Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić 5.1 **Continuous** Functions

Definition 5.1.1. Let $A \subseteq \mathbb{R}$, $c \in A$, and let $f : A \to \mathbb{R}$ be a function. We say that f is *continuous* at *c* if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $|x - c| < \delta$ and $x \in A$, then $|f(x) - f(c)| < \varepsilon$. If *f* is not continuous at *c*, we say *f* is *discontinuous* at *c*.

Note. *f* is continuous at *c* if and only if for every ε -neighborhood $V_{\varepsilon}(f(c))$ of $f(c)$ there is a δ -neighborhood $V_{\delta}(c)$ such that $f(A \cap V_{\delta}(c)) \subseteq V_{\epsilon}(f(c))$.

Note.

- 1) If *c* is not a cluster point of *A*, the definition is always satisfied.
- 2) If *c* is a cluster point of *A*, the definition is equivalent to $\lim_{x \to c} f(x) = f(c)$.

Theorems 5.1.3, 5.1.4: Continuity using sequences. Let $f : A \to \mathbf{R}, c \in A$.

- 1) *f* is continuous at *c* if and only if for every sequence (x_n) in *A* that converges to *c*, $\lim f(x_n) = f(c).$
- 2) f is discontinuous at c if and only if there exists a sequence (x_n) in A that converges to *c*, but $\lim f(x_n) \neq f(c)$.

Definition 5.1.5. Let $A \subseteq \mathbb{R}$, and $B \subseteq A$. We say f is continuous on B if f is continuous at every point of *B*.

Example. The constant function $f : \mathbf{R} \to \mathbf{R}$, $f(x) = b$, is continuous on **R**.

Example. The identity function $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x$, is continuous on **R**.

Example. (Dirichlet's function) The function $f : \mathbf{R} \to \mathbf{R}$ below is discontinuous at every point.

 $f(x) = \begin{cases} 1, & \text{if } x \in \mathbf{Q} \\ 0 & \text{if } x \neq \mathbf{Q} \end{cases}$ 0, if $x \notin \mathbf{Q}$

Example. The function $f: \mathbf{R} \to \mathbf{R}$ below is discontinuous at every point except 0.

$$
f(x) = \begin{cases} x, & \text{if } x \in \mathbf{Q} \\ -x, & \text{if } x \notin \mathbf{Q} \end{cases}
$$

Example. (Thomae's function) The function $f : \mathbf{R} \to \mathbf{R}$ below is discontinuous at every rational number and continuous at every irrational number.

 $f(x) = \begin{cases} 0, & \text{if } x \notin \mathbf{Q} \\ 1, & \text{if } x \neq m \end{cases}$ 1 $\frac{1}{n}$, if $x = \frac{m}{n}$ $\frac{m}{n}$ in reduced form.

Example. The function $f : [0, \infty) \to \mathbf{R}$, $f(x) = \sqrt{x}$ is continuous on $[0, \infty)$. **Example.** The function $f : \mathbf{R} \to \mathbf{R}$, $f(x) = |x|$ is continuous on **R**.

5.2 Combinations of Continuous Functions

Theorem 5.2.1. Let $f, g: A \to \mathbf{R}, c \in A, b \in \mathbf{R}$ and suppose f and g are continuous at c .

- a) Then $f + g$, $f g$, fg and bf are continuous at *c*.
- b) If $g(x) \neq 0$ for all $x \in A \cap V_\delta(c)$ for some $\delta > 0$, then $\frac{f}{g}$ is continuous at *c*.

Proof.

Theorem 5.2.2. Let $f, g: A \to \mathbf{R}, b \in \mathbf{R}$ and suppose f and g are continuous on A .

- a) Then $f + g$, $f g$, fg and bf are continuous on A .
- b) If $g(x) \neq 0$ for all $x \in A$, then $\frac{f}{g}$ is continuous on *A*.

Example. Polynomials and rational functions are continuous wherever they are defined because they are built from the constant and the identity functions using the usual algebraic operations.

Example. The function $\sin x$, $\cos x$ are continuous at every $c \in \mathbb{R}$.

Theorem 5.2.6. Let $A, B \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. If *f* is continuous at a point $c \in A$ and *g* is continuous at point $b = f(c) \in B$, then $g \circ f$ is continuous at c .

Proof.

Theorem 5.2.7. Let $A, B \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. If *f* is continuous on *A* and *g* is continuous on *B*, then $g \circ f : A \to \mathbf{R}$ is continuous on *A*.

Example. Any single formula built using identity, constant, sine, cosine, absolute value and square root functions along with usual algebraic operations is a continuous function wherever it is defined.

Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić

Definition 5.3.1. A function $f : A \rightarrow \mathbf{R}$ is said to be *bounded on A* if there exists a constant $M \in \mathbf{R}$ such that $|f(x)| \leq M$ for all $x \in A$.

Note. f is bounded on A if and only if $f(A)$ is a bounded set.

Boundedness Theorem 5.3.2. Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be a continuous function. Then *f* is bounded on *I*.

Proof.

Note. Both hypotheses are needed to guarantee boundedness. Give examples of a function that is not bounded on its domain for these assumptions:

- a) $f : [0, \infty) \to \mathbf{R}$, *f* continuous.
- b) $f : (0,1] \rightarrow \mathbf{R}$, f continuous.
- c) $f : [0, 1] \to \mathbf{R}$, *f* discontinuous at one point.

Definition 5.3.3. Let $f : A \to \mathbf{R}$. We say that

- a) *f has an absolute maximum (at x ∗)* if there exists an $x^* \in A$ such that $f(x^*) \ge f(x)$ for all $x \in A$.
- b) *f* has an absolute minimum (at x_*) if there exists an $x_* \in A$ such that $f(x_*) \leq f(x)$ for all $x \in A$.

We say that *x [∗]* or *x[∗] is an absolute maximum or minimum point for f on A*, if they exist.

Maximum-Minimum Theorem 5.3.4. Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be a continuous function. Then *f* has an absolute maximum and absolute minimum on *I*.

Proof.

Location of Roots Theorem 5.3.5. Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be a continuous function. If $f(a)$ and $f(b)$ have opposite signs, then there exists a $c \in (a, b)$ such that $f(c) = 0.$

Proof.

Example. Show the equation $x-2\cos x = 0$ has a solution in interval [1, 2] and approximate the solution with accuracy 10*−*² .

Bolzano's Intermediate Value Theorem 5.3.7. Let *I* be an interval and let $f: I \to \mathbb{R}$ be a continuous function. If $a, b \in I$ and $k \in \mathbb{R}$ is strictly between $f(a)$ and $f(b)$, then there exists a number $c \in (a, b)$ such that $f(c) = k$.

Proof.

Theorem 5.3.9. Let $I = [a, b]$ and let $f : I \to \mathbf{R}$ be a continuous function. Then $f(I)$ is the closed interval $[\inf f(I), \sup f(I)] = [\min f(I), \max f(I)].$

Proof.

Note. The theorem does **not** say that $f([a, b])$ is $[f(a), f(b)]$ or $[f(b), f(a)]$.

5.4 Continuous Functions on Intervals

Recall: $f : A \to \mathbf{R}$ is continuous on *A* if, for every $c \in A$ and every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $|x-c| < \delta$ and $x \in A$, then $|f(x) - f(c)| < \varepsilon$. Usually, δ depends on both *ε* and *c*.

Example. For the function $f(x) = mx + b$, given ε and c, find the δ that satisfies the definition of continuity at *c*.

Example. For the function $f(x) = x^2$, given ε and c , find the δ that satisfies the definition of continuity at *c*.

Given an ε , it would be nice to have a single δ that works for every *c*. This is the idea behind the following definition.

Definition 5.4.1. We say a function $f : A \to \mathbf{R}$ is *uniformly continuous on* A if, for every $\varepsilon > 0$, there is a δ such that for every $x, u \in A$, if $|x - u| < \delta$, then $|f(x) - f(u)| < \varepsilon$.

Note. A function that is uniformly continuous on *A* is continuous on *A*.

Proposition 5.4.2. Let $f : A \to \mathbf{R}$. The following are equivalent:

- 1) *f* is not uniformly continuous on *A*.
- 2) There exists an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ} and u_{δ} satisfying $|x_{\delta} - u_{\delta}| < \delta$ and $|f(x_{\delta}) - f(u_{\delta})| \geq \varepsilon_0$.
- 3) There exists an $\varepsilon_0 > 0$ and two sequences (x_n) and (u_n) such that $\lim(x_n u_n) = 0$ and $|f(x_n) - f(u_n)| \geq \varepsilon_0$.

Proof. Left as exercise.

Uniform Continuity Theorem 5.4.3. Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be a continuous function. If *f* is continuous on *I*, then *f* is uniformly continuous on *A*.

Proof.

Definition 5.4.4. A function $f : A \to \mathbf{R}$ is said to be a *Lipschitz function* if there exists a constant $K > 0$ such that for all $x, u \in A$, $|f(x) - f(u)| \leq K|x - u|$.

Note. Every Lipschitz function is uniformly continuous on *A*. (Given ε , take $\delta = \frac{\varepsilon}{k}$ $\frac{\varepsilon}{K}$.)

Note. *f* is Lipschitz if and only if *f*(*x*) *− f*(*u*) *x − u ≤ K* for all $x, u \in A$, in other words, *|*slopes*|* of all secant lines

are bounded by *K*.

Example. The function $f(x) = x^2$ is Lipschitz on a closed interval [a, b], but not Lipschitz on $[0, \infty)$.

Example. The function $f(x) = \sin x$ is Lipschitz on **R**.

When is a function uniformly continuous on (a, b) ?

Theorem 5.4.7. If $f : A \to \mathbf{R}$ is uniformly continuous on *A* and (x_n) is a Cauchy sequence in *A*, then $(f(x_n))$ is a Cauchy sequence in **R**.

Proof.

Continuous Extension Theorem 5.4.8. A function f is uniformly continuous on (a, b) if and only if it can be defined at *a* and *b* so that the extended function is continuous on [*a, b*].

Proof.

Definition 5.4.9. A function $s : [a, b] \rightarrow \mathbb{R}$ is called a *step function* if there exists a collection of disjoint intervals I_1, \ldots, I_n (open, closed or half-open) such that $\int_{a}^{n} I_k = [a, b]$ and *s* is constant on I_k , $k = 1, ..., n$.

Definition. Let $f, g : A \rightarrow \mathbf{R}$. We say *g uniformly approximates* f *on* A *with accuracy* ε if $|f(x) - g(x)| < \varepsilon$ for all $x \in A$.

Theorems 5.4.10, 5.4.13, 5.4.14. Let $I = [a, b]$ and let $f : I \rightarrow \mathbb{R}$ be continuous. Then *f* can be uniformly approximated to any accuracy ε using a function *g* that is

- a) a step function.
- b) a continuous piecewise-linear function.
- c) a polynomial.

Proof of a) and b).

Advanced Calculus 2 — Lecture notes MAT 526/626, Spring 2024 — D. Ivanšić

5.6 Monotone and Inverse Functions

Definition. Let $f: A \to \mathbf{R}$. We say that *f* is

- *increasing*, if for all $x_1, x_2 \in A$, whenever $x_1 < x_2$, then $f(x_1) \le f(x_2)$.
- *strictly increasing*, if for all $x_1, x_2 \in A$, whenever $x_1 < x_2$, then $f(x_1) > f(x_2)$.
- *decreasing*, if for all $x_1, x_2 \in A$, whenever $x_1 < x_2$, then $f(x_1) \ge f(x_2)$.
- *strictly increasing*, if for all $x_1, x_2 \in A$, whenever $x_1 < x_2$, then $f(x_1) > f(x_2)$.

A function is called *(strictly) monotone* if it is (strictly) increasing or decreasing.

The domain in this section is an interval *I*, finite, infinite, open, closed or half-open. We will mostly consider increasing functions — corresponding claims are valid for decreasing functions.

Note. If f is increasing, $\sup\{f(x) | x \in I, x < c\} \leq f(c) \leq \inf\{f(x) | x \in I, x > c\}$, and it is easy to find examples where the inequality is strict.

Theorem 5.6.1. Let $f: I \to \mathbb{R}$ be an increasing function, and suppose *c* is not an endpoint of *I*. Then

$$
\lim_{x \to c-} f(x) = \sup \{ f(x) \mid x \in I, \ x < c \} \qquad \lim_{x \to c+} f(x) = \inf \{ f(x) \mid x \in I, \ x > c \}
$$

Proof.

Continuous Inverse Theorem 5.6.5. Let $f: I \to \mathbb{R}$ be strictly monotone and continuous on *I*, and let $J = f(I)$. Then *f* has an inverse $f : J \to \mathbf{R}$ which is strictly monotone and continuous.

Proof. Assume *f* is increasing.

Example. The Continuous Inverse Theorem proves the existence of the *n*-th root function.

Definition 5.6.6. Knowing the *n*-th root exists, define $x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m$, $x^{-\frac{m}{n}} = (x^{\frac{1}{n}})^{-m}$. Thus, x^r for $r \in \mathbf{Q}$ is defined for an $x > 0$.

Theorem 5.6.7. For any $x \in \mathbb{R}$, $x > 0$, $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, we have $x^{\frac{m}{n}} = (x^m)^{\frac{1}{n}}$. *Proof.*

Definition For an increasing function $f: I \to \mathbf{R}$, the jump of f at c is defined as:

 $j_f(c) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\lim_{x \to c+} f(x) - \lim_{x \to c-} f(x)$, if *c* is not an endpoint of *I* $\lim_{x \to c+} f(x) - f(c)$, if *c* is the left endpoint of *I* $f(c) - \lim_{x \to c^-} f(x)$, if *c* is the right endpoint of *I*

Note. *f* is continuous at *c* if and only if $j_f(c) = 0$.

Theorem 5.6.4. Let $f: I \to \mathbf{R}$ be monotone. The set of points *D* where *f* is discontinuous is countable.

Proof.

Example. The function defined below is increasing and is discontinuous at every rational number. Let $q : \mathbb{N} \to \mathbb{Q}$ be a bijection (exists due to countability of **Q**).

$$
f(x) = \sum_{k \in \mathbf{N}, \ q(k) \le x} \frac{1}{2^k}
$$