Name:

Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Define the uniform norm of a bounded function.

Theory 2. (3pts) State the theorem on interchange of limit and integral.

Theory 3. (3pts) Define when a function $f : [a, b] \to \mathbf{R}$ is of bounded variation.

Type A problems (5pts each)

A1. Show that the sequence of functions $f_n(x) = \frac{2^{-nx}}{1+nx^2}$ does not converge uniformly to 0 on [0, 1].

A2. Show that $\lim_{n \to \infty} \int_0^1 \sin\left(\frac{x^2}{n}\right) dx = 0.$

A3. As previously defined, let $x^a = E(aL(x))$, where E, L are the exponential and logarithmic functions. Show 1) $(xy)^a = x^a y^a$ 2) $L(x^a) = aL(x)$.

A4. Find the variation of the function $f(x) = \sin x$ on the interval $[0, 4\pi]$.

A5. The curve C is given by $\mathbf{r} : [0,1] \to \mathbf{R}^3$, $\mathbf{r}(t) = (5t, 2t^{\frac{3}{2}}, t^2)$. Show that C is rectifiable and give an upper bound for its length.

Type B problems (8pts each)

B1. Let $f_n : \mathbf{R} \to \mathbf{R}$ be the sequence of functions given by $f_n(x) = \frac{1}{1 + n^2 x^2}$. Show that a) (f_n) converges pointwise to a function f.

b) (f_n) converges uniformly on $[a, \infty)$ for every a > 0.

c) (f_n) does not converge uniformly on $[0, \infty)$.

B2. Find a rational number (it doesn't have to be simplified to form $\frac{m}{n}$) that approximates $\sqrt[3]{e}$ with accuracy 10^{-4} .

B3. Suppose $f : \mathbf{R} \to \mathbf{R}$ has the properties: $f''(x) = \frac{1}{2}f(x)$, and f(0) = f'(0) = 0. Show that f(x) = 0 for all $x \in \mathbf{R}$.

B4. Show: if $f : [a, b] \to \mathbf{R}$ is of bounded variation, then so is f^2 , where $f^2(x) = (f(x))^2$.

B5. Suppose $g : \mathbf{R} \to \mathbf{R}$ has a continuous derivative, and $f : [a, b] \to \mathbf{R}$ is of bounded variation. Show that $g \circ f : [a, b] \to \mathbf{R}$ is of bounded variation.

Type C problems (12pts each)

C1. Does the converse to B4 hold: if f^2 is of bounded variation, is f?