
Advanced Calculus 2 — Lecture notes
MAT 526/626, Spring 2024 — D. Ivanšić 5.1 Continuous Functions

Definition 5.1.1. Let A ⊆ R, c ∈ A, and let f : A → R be a function. We say that f is
continuous at c if for every ε > 0 there exists a δ > 0 such that if |x − c| < δ and x ∈ A,
then |f(x)− f(c)| < ε. If f is not continuous at c, we say f is discontinuous at c.

Note. f is continuous at c if and only if for every ε-neighborhood Vε(f(c)) of f(c) there is
a δ-neighborhood Vδ(c) such that f(A ∩ Vδ(c)) ⊆ Vε(f(c)).

Note.

1) If c is not a cluster point of A, the definition is always satisfied.

2) If c is a cluster point of A, the definition is equivalent to lim
x→c

f(x) = f(c).

Theorems 5.1.3, 5.1.4: Continuity using sequences. Let f : A → R, c ∈ A.

1) f is continuous at c if and only if for every sequence (xn) in A that converges to c,
lim f(xn) = f(c).

2) f is discontinuous at c if and only if there exists a sequence (xn) in A that converges
to c, but lim f(xn) ̸= f(c).

Definition 5.1.5. Let A ⊆ R, and B ⊆ A. We say f is continuous on B if f is continuous
at every point of B.
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Example. The constant function f : R → R, f(x) = b, is continuous on R.

Example. The identity function f : R → R, f(x) = x, is continuous on R.

Example. (Dirichlet’s function) The function f : R → R below is discontinuous at every
point.

f(x) =

{
1, if x ∈ Q
0, if x /∈ Q

Example. The function f : R → R below is discontinuous at every point except 0.

f(x) =

{
x, if x ∈ Q
−x, if x /∈ Q

Example. (Thomae’s function) The function f : R → R below is discontinuous at every
rational number and continuous at every irrational number.

f(x) =

{
0, if x /∈ Q
1
n
, if x = m

n
in reduced form.

Example. The function f : [0,∞) → R, f(x) =
√
x is continuous on [0,∞).

Example. The function f : R → R, f(x) = |x| is continuous on R.
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5.2 Combinations of

Continuous Functions

Theorem 5.2.1. Let f, g : A → R, c ∈ A, b ∈ R and suppose f and g are continuous at c.

a) Then f + g, f − g, fg and bf are continuous at c.

b) If g(x) ̸= 0 for all x ∈ A ∩ Vδ(c) for some δ > 0, then
f

g
is continuous at c.

Proof.

Theorem 5.2.2. Let f, g : A → R, b ∈ R and suppose f and g are continuous on A.

a) Then f + g, f − g, fg and bf are continuous on A.

b) If g(x) ̸= 0 for all x ∈ A, then
f

g
is continuous on A.

Example. Polynomials and rational functions are continuous wherever they are defined
because they are built from the constant and the identity functions using the usual algebraic
operations.

Example. The function sin x, cos x are continuous at every c ∈ R.
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Theorem 5.2.6. Let A,B ⊆ R and let f : A → R and g : B → R be functions such that
f(A) ⊆ B. If f is continuous at a point c ∈ A and g is continuous at point b = f(c) ∈ B,
then g ◦ f is continuous at c.

Proof.

Theorem 5.2.7. Let A,B ⊆ R and let f : A → R and g : B → R be functions such
that f(A) ⊆ B. If f is continuous on A and g is continuous on B, then g ◦ f : A → R is
continuous on A.

Example. Any single formula built using identity, constant, sine, cosine, absolute value and
square root functions along with usual algebraic operations is a continuous function wherever
it is defined.
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5.3 Continuous Functions

on Intervals

Definition 5.3.1. A function f : A → R is said to be bounded on A if there exists a
constant M ∈ R such that |f(x)| ≤ M for all x ∈ A.

Note. f is bounded on A if and only if f(A) is a bounded set.

Boundedness Theorem 5.3.2. Let I = [a, b] and let f : I → R be a continuous function.
Then f is bounded on I.

Proof.

Note. Both hypotheses are needed to guarantee boundedness. Give examples of a function
that is not bounded on its domain for these assumptions:

a) f : [0,∞) → R, f continuous.

b) f : (0, 1] → R, f continuous.

c) f : [0, 1] → R, f discontinuous at one point.
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Definition 5.3.3. Let f : A → R. We say that

a) f has an absolute maximum (at x∗) if there exists
an x∗ ∈ A such that f(x∗) ≥ f(x) for all x ∈ A.

b) f has an absolute minimum (at x∗) if there exists
an x∗ ∈ A such that f(x∗) ≤ f(x) for all x ∈ A.

We say that x∗ or x∗ is an absolute maximum or mini-
mum point for f on A, if they exist.

Maximum-Minimum Theorem 5.3.4. Let I = [a, b] and let f : I → R be a continuous
function. Then f has an absolute maximum and absolute minimum on I.

Proof.

Location of Roots Theorem 5.3.5. Let I = [a, b] and let f : I → R be a continuous
function. If f(a) and f(b) have opposite signs, then there exists a c ∈ (a, b) such that
f(c) = 0.

Proof.
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Example. Show the equation x−2 cos x = 0 has a solution in interval [1, 2] and approximate
the solution with accuracy 10−2.

Bolzano’s Intermediate Value Theorem 5.3.7. Let I be an interval and let f : I → R
be a continuous function. If a, b ∈ I and k ∈ R is strictly between f(a) and f(b), then there
exists a number c ∈ (a, b) such that f(c) = k.

Proof.

Theorem 5.3.9. Let I = [a, b] and let f : I → R be a continuous function. Then f(I) is
the closed interval [inf f(I), sup f(I)] = [min f(I),max f(I)].

Proof.

Note. The theorem does not say that f([a, b]) is [f(a), f(b)] or [f(b), f(a)].
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5.4 Continuous Functions

on Intervals

Recall: f : A → R is continuous on A if, for every c ∈ A and every ε > 0 there exists a
δ > 0 such that if |x− c| < δ and x ∈ A, then |f(x)− f(c)| < ε. Usually, δ depends on both
ε and c.

Example. For the function f(x) = mx + b, given ε and c, find the δ that satisfies the
definition of continuity at c.

Example. For the function f(x) = x2, given ε and c, find the δ that satisfies the definition
of continuity at c.

Given an ε, it would be nice to have a single δ that works for every c. This is the idea behind
the following definition.

Definition 5.4.1. We say a function f : A → R is uniformly continuous on A if, for every
ε > 0, there is a δ such that for every x, u ∈ A, if |x− u| < δ, then |f(x)− f(u)| < ε.

Note. A function that is uniformly continuous on A is continuous on A.

Proposition 5.4.2. Let f : A → R. The following are equivalent:

1) f is not uniformly continuous on A.

2) There exists an ε0 > 0 such that for every δ > 0 there are points xδ and uδ satisfying
|xδ − uδ| < δ and |f(xδ)− f(uδ)| ≥ ε0.

3) There exists an ε0 > 0 and two sequences (xn) and (un) such that lim(xn − un) = 0
and |f(xn)− f(un)| ≥ ε0.

Proof. Left as exercise.
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Uniform Continuity Theorem 5.4.3. Let I = [a, b] and let f : I → R be a continuous
function. If f is continuous on I, then f is uniformly continuous on A.

Proof.

Definition 5.4.4. A function f : A → R is said to be a Lipschitz function if there exists a
constant K > 0 such that for all x, u ∈ A, |f(x)− f(u)| ≤ K|x− u|.

Note. Every Lipschitz function is uniformly continuous
on A. (Given ε, take δ = ε

K
.)

Note. f is Lipschitz if and only if

∣∣∣∣f(x)− f(u)

x− u

∣∣∣∣ ≤ K

for all x, u ∈ A, in other words, |slopes| of all secant lines
are bounded by K.

Example. The function f(x) = x2 is Lipschitz on a closed interval [a, b], but not Lipschitz
on [0,∞).

Example. The function f(x) = sin x is Lipschitz on R.
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When is a function uniformly continuous on (a, b)?

Theorem 5.4.7. If f : A → R is uniformly continuous on A and (xn) is a Cauchy sequence
in A, then (f(xn)) is a Cauchy sequence in R.

Proof.

Continuous Extension Theorem 5.4.8. A function f is uniformly continuous on (a, b) if
and only if it can be defined at a and b so that the extended function is continuous on [a, b].

Proof.

Definition 5.4.9. A function s : [a, b] → R
is called a step function if there exists a collec-
tion of disjoint intervals I1, . . . In (open, closed

or half-open) such that
n⋃

k=1

Ik = [a, b] and s is

constant on Ik, k = 1, . . . n.
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Definition. Let f, g : A → R. We say g
uniformly approximates f on A with accuracy ε
if |f(x)− g(x)| < ε for all x ∈ A.

Theorems 5.4.10, 5.4.13, 5.4.14. Let I = [a, b] and let f : I → R be continuous. Then
f can be uniformly approximated to any accuracy ε using a function g that is

a) a step function.

b) a continuous piecewise-linear function.

c) a polynomial.

Proof of a) and b).
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5.6 Monotone and Inverse

Functions

Definition. Let f : A → R. We say that f is

— increasing, if for all x1, x2 ∈ A, whenever x1 < x2, then f(x1) ≤ f(x2).

— strictly increasing, if for all x1, x2 ∈ A, whenever x1 < x2, then f(x1) > f(x2).

— decreasing, if for all x1, x2 ∈ A, whenever x1 < x2, then f(x1) ≥ f(x2).

— strictly increasing, if for all x1, x2 ∈ A, whenever x1 < x2, then f(x1) > f(x2).

A function is called (strictly) monotone if it is (strictly) increasing or decreasing.

The domain in this section is an interval I, finite, infinite, open, closed or half-open. We
will mostly consider increasing functions — corresponding claims are valid for decreasing
functions.

Note. If f is increasing, sup{f(x) | x ∈ I, x < c} ≤ f(c) ≤ inf{f(x) | x ∈ I, x > c}, and
it is easy to find examples where the inequality is strict.

Theorem 5.6.1. Let f : I → R be an increasing function, and suppose c is not an endpoint
of I. Then

lim
x→c−

f(x) = sup{f(x) | x ∈ I, x < c} lim
x→c+

f(x) = inf{f(x) | x ∈ I, x > c}

Proof.

Ch.5-12



Continuous Inverse Theorem 5.6.5. Let f : I → R be strictly monotone and continuous
on I, and let J = f(I). Then f has an inverse f : J → R which is strictly monotone and
continuous.

Proof. Assume f is increasing.
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Example. The Continuous Inverse Theorem proves the existence of the n-th root function.

Definition 5.6.6. Knowing the n-th root exists, define x
m
n = (x

1
n )m, x−m

n = (x
1
n )−m. Thus,

xr for r ∈ Q is defined for an x > 0.

Theorem 5.6.7. For any x ∈ R, x > 0, m ∈ Z and n ∈ N, we have x
m
n = (xm)

1
n .

Proof.

Definition For an increasing function f : I → R, the jump of f at c is defined as:

jf (c) =


lim
x→c+

f(x)− lim
x→c−

f(x), if c is not an endpoint of I

lim
x→c+

f(x)− f(c), if c is the left endpoint of I

f(c)− lim
x→c−

f(x), if c is the right endpoint of I

Note. f is continuous at c if and only if jf (c) = 0.

Theorem 5.6.4. Let f : I → R be monotone. The set of points D where f is discontinuous
is countable.

Proof.
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Example. The function defined below is increasing and is discontinuous at every rational
number. Let q : N → Q be a bijection (exists due to countability of Q).

f(x) =
∑

k∈N, q(k)≤x

1

2k
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