Integration Theory — Problem Farm 1.1
MAT 725, Fall 2024 — D. Ivansié Bounded Variation

TYPE A PROBLEMS (5PTS EACH)

A1. Show that if f is of bounded variation on [a,b], then f is bounded on [a, b].

A2. Let f,g: [a,b] = R be of bounded variation. Show that for any ¢ € R the functions
f £ g, cf are of bounded variation.

A3. Let f(z) =siniif 2 € (0,1], f(0) = 0. Is f of bounded variation on [0, 1]?

A4. Let f : [a,b] — R be a function, and suppose there is a partition (co, c1, ..., ¢,) of [a, b
such that on every subinterval [¢;_1, ¢;] the function f is monotone. Determine the variation
of f over [a,b].

A5. Let f,g: [a,b] — R be of bounded variation. In A2 one shows that f + g is of bounded
variation and that V(f + ¢g) < V(f) + V(g). Give a simple example of f and g so that
V(f+9) <V(f)+V(g).

TYPE B PROBLEMS (8PTS EACH)

B1. Let f,g: [a,b] — R be of bounded variation. Show that f - ¢ is of bounded variation.
Additionally, if there exists an € > 0 such that g(x) > € on [a, b], show that g is of bounded
variation.

B2. Let f(z) = 2®sin < if z € (0,1], f(0) = 0. Show that f is of bounded variation on [0, 1].
Why can’t you use Corollary 1.107 (Use the Mean Value Theorem in Vp instead.)

B3. Let f, : [a,b] — R be a sequence of functions of bounded variation so that f, — f
(pointwise). If V,, is the variation of f,, and V,, < M < oo for all n € N, show that f is a
function of bounded variation and that V < M.

B4. Give an example of a uniformly convergent sequence f,, of functions of bounded variation
whose limit is not of bounded variation.

B5. Let f : [a,b] — R be a function such that for every § > 0, f : [a + J,b] — R is of
bounded variation. Assume further that Vi,155 < M < oo for every 6 > 0. Show that
f :[a,b] — R is of bounded variation. Give a (super-simple) counterexample to show that
Viay) < M does not necessarily follow. What additional condition will guarantee Vi 5 < M?

B6. Let f : [a,b] — R be a continuous function of bounded variation. Then, like in the proof
of Jordan’s Theorem, we define the function V(x) = V|, 4. Show that V(x) is continuous,
and that this implies that P(z) and N(x) are continuous, too. Hints: use additivity of V'
over intervals to get continuity of V(). Show first this tool for estimating Vi : if ¢ € [a, 0],
x>c,and P = (a,x1,...,2,_2,¢, ) is a partition of [a, x] that includes ¢, then

Ve —|f(z) = fc)| < Via,z) = Viea)-



TyPE C PROBLEMS (12PTS EACH)

C1. Is Thomae’s function (5.1.6.h in Bartle & Sherbert) of bounded variation on [0,1]?



Integration Theory — Problem Farm 1.2
MAT 725, Fall 2024 — D. Ivansié Rectifiable Curves

TYPE A PROBLEMS (5PTS EACH)

A1l. Let C be the line segment r : [0,1] — R3: r(t) = (1 — t)rg + try. Find L(C) from the
definition.

A2. Let C be the curve r : [a,b] — R3: r(t) =g, if t € [a,c] and r(t) = 1y, if t € (c,b] for
some ¢ € [a,b). Find L(C) from the definition.

A3. Let f : [a,b] = R be a function. Parametrize the graph C of f in the usual way:
r(t) = (t, f(t)), t € [a,b]. Show that C is rectifiable if and only if f is of bounded variation.

A4. Show that a curve C' given by r : [a,b] — R? is rectifiable if and only if both curves
T © [a,c] = R? and r|y : [¢,b] — R? are rectifiable. (There is no need for writing out
sums here, just use existing theorems.)

A5. For any ¢ > 0 and d such that ¢+ d > 0, show that ¢ — \/|d| < Ve+d < e+ +/|d|.
When does equality hold?

A6. Give a simple example that shows that conclusion of problem B2, L(C') = L(Cy) +
L(Cy) + d(r1(c),re(c)), is not valid if ry is not continuous at c.

AT7. Give a simple example that shows that C1 is not true if we remove the assumption of
continuity for r. That is, give an example of a simple (discontinuous) curve r : [a,b] — R?
so that there is an M < L(C) such that for every 6 > 0 there is a partition P of [a, b] with
||P|| < ¢ and lp < M.

TYPE B PROBLEMS (8PTS EACH)

B1. Let C be the line segment r : [0, 1] — R? (see A1). Show L(C) = /V(2)2 + V(y)2 + V(2)?,
where V' (x) is the variation of the z-coordinate function of r, etc. But:

a) Give a curvy 2-dimensional counterexample r : [0,1] — R? that shows above is not
true in general.

b) Give a counterexample r : [0, 1] — R? that shows above is not true even for piecewise-
linear curves.

B2. Suppose that a curve C given by r : [a,b] — R3 is rectifiable. If C; and C, are
the restrictions r| : [a,¢] — R* and rfy : [c,b] — R? (rectifiable by A4), show that
L(C) = L(Cy) + L(Cy). (See proof of Theorem 1.2.)

B3. Suppose rectifiable curves C; and Cy are given by functions r; : [a,¢] — R? and
ry : [¢,b] — R3, where ry is continuous at c¢. Define r : [a,b] — R? as r(t) = ri(t), if
t € la,c], and r(t) = ra(t), if t € (¢,b]. Show that L(C) = L(Cy) + L(Cy) + d(ri(c), ra(c)),
where d is distance between points in R3.



B4. Prove the theorem at the end of section 1.2: if C is the curve r : [a,b] — R?, r(t) =
(x(t),y(t), 2(t)), and z, y, z all have continuous derivatives on [a, b], then

L(C) = / VIO g R+ 2D .

Start with the sum lp and use the Mean Value Theorem on x(t;) — x(t;—1), etc. Note that
it will give you different points u;, v;,w; in the interval [t;_1,t;] for each of the z, y and z
components. Now use A5 and uniform continuity of 2/, ¥’ and z’ to show this expression
can be made close to one where u; = v; = w;, which is a Riemann sum for the function

V()2 +y ()2 + (1)

TyPE C PROBLEMS (12PTS EACH)

C1. Let C be a continuous curve r : [a,b] — R?. Show that L(C) = limyp|_o lp, that is,
show that for every M < L(C) there exists a ¢ > 0, such that if ||P|| < d, then lp > M.
(See the proof of 1.9.)



Integration Theory — Problem Farm 1.3
MAT 725, Fall 2024 — D. Ivansié¢ Riemann-Stieltjes Integral

TYPE A PROBLEMS (5PTS EACH)

A1. Use the definition to find fab f dy in the following cases:
a) o is a constant function, b) f is constant.

A2. Compute f()% 2? dsin x using B2.

A3. Show Cauchy’s criterion: f is Riemann-Stieltjes integrable if and only if for every € > 0
there exists a ¢ > 0 such that for any two tagged partitions P, Q with [|P]|, ||Q[| < ¢ we
have |S(fa7j) - S(fa Q)| <€

A4. Give an example (simple — A1 can help!) where a < ¢ < b and [ fdy and fcb fdy
both exist, but f; f dy does not. Does this contradict Theorem 1.177

A5. Prove Theorem 1.16a: If fffdgp exists, so do fab cf dp and f; fd(cp) and
JLefdo=c]] fdp= [ fd(cp).

A6. Prove Theorem 1.16c: If fabfdgo and fabfd@/) exist, then fabfd(go + 1)) exists and
S fde+v) =[] fdp+ [} f dy.

AT7. Prove the Mean Value Theorem: If f is continuous and ¢ is increasing on [a, b], then
there exists a ¢ € [a, b] such that fab fde = fle)p(b) —¢(a)).

TYPE B PROBLEMS (8PTS EACH)

B1. Let ¢ : [a,b] — R be a step function with subdivision a = ag < a1 < - -+ < a,, = bof [a, b]

such that ¢|, ;) is constant. Set p(a;—) = lim,_,q,— p(x) and @(a;+) = limg_q,4 ©()
b n

(p(ao—) = ¢(a), plam+) = ¢(b)). Show that [ fde =3 7, f(ai)(p(ait) — (a;i—)) for a

continuous f : [a,b] — R. Hint: use induction on n, applying Theorem 1.17.

B2. If f and ¢’ are both continuous, prove that fab fdp = fab f¢', where the latter is a
Riemann integral.

B3. Prove Theorem 1.17: fj fdy exists, and ¢ € (a,b), then [* f dyp and fcb f dy both exist,

and f; fdo= [ fde+ fcb fdp. (See proof of corresponding theorem for Riemann integrals,
7.2.9.)



TyPE C PROBLEMS (12PTS EACH)

C1. Suppose f is continuous and ¢ is of bounded variation on [a, b]. Show:
a) (z) = [ fdy is of bounded variation on [a, b).
b) If g is continuous on [a, b], then f:gdw = ff gf deo.

C2. Suppose f is continuous and ¢ and ¢ are of bounded variation on [a,b]. Show that

J2rdew) = [P fode+ [P fody.



Integration Theory — Problem Farm 1.4

MAT 725, Fall 2024 — D. Ivansié¢ Open and Closed Sets

Al.
A2.
A3.
A4.
A5.
AG.

B1.
B2.

TYPE A PROBLEMS (5PTS EACH)

Prove Proposition 12 in 1.4.

Let A= {14 (=1)"% | n € N}. Determine A with explanation.
Let A= Q°N0,1]. Determine A with explanation.

Determine Int Q with explanation.

Show that a finite subset of R is always closed.

Is A= {2 | n € N} compact? Justify your answer.
TYPE B PROBLEMS (8PTS EACH)

Prove Proposition 13 in 1.4.

For a set A C R, show that x € A if and only if there exists a sequence (z,,) such that

x, € A for all n € N and x,, — x. Conclude that A is closed if and only if every convergent
sequence in A converges to an element of A.

B3.

For a set A C R, show that A = Ny F. F cosed F'. Conclude that A is the smallest closed

set that contains A in the sense that if F is closed and A C F, then A C F.

B4.

For a set A C R, show that Int A = Uyca, v open U. Conclude that Int A is the largest

open set contained in A in the sense that if U is open and U C A, then U C Int A.

B5.

Show that a set A C R is compact if and only if every sequence in A has a subsequence

that converges to an element of A. (Slap Borel’s Heine.)

B6.

Let f : R — R. Show that f is continuous if and only if for every open set V C R,

f~YV) is an open set.

B7.
BS8.

For a set A C R, show that Int(A°) = (A)°.

For sets A, B C R, show that AUB = AU B.

TyPE C PROBLEMS (12PTS EACH)

(none)



