Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić \vert **1.3 Limits**

Example. Consider the function $f(x) =$ *√ x −* 2 *x −* 4 . This function is clearly not defined at $x = 4$. What happens when *x* approaches 4?

Evaluate the function at numbers close to 4 and graph it on an interval around 4.

It appears that $f(x)$ gets closer and closer to as *x* gets closer and closer to 4.

We write
$$
\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} =
$$
 and say "the limit of $\frac{\sqrt{x} - 2}{x - 4}$, as x goes to 4, is "

Example. Consider the function $f(x) = \frac{\sin x}{x}$ *x* . What happens when *x* approaches 0?

Evaluate the function at numbers close to 0 and graph it on an interval around 0 (radian mode is what we use in calculus!).

It appears that $f(x)$ gets closer and closer to as x gets closer and closer to 0, so

$$
\lim_{x \to 0} \frac{\sin x}{x} = \qquad .
$$

Example. Consider the function $f(x) = \sin \frac{1}{x}$ *x* . Where is its behavior interesting? Evaluate the function at appropriate numbers and graph it on an appropriate interval.

Note. $\lim_{x \to a} f(x)$ exists only if values of $f(x)$ approach *a single number* as *x* goes to *a*.

Example. Graph the function

$$
f(x) = \begin{cases} x+2 & \text{if } x > 1, \\ -x+1 & \text{if } x < 1 \\ 2 & \text{if } x = 1. \end{cases}
$$

What can you say about $\lim_{x \to 1} f(x)$?

Something can be salvaged, though: as *x* goes to 1 from left, $f(x)$ approaches 0 as *x* goes to 1 from right, $f(x)$ approaches 3

We write

$$
\lim_{x \to 1-} f(x) = 0 \text{ and } \lim_{x \to 1+} f(x) = 3
$$

and call these *one-sided limits*.

Note. $f(1) = 2$, but this does not matter when computing $\lim_{x \to 1} f(x)$, $\lim_{x \to 1-} f(x)$ or $\lim_{x \to 1+} f(x)$.

In general, when trying to figure out $\lim_{x \to a} f(x)$, we only consider *x*'s close to *a*, but not equal *to a*. $f(a)$ may not even be defined, as in most of our examples.

Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić \vert **1.4** Calculating Limits

Example. *(Accuracy.)* Investigate $f(x) = (1 - x)^{\frac{1}{x}}$ when $x \to 0$.

a) Sketch the graph of the function around the relevant point.

b) What is the approximate $\lim_{x\to 0} f(x)$, *accurate to six decimal points*? Write a table of values that will justify your answer.

Example. *(Trust Calculator?)* Investigate $f(x) = \frac{5(\sqrt{x^3 + 4} - 2)}{x^3}$ $\frac{x^3}{x^3}$ when $x \to 0$.

a) Sketch the graph of the function. From the graph and numerical evidence, what does $\lim_{x\to 0} f(x)$ appear to be?

b) Compute the values of $f(x)$ for $x = 10^{-4}, 10^{-5}, \ldots, 10^{-8}$. Write the table of values here. What appears to be the limit now?

c) Try to explain why a) and b) apparently give different answers. (Hint: enter 1 + 10*−*¹⁴ *[−]*¹ in your calculator. What is the exact value of this expression? What does the calculator say? What is happening?)

\boldsymbol{u}	υ	$u + v$	$u-v$	$u \cdot v$	u/v
2.9	4.9				
2.99	4.99				
2.999	4.999				
2.9	5.1				
2.99	5.01				
2.999	5.001				
3.1	4.9				
3.01	4.99				
3.001	4.999				
3.1	5.1				
3.01	5.01				
3.001	5.001				

Example. *(Limit Laws.)* Let $u \to 3$, $v \to 5$. What do $u + v$, $u - v$, $u \cdot v$ and $\frac{u}{v}$ approach?

The table above justifies the following limit laws: if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

$$
\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \quad (1) \qquad \lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \quad (4)
$$

$$
\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \quad (2) \qquad \lim_{x \to a}
$$

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0 \quad (5)
$$

$$
\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x) \quad (3)
$$

We also have the following two basic limits that are intuitively clear:

$$
\lim_{x \to a} c = c \quad (7) \qquad \qquad \lim_{x \to a} x = a \quad (8)
$$

Example. Use limit laws to find the following limits. Mark by number which limit law you are using at every step.

 $\lim_{x \to -1} (x^2 - 3x + 3) =$

lim*x→*2 $x^2 + x$ 4*x −* 1 =

The previous two examples show that, due to limit laws, calculating $\lim_{x\to a} f(x)$ amounts to plugging in $x = a$ into the function $f(x)$, when the function is a polynomial or a rational function (in other words, when it is constructed using the operations $+$ *,* $-$ *,* $*$ *,* \div *)*.

Direct substitution property. If $f(x)$ is a polynomial or a rational function, and $f(a)$ is defined, then

$$
\lim_{x \to a} f(x) = f(a)
$$

Note. This property is true also for functions sin, cos, $\sqrt[n]{\ }$. Two other general rules are

$$
\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n \quad (10) \qquad \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \quad (11)
$$

Examples.

$$
\lim_{x \to 3} \sqrt[3]{\frac{3x - 1}{x^2 - x + 4}} =
$$

$$
\lim_{x \to \pi} \frac{\cos x}{x - \sin x} =
$$

Examples. What if evaluation gives us an undefined number?

$$
\lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1} =
$$

$$
\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3} =
$$

$$
\lim_{x \to 0} \frac{5(\sqrt{x^3 + 4} - 2)}{x^3} =
$$

$$
\lim_{x \to 2} \left(\frac{4}{x^2 - 4} - \frac{1}{x - 2} \right) =
$$

Example. What if limit laws do not apply and algebra is not possible? $\lim_{x\to 0} x^2 \sin$ 1 *x* =

Squeeze Theorem. If $f(x) \leq g(x) \leq h(x)$ on some interval around *a* (except maybe at *a*)

and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

Graphical "proof".

Use the squeeze theorem to find the limit of the previous example.

Example. Use the squeeze theorem to show lim *θ→*0 sin *θ θ* $= 1$.

Examples. More trigonometric limits.

$$
\lim_{x \to 0} \frac{\sin(6x)}{x} =
$$

lim *θ→*0 $\frac{\cos \theta - 1}{\cos \theta}$ *θ* =

Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić 1.5 **Continuity**

A function is continuous at a point *a* if the graph of *f* does not have a break at *a*.

This definition captures the idea:

Definition. A function *f* is continuous at *a* if $\lim_{x \to a} f(x) = f(a)$.

Note. Three things are needed for a function to be continuous at *a*. 1) *f* is defined at *a*.

2) $\lim_{x \to a} f(x)$ exists (and is a real number).

3) $\lim_{x \to a} f(x) = f(a)$

(Read about the various types of discontinuities in the book.)

Definition. A function f is continuous on an interval if it is continuous at every point of that interval.

Graphically. A function is continuous on an interval if its graph on that interval can be drawn without lifting pencil from paper.

Theorem. If *f* and *g* are continuous at *a* (or an interval), then the following functions are continuous at *a* (or an interval):

$$
f+g,f-g,f\cdot g,\frac{f}{g}\;(\text{if }g(a)\neq 0)\\
$$

Proof for one of the functions.

Theorem. Polynomials, rational functions, root functions, exponential functions and logarithmic functions are continuous where they are defined.

Proof.

Theorem. If *f* is continuous at *b* and $\lim_{x \to a} g(x) = b$, then

$$
\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b)
$$

Example. $\lim_{x\to 3} \sin$ $x^2 - 5x + 6$ *x −* 3 = **Theorem.** If *g* is continuous at *a* and *f* is continuous at $g(a)$, then $f \circ g$ is continuous at *a*.

Example. $e^{tan x}$ is continuous wherever it is defined since it is a composite of e^x and tan *x*, functions that are continuous wherever they are defined.

In the same way, using two previous theorems, any *single* formula is continuous wherever it is defined. For example,

$$
\sqrt{\frac{\sin x + 4x^{\frac{2}{5}}}{2^x \cdot \ln x}}
$$
 is continuous wherever it is defined.

Most physical phenomena are described by continuous functions (unbroken graphs).

Examples. Temperature and position as functions of time.

Examples.

If $T(8) = 55$ [°]F and $T(11) = 75$ [°]F, at some time between 8 and 11, temperature was 65*◦*F.

Traveling along a road from point *A* to point *B* we must pass through every point *E* between them.

Intermediate Value Theorem. Suppose f is continuous on the closed interval $[a, b]$ and $f(a) \neq f(b)$. If *N* is any number between $f(a)$ and $f(b)$, then there exists a number *c* in (a, b) such that $f(c) = N$.

Graphical "proof".

Example. Show that the equation $x^3 - 2x^2 + 3x + 1 = 0$ has a solution in the interval [*−*1*,* 1]. Then find an interval of width 0.01 that contains the solution.

Calculus 1 — Lecture notes MAT 250, Spring 2024 — D. Ivanšić $\left| \begin{array}{c} 1.6 \end{array} \right]$ **Limits** Involving Infinity

Example. Consider the function $f(x) = \frac{1}{x}$ *x* around 0.

We see that $f(x)$ does not approach any *real* number as x approaches 0 from either side, so lim*^x→*0+ 1 $\frac{1}{x}$ and $\lim_{x\to 0^-}$ 1 *x* do not exist. However, they do not exist in a particular way, namely: As $x \to 0^+,$ 1 $\frac{1}{x}$ grows without bound ("goes to *∞*") As $x \to 0$ −, 1 $\frac{1}{x}$ drops without bound ("goes to *-*∞") This behavior is written as:

$$
\lim_{x \to 0+} \frac{1}{x} = \infty \qquad \qquad \lim_{x \to 0-} \frac{1}{x} = -\infty
$$

In general, the table above justifies that

$$
\frac{1}{\text{small positive}} = \text{large positive}
$$
\n
$$
\frac{1}{\text{small negative}} = \text{large negative}
$$

so if $f(x)$ is any expression,

if
$$
f(x) \to 0
$$
 and $f(x) > 0$ (written as $f(x) \to 0+$), then $\frac{1}{f(x)} \to \infty$
if $f(x) \to 0$ and $f(x) < 0$ (written as $f(x) \to 0-$), then $\frac{1}{f(x)} \to -\infty$

These facts are written in shorthand as $\frac{1}{2}$ $\frac{1}{0+} = \infty$ and $\frac{1}{0-}$ 0*−* = *−∞* **Example.** Find the limits.

$$
\lim_{x \to 2+} \frac{1}{6 - 3x} =
$$

$$
\lim_{x \to 2-} \frac{1}{6 - 3x} =
$$

Note. When $\lim_{x \to a} f(x) = \infty$ (or *−∞*, or same in the case of a one-sided limit), then the line $x = a$ is a vertical asymptote of the graph of *f*.

Example. Consider the functions of type $f(x) = \frac{1}{x}$ $\frac{1}{x^c}$, $(c > 0)$ and see what happens to values of $f(x)$ as x grows without bound.

\boldsymbol{x}	$\mathbf{1}$ \overline{x}	$rac{1}{x^2}$	$\mathbf{1}$ $\overline{\sqrt{x}}$	$\mathbf{1}$ $\overline{x^c}$

In all cases, values of $f(x)$ approach 0, so we write $\lim_{x \to \infty}$ 1 $\frac{1}{x^c} = 0$ for $c > 0$. This is true, essentially, because:

$$
\frac{1}{\text{large positive}} = \text{small positive}
$$
\n
$$
\frac{1}{\text{large negative}} = \text{small negative}
$$

which gives rise to this shorthand: $\frac{1}{1}$ *∞* $= 0$ and $\frac{1}{1}$ *−∞* $= 0.$

Note. When $\lim_{x \to \infty} f(x) = L$ (or $x \to -\infty$), then the line $y = L$ is a horizontal asymptote of the graph of *f*.

Quintessential Example.

 $f(x) = \arctan x$

Example. Consider the functions of type $f(x) = x^n$, $n > 0$ integer, and see what happens to values of $f(x)$ as x grows without bound by evaluating and by observing the graphs. More generally, consider functions of type $f(x) = x^c, c > 0$.

\boldsymbol{x}	x^2	x^3	\sqrt{x}	\boldsymbol{x}^c

We see:

$$
\lim_{x \to \infty} x^n = \infty \qquad \lim_{x \to -\infty} x^n = \begin{cases} \infty & \text{if } n \text{ is even} \\ -\infty & \text{if } n \text{ is odd} \end{cases} \qquad \lim_{x \to \infty} x^c = \infty \qquad \begin{pmatrix} c, n > 0 \\ n \text{ an integer} \end{pmatrix}
$$

Example. $\lim_{x \to \infty} (x^3 - 5x^2 + 3x + 10) =$

Note. For a general polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, $\lim_{x \to \pm \infty} P(x) = \pm \infty$, which depends on the degree and the sign of *an*.

Show this statement for *n* odd, $a_n < 0$, $x \to \infty$.

Thus the graphs of polynomials have one of these general shapes:

Example. $\lim_{x\to\infty}$ $\frac{5x^2-3x+1}{x}$ $\frac{3x-3x+1}{2x^2+4x+3} =$ **Example.** lim*^x→∞* $2x^2 - 7x + 1$ $\frac{12}{x^3+1}$ =

Extended limit laws. $\frac{1}{2}$ $\frac{1}{0+} = \infty$ 1 0*−* = *−∞ L ±∞* $= 0$ $L \cdot \infty =$ $\left\{\begin{array}{ccc} \infty & \text{if } L > 0 & \infty + \infty = \infty & L + \infty = \infty \end{array}\right.$ *−∞* if *L* < 0 *∞ · ∞* = ∞ *L* − ∞ = −∞

Keeping in mind these are shorthand for statements about limits, write out what $L \cdot \infty = \infty$ $(L > 0)$ means.

Missing from the list of extended limit laws are the expressions

$$
\infty - \infty \qquad \qquad 0 \cdot \infty \qquad \qquad \frac{\infty}{\infty} \qquad \qquad \frac{0}{0}
$$

These are called *indeterminate forms*, because the limit cannot be determined just by knowing the limits of *f* and *g*.

Example. Show that $0 \cdot \infty$ is indeterminate by providing examples of functions f and g so that in each example $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} g(x) = \infty$, but $\lim_{x\to 0} f(x)g(x)$ varies. (Think simple.)