limits like $\lim_{x\to0+}$ sin *x √* $\frac{d}{dx}$ or $\lim_{x \to 0+} x \ln x = \lim_{x \to 0+} x$ ln *x* 1 *x* .

Cauchy Mean Value Theorem 6.3.2. Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) , and let $g(x) \neq 0$ for $x \in (a, b)$. Then there exists a $c \in (a, b)$ such that

$$
\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.
$$

Note. For $g(x) = x$, this is the Mean Value Theorem.

Note. Visualizing the theorem, we get a result similar to the Mean Value Theorem for parametrized curves in the plane. Let $(f(t), g(t))$, $t \in [a, b]$ be the parametrization of a curve. Then $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$ $\frac{f'(c)}{g'(c)}$ can be interpreted as saying that vectors $\langle f(b) - f(a), g(b) - g(a) \rangle$ and $\langle f'(c), g'(c) \rangle$ are parallel for some $c \in (a, b)$.

L'Hospital's Rule I 6.3.3. Let $-\infty \le a < b \le \infty$ and let $f, g : (a, b) \to \mathbb{R}$ be differentiable on (a, b) such that $g'(x) \neq 0$ for $x \in (a, b)$. Suppose that $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$. Then

if
$$
\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L
$$
, then $\lim_{x \to a+} \frac{f(x)}{g(x)} = L$, where $L \in \mathbf{R} \cup \{-\infty, \infty\}$

Example.
$$
\lim_{x \to 0+} \frac{\sin x}{\sqrt{x}} =
$$

Example.
$$
\lim_{x \to 0} \frac{x - \sin x}{x^3} =
$$

L'Hospital's Rule II 6.3.5. Let $-\infty \le a < b \le \infty$ and let $f, g : (a, b) \to \mathbb{R}$ be differentiable on (a, b) such that $g'(x) \neq 0$ for $x \in (a, b)$. Suppose that $\lim_{x \to a^+} g(x) = \pm \infty$. Then

if
$$
\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L
$$
, then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$, where $L \in \mathbb{R} \cup \{-\infty, \infty\}$

This theorem helps us deal with forms $\frac{\infty}{\ }$ *∞* . *(Proof omitted.)*

Example. $\lim_{x \to 0+} x \ln x =$

Example.
$$
(\alpha > 0)
$$
 $\lim_{x \to \infty} \frac{x^{\alpha}}{e^x} =$

Example.
$$
(\alpha > 0)
$$
 $\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} =$

Other indeterminate forms are ∞ – ∞ , 0· ∞ , 1[∞], 0⁰, ∞ ⁰. We can typically apply L'Hospital's rule by converting them to form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ through some algebra.

Example. $\lim_{x \to 0} (1+x)^{\frac{1}{x}} =$

Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić 6.4 **Taylor's Theorem**

Definition. Suppose f is defined on an interval I around c and that $f'(x)$ exists for every $x \in I$. If $f'(x)$ is differentiable at *c*, we call its derivative the *second derivative of f* at *c*, denoted $f''(c)$. Similarly, if $f''(x)$ exists for every $x \in I$ and if $f''(x)$ is differentiable at *c*, we call the derivative of f'' at c the third derivative of f at c . We can continue in this way to get $f''(c)$, $f'''(c)$, $f^{(4)}(c)$, ... Note that the existence of $f^{(n)}(c)$ requires existence of $f^{(n-1)}(x)$ on an interval around *c*.

Definition. Suppose $f', f'', \ldots, f^{(n)}$ are all defined on an interval *I* containing x_0 . Then we can form the *Taylor polynomial for* f *at* x_0 :

$$
P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n
$$

It is easy to see that $P_n(x)$ and $f(x)$ have the same 0th, 1st, 2nd,..., *n*-th derivative at x_0 so we expect that $P_n(x)$ is a good approximation of $f(x)$ for values of *x* close to x_0 .

Taylor's Theorem 6.4.1. Let $f : [a, b] \to \mathbb{R}$ be such that $f, f', f'', \ldots, f^{(n)}$ all exist and are continuous on [a, b] and that $f^{(n+1)}$ exists on (a, b) . If $x_0 \in [a, b]$ then for any $x \in [a, b]$ there exists a point c between x_0 and x such that

$$
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.
$$

Note. This looks like a higher-order version of the Mean Value Theorem, and it is: for $n = 0$ the statement is that theorem.

Definition. If we set $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}$ $\frac{f(x)}{(n+1)!}(x-x_0)^{n+1}$, then Taylor's theorem says that $f(x) =$ $P_n(x) + R_n(x)$, thus we can think of $R_n(x)$ as a — presumably small — add-on to the Taylor polynomial to get the function, hence, a *remainder*. The expression $R_n(x)$ is called the *Lagrange* or *derivative form* of the remainder.

Example. Use $P_4(x)$ to approximate $f(x) = \sqrt{x}$ near $x_0 = 4$ and estimate the size of the remainder on [2*,* 6].

Theorem 6.4.4. Let x_0 be an interior point of an interval *I*, $n \geq 2$. Suppose that $f, f', f'', \ldots, f^{(n)}$ all exist and are continuous on a neighborhood of x_0 and that $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$, but $f^{(n)}(x_0) \neq 0$. Then

1) If *n* is even and $f^{(n)}(x_0) > 0$, then there *f* has a relative minimum at x_0 .

2) If *n* is even and $f^{(n)}(x_0) < 0$, then there *f* has a relative maximum at x_0 .

3) If *n* is odd, then *f* does not have a relative extremum at x_0 .

Proof.

Definition 6.4.5. Let *I* be an interval. A function $f: I \to \mathbf{R}$ is called *convex on I* if for any two points $x_1, x_2 \in I$ and every $t \in [0, 1]$ we have

 $f((1-t)x_1 + tx_2) \leq (1-t)f(x_1) + tf(x_2).$

Note. A convex function was called "concave up" in calculus, defined as where the graph is locally above the tangent line.

Theorem 6.4.6. Let *I* be an open interval and let $f: I \to \mathbf{R}$ have a second derivative on *I*. Then *f* is convex on *I* if and only if $f''(x) > 0$ for all $x \in I$.

Newton's Method is a way of solving the equation $f(x) = 0$. Essentially, one "rides the tangent line" to the *x*-intercept. We form the recursive sequence

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

which, hopefully, converges to the zero of *f*.

Theorem 6.4.7. Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be twice differentiable on *I*. Suppose $f(a)f(b) < 0$ and there exist constants *m, M* such that $|f'(x)| \ge m > 0$ and $|f''(x)| \le M$ for all $x \in I$. Let $K = \frac{M}{2n}$ $\frac{M}{2m}$. Then there exists a subinterval $I^* \subseteq I$ containing the zero *r* of *f* such that for any $x_1 \in I^*$ the sequence recursively defined by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $\frac{f(x_n)}{f'(x_n)}$ stays in *I*^{*} and converges to *r*. Furthermore $|x_{n+1} - r| \le K|x_n - r|^2$.

Note. The inequality assures rapid convergence. If $|x_n - r| < 10^{-k}$, then $|x_{n+1} - r| <$ $K \cdot 10^{-2k}$, so method "doubles the number of correct decimals" at every step.

Example. Use Newton's method to approximate $\sqrt[3]{2}$, the solution of $x^3 - 2 = 0$.