Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić | **3.1 Exponential Functions**

Recall that the function $f(x) = a^x$, $a > 0$, $a \neq 1$ is called an exponential function. Graph:

From the graphs we can see the most important facts about exponential functions.

Continuity:

 $Domain =$ $Range =$

 $\lim_{x\to\infty}$ *a* $\lim_{x \to -\infty} a^x =$

Using above facts, we can find limits involving a^x :

Example.
$$
\lim_{x \to 3} 5^{\frac{x^2 - 4x + 3}{x - 3}} =
$$

Example. $\lim_{x \to 4+} e^{\frac{2}{8-2x}} =$

Example. $\lim_{x\to\infty}$ $3^x - 1$ $\frac{3^{2x}+5\cdot 3^x-3}$ The number *e* can be defined in several ways, here are two:

1)
$$
e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} \approx
$$

\n $x \qquad (1 + x)^{\frac{1}{x}}$
\n0.1
\n0.01
\n0.001
\n10⁻⁴
\n10⁻⁵
\n10⁻⁶

2) Let m_a = slope of tangent line to graph of $y = a^x$ at $x = 0$. It can be numerically found that

$$
m_2<1 \text{ and } m_3>1
$$

Since m_a varies continuously with *a*, by the Intermediate Value Theorem there is a number *a* such that $m_a = 1$.

In this approach, we can define *e* as the number such that the graph of $y = e^x$ has a tangent line at $x = 0$ whose slope is 1.

3.2 Inverse Functions and Logarithms

Definition. A function is *one-to-one* if it sends different *x*'s to different *y*'s, that is

if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$

In other words, it never happens that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Thus, no two points on the graph with different *x*-coordinates have the same *y*-coordinate. This is the idea of the:

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects it more than once.

Example. Are the following graphs of one-to-one functions?

One-to-one functions are important because they are the only functions that have inverses: For every *y* in the range of *f*, we can define:

 $f^{-1}(y) =$ the *x* such that $f(x) = y$

Example. The function $f(x) = x^2$ is not one-to-one, but we have learned that its inverse is \sqrt{x} . What gives?

In general, functions that are not one-to-one, like $\sqrt{}$, sin, cos, tan,... are turned into oneto-one functions in the same way, by *restricting the domain*.

Inverse functions satisfy: $f^{-1}(f(x)) = x$ $f(f^{-1}(x)) = x$ The graph of f^{-1} is the reflection of the graph of f in the line $y = x$. How to find the derivative of *f −*1 :

Theorem. If *f* is a one-to-one differentiable function then its inverse f^{-1} is differentiable, and

$$
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}
$$

Example. Use the theorem to find the derivative of $\sqrt[3]{x}$.

Example. Let $f(x) = 2x + \cos x$. Use the theorem to find $(f^{-1})'(1)$.

Definition. The exponential function $f(x) = a^x$ is one-to-one, so has an inverse called the *logarithmic function*: $f^{-1}(x) = \log_a x$.

Note. Think of $\log_a x$ as the answer to the question $a^2 = x$, in other words,

 $y = \log_a x$ is the same as saying $a^y = x$

Properties of logarithmic functions

 $\log_a a^x = x$ $x = x$ $a^{\log_a x} = x$ are just $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ for $f(x) = a^x$ and $f^{-1}(x) = \log_a x$. Property Related exponential property $\log_a(xy) = \log_a x + \log_a y$ $a^{u+v} = a^u \cdot a^v$ log*^a x* $\frac{x}{y} = \log_a x - \log_a y$ *a*^{*u−v* = $\frac{a^u}{a^v}$} *a v* $\log_a x^r = r \log_a x$ (*a* $(u)^v = a^{uv}$ Change of base formula: $\log_b x =$ log*^a x* $\log_a b$

Special bases: $a = e$, we write $\log_e x = \ln x$ $a = 10$, we write $\log_{10} x = \log x$

From the graph of a^x , $a > 1$, we get the graph of $\log_a x$ and can see all the important facts about it:

 $Domain =$

 $Range =$

 $\lim_{x\to\infty}$ log_a $x =$ $\lim_{x\to 0+} \log_a x =$

Example.
$$
\lim_{x \to 0+} \log_2(\sin x) =
$$

Derivative of the exponential function $f(x) = a^x$

Theorem.
$$
\frac{d}{dx} e^x = e^x \qquad \qquad \frac{d}{dx} a^x = \ln a \cdot a^x
$$

Example.
$$
\frac{d}{dx}(\sqrt{x}e^x) =
$$

Example. $\frac{d}{dt}$ $\frac{a}{dx}e^{\cos x} =$

Example.
$$
\frac{d}{dx}(x^2 + 3x)2^{4x} =
$$

Example. $\frac{d}{dt}$ *dx x* $\frac{c}{e^x} =$

Derivative of the logarithmic function $\log_a x$

Set $f(x) = a^x$, so $f^{-1}(x) = \log_a x$.

Theorem.
$$
\frac{d}{dx} \ln x = \frac{1}{x}
$$

$$
\frac{d}{dx} \log_a x = \frac{1}{x \ln a}
$$

Example. $\frac{d}{dx} \ln \sqrt{x} =$

Example.
$$
\frac{d}{dx} \ln \left(\frac{x+1}{x-1} \right) =
$$

Example.
$$
\frac{d}{dx} \ln(\cos x) =
$$

Example. $\frac{d}{dt}$ $\frac{a}{dx}$ ($x^2 - 7x$) log₃ $x =$

Example.
$$
\frac{d}{dx} \log_5(\tan x) =
$$

Example. Find the derivative of $y =$ $e^{3x}\sqrt{x^2+1}$ $\sqrt{x^3 + 17}$. This would be hard using the quotient rule (which would include a product rule for the derivative of the numerator), but we can simplify work using the trick of "logarithmic differentiation."

Example. Use logarithmic differentiation to find the derivative of $y = x^x$. Same method can be used to find the derivative of any function of form $f(x)^{g(x)}$.

Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić

3.5 Inverse Trigonometric Functions

The functions sin, cos and tan are not one-to-one functions, so in order for them to have an inverse, we first make them one-to-one by restricting the domain. The functions arcsin, arccos and arctan are inverses of the functions sin, cos and tan restricted as follows.

We can say: $\arcsin x$ is the angle θ whose sine is x and falls in $\Big[-\frac{1}{\sqrt{2\pi}}\Big]$ *π* 2 *, π* 2] arccos *x* is the angle θ whose cosine is *x* and falls in $[0, \pi]$ arctan *x* is the angle θ whose tangent is *x* and falls in $\left(-\right)$ *π* 2 *, π* 2 \setminus

Derivatives of inverse trigonometric functions.

$$
\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}
$$

We justify the derivatives of inverse trigonometric functions.

Example.
$$
\frac{d}{dx}
$$
 arctan(7x) =

Example.
$$
\frac{d}{dx}(\arctan x)^2 =
$$

Example.
$$
\frac{d}{dx} \left(x \arcsin x + \sqrt{1 - x^2} \right) =
$$

When computing limits, the difficult ones are always an indeterminate form:

$$
\infty - \infty \qquad \qquad 0 \cdot \infty \qquad \quad \frac{\infty}{\infty} \qquad \quad \frac{0}{0}
$$

The rule below helps us find some of them.

Theorem (L'Hospital's Rule). Suppose *f* and *g* are differentiable near *a* and $g'(x) \neq 0$ near *a*. If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},
$$
 if the latter exists, or is $\pm \infty$

The rule also holds when $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, or the limit is one-sided.

Note. The rule helps with forms $\frac{0}{0}$ $\overline{0}$ or *∞ ∞* . Note that this is *not* the quotient rule for derivatives, it is a statement about limits that uses derivatives.

Example. lim $x \rightarrow \frac{\pi}{2}$ $\cos^2 x$ $\sin x - 1$ =

Example. $\lim_{x\to 0}$ $\tan x - x$ $\frac{x}{x^3}$ =

Example. $\lim_{x \to 0+} x \ln x =$

Exponential indeterminate forms are: 0^0 , ∞^0 , 1^∞ .

Example. $\lim_{x\to 0+} x^{\sqrt{x}} =$

Example.
$$
\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x =
$$

Example.
$$
\lim_{x \to \infty} \frac{x^3}{e^x} =
$$

Similarly, $\lim_{x \to \infty}$ *x c* $\frac{d}{dx} = 0$ for any $c > 0$, that is, e^x grows faster than any x^c , $c > 0$, which is interesting for large positive numbers *c*.

Example. $\lim_{x\to\infty}$ ln *x √ x* =

Similarly, $\lim_{x \to \infty}$ ln *x* $\frac{d^2x}{dx^2} = 0$ for any $c > 0$, that is, ln *x* grows slower than any x^c , $c > 0$, which is interesting for small positive numbers *c*.