Bounded Variation

Type A problems (5pts each)

- **A1.** Show that if f is of bounded variation on [a, b], then f is bounded on [a, b].
- **A2.** Let $f, g : [a, b] \to \mathbf{R}$ be of bounded variation. Show that for any $c \in \mathbf{R}$ the functions $f \pm g$, cf are of bounded variation.
- **A3.** Let $f(x) = \sin \frac{1}{x}$ if $x \in (0,1]$, f(0) = 0. Is f of bounded variation on [0,1]?
- **A4.** Let $f:[a,b] \to \mathbf{R}$ be a function, and suppose there is a partition (c_0, c_1, \ldots, c_n) of [a,b] such that on every subinterval $[c_{i-1}, c_i]$ the function f is monotone. Determine the variation of f over [a,b].
- **A5.** Let $f, g : [a, b] \to \mathbf{R}$ be of bounded variation. In **A2** one shows that f + g is of bounded variation and that $V(f + g) \leq V(f) + V(g)$. Give a simple example of f and g so that V(f + g) < V(f) + V(g).

Type B problems (8pts each)

- **B1.** Let $f, g : [a, b] \to \mathbf{R}$ be of bounded variation. Show that $f \cdot g$ is of bounded variation. Additionally, if there exists an $\epsilon > 0$ such that $g(x) \ge \epsilon$ on [a, b], show that $\frac{f}{g}$ is of bounded variation.
- **B2.** Let $f(x) = x^2 \sin \frac{1}{x}$ if $x \in (0, 1]$, f(0) = 0. Show that f is of bounded variation on [0, 1]. Why can't you use Corollary 1.10? (Use the Mean Value Theorem in $V_{\mathcal{P}}$ instead.)
- **B3.** Let $f_n : [a, b] \to \mathbf{R}$ be a sequence of functions of bounded variation so that $f_n \to f$ (pointwise). If V_n is the variation of f_n , and $V_n \leq M < \infty$ for all $n \in \mathbf{N}$, show that f is a function of bounded variation and that $V \leq M$.
- **B4.** Give an example of a uniformly convergent sequence f_n of functions of bounded variation whose limit is not of bounded variation.
- **B5.** Let $f:[a,b] \to \mathbf{R}$ be a function such that for every $\delta > 0$, $f:[a+\delta,b] \to \mathbf{R}$ is of bounded variation. Assume further that $V_{[a+\delta,b]} \leq M < \infty$ for every $\delta > 0$. Show that $f:[a,b] \to \mathbf{R}$ is of bounded variation. Give a (super-simple) counterexample to show that $V_{[a,b]} \leq M$ does not necessarily follow. What additional condition will guarantee $V_{[a,b]} \leq M$?
- **B6.** Let $f:[a,b] \to \mathbf{R}$ be a continuous function of bounded variation. Then, like in the proof of Jordan's Theorem, we define the function $V(x) = V_{[a,x]}$. Show that V(x) is continuous, and that this implies that P(x) and N(x) are continuous, too. Hints: use additivity of V over intervals to get continuity of V(x). Show first this tool for estimating $V_{[c,x]}$: if $c \in [a,b]$, x > c, and $\mathcal{P} = (a, x_1, \ldots, x_{n-2}, c, x)$ is a partition of [a,x] that includes c, then

$$V_{\mathcal{P}} - |f(x) - f(c)| \le V_{[a,x]} - V_{[c,x]}.$$

Type C problems (12pts each)

C1. Is Thomae's function (5.1.6.h in Bartle & Sherbert) of bounded variation on [0,1]?

Rectifiable Curves

Type A problems (5pts each)

- **A1.** Let C be the line segment $\mathbf{r}:[0,1]\to\mathbf{R}^3$: $\mathbf{r}(t)=(1-t)\mathbf{r}_0+t\mathbf{r}_1$. Find L(C) from the definition.
- **A2.** Let C be the curve $\mathbf{r}:[a,b]\to\mathbf{R}^3$: $\mathbf{r}(t)=\mathbf{r}_0$, if $t\in[a,c]$ and $\mathbf{r}(t)=\mathbf{r}_1$, if $t\in(c,b]$ for some $c\in[a,b)$. Find L(C) from the definition.
- **A3.** Let $f:[a,b] \to \mathbf{R}$ be a function. Parametrize the graph C of f in the usual way: $\mathbf{r}(t) = (t, f(t)), t \in [a, b]$. Show that C is rectifiable if and only if f is of bounded variation.
- **A4.** Show that a curve C given by $\mathbf{r}:[a,b]\to\mathbf{R}^3$ is rectifiable if and only if both curves $\mathbf{r}|_{[a,c]}:[a,c]\to\mathbf{R}^3$ and $\mathbf{r}|_{[c,b]}:[c,b]\to\mathbf{R}^3$ are rectifiable. (There is no need for writing out sums here, just use existing theorems.)
- **A5.** For any $c \ge 0$ and d such that $c + d \ge 0$, show that $c \sqrt{|d|} \le \sqrt{c + d} \le \sqrt{c} + \sqrt{|d|}$. When does equality hold?
- **A6.** Give a simple example that shows that conclusion of problem **B2**, $L(C) = L(C_1) + L(C_2) + d(\mathbf{r}_1(c), \mathbf{r}_2(c))$, is not valid if \mathbf{r}_2 is not continuous at c.
- **A7.** Give a simple example that shows that **C1** is not true if we remove the assumption of continuity for **r**. That is, give an example of a simple (discontinuous) curve $\mathbf{r}:[a,b]\to\mathbf{R}^3$ so that there is an M< L(C) such that for every $\delta>0$ there is a partition \mathcal{P} of [a,b] with $||\mathcal{P}||<\delta$ and $l_{\mathcal{P}}< M$.

Type B problems (8pts each)

- **B1.** Let C be the line segment $\mathbf{r}:[0,1]\to\mathbf{R}^3$ (see **A1**). Show $L(C)=\sqrt{V(x)^2+V(y)^2+V(z)^2}$, where V(x) is the variation of the x-coordinate function of \mathbf{r} , etc. But:
 - a) Give a curvy 2-dimensional counterexample $\mathbf{r}:[0,1]\to\mathbf{R}^2$ that shows above is not true in general.
 - b) Give a counterexample $\mathbf{r}:[0,1]\to\mathbf{R}^2$ that shows above is not true even for piecewise-linear curves.
- **B2.** Suppose that a curve C given by $\mathbf{r}:[a,b]\to\mathbf{R}^3$ is rectifiable. If C_1 and C_2 are the restrictions $\mathbf{r}|_{[a,c]}:[a,c]\to\mathbf{R}^3$ and $\mathbf{r}|_{[c,b]}:[c,b]\to\mathbf{R}^3$ (rectifiable by $\mathbf{A4}$), show that $L(C)=L(C_1)+L(C_2)$. (See proof of Theorem 1.2.)
- **B3.** Suppose rectifiable curves C_1 and C_2 are given by functions $\mathbf{r}_1 : [a, c] \to \mathbf{R}^3$ and $\mathbf{r}_2 : [c, b] \to \mathbf{R}^3$, where \mathbf{r}_2 is continuous at c. Define $\mathbf{r} : [a, b] \to \mathbf{R}^3$ as $\mathbf{r}(t) = r_1(t)$, if $t \in [a, c]$, and $\mathbf{r}(t) = r_2(t)$, if $t \in (c, b]$. Show that $L(C) = L(C_1) + L(C_2) + d(\mathbf{r}_1(c), \mathbf{r}_2(c))$, where d is distance between points in \mathbf{R}^3 .

B4. Prove the theorem at the end of section 1.2: if C is the curve $\mathbf{r}:[a,b]\to\mathbf{R}^3$, $\mathbf{r}(t)=(x(t),y(t),z(t))$, and x,y,z all have continuous derivatives on [a,b], then

$$L(C) = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt.$$

Start with the sum $l_{\mathcal{P}}$ and use the Mean Value Theorem on $x(t_i) - x(t_{i-1})$, etc. Note that it will give you different points u_i, v_i, w_i in the interval $[t_{i-1}, t_i]$ for each of the x, y and z components. Now use **A5** and uniform continuity of x', y' and z' to show this expression can be made close to one where $u_i = v_i = w_i$, which is a Riemann sum for the function $\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$.

Type C problems (12pts each)

C1. Let C be a continuous curve $\mathbf{r}:[a,b]\to\mathbf{R}^3$. Show that $L(C)=\lim_{\|\mathcal{P}\|\to 0}l_{\mathcal{P}}$, that is, show that for every M< L(C) there exists a $\delta>0$, such that if $\|\mathcal{P}\|<\delta$, then $l_{\mathcal{P}}>M$. (See the proof of 1.9.)

Riemann-Stieltjes Integral

Type A problems (5pts each)

- **A1.** Use the definition to find $\int_a^b f d\varphi$ in the following cases: a) φ is a constant function, b) f is constant.
- **A2.** Compute $\int_0^{\frac{\pi}{2}} x^2 d \sin x$ using **B2**.
- **A3.** Show Cauchy's criterion: f is Riemann-Stieltjes integrable if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for any two tagged partitions $\dot{\mathcal{P}}$, $\dot{\mathcal{Q}}$ with $||\dot{\mathcal{P}}||$, $||\dot{\mathcal{Q}}|| < \delta$ we have $|S(f,\dot{\mathcal{P}}) S(f,\dot{\mathcal{Q}})| < \epsilon$.
- **A4.** Give an example (simple **A1** can help!) where a < c < b and $\int_a^c f \, d\varphi$ and $\int_c^b f \, d\varphi$ both exist, but $\int_a^b f \, d\varphi$ does not. Does this contradict Theorem 1.17?
- **A5.** Prove Theorem 1.16a: If $\int_a^b f \, d\varphi$ exists, so do $\int_a^b cf \, d\varphi$ and $\int_a^b f \, d(c\varphi)$ and $\int_a^b cf \, d\varphi = c \int_a^b f \, d\varphi = \int_a^b f \, d(c\varphi)$.
- **A6.** Prove Theorem 1.16c: If $\int_a^b f \, d\varphi$ and $\int_a^b f \, d\psi$ exist, then $\int_a^b f \, d(\varphi + \psi)$ exists and $\int_a^b f \, d(\varphi + \psi) = \int_a^b f \, d\varphi + \int_a^b f \, d\psi$.
- **A7.** Prove the Mean Value Theorem: If f is continuous and φ is increasing on [a,b], then there exists a $c \in [a,b]$ such that $\int_a^b f \, d\varphi = f(c)(\varphi(b) \varphi(a))$.

Type B problems (8pts each)

- **B1.** Let $\varphi:[a,b]\to \mathbf{R}$ be a step function with subdivision $a=a_0< a_1<\cdots< a_n=b$ of [a,b] such that $\varphi|_{(a_{i-1},a_i)}$ is constant. Set $\varphi(a_i-)=\lim_{x\to a_i-}\varphi(x)$ and $\varphi(a_i+)=\lim_{x\to a_i+}\varphi(x)$ $(\varphi(a_0-)=\varphi(a),\ \varphi(a_m+)=\varphi(b))$. Show that $\int_a^b f\,d\varphi=\sum_{i=0}^n f(a_i)(\varphi(a_i+)-\varphi(a_i-))$ for a continuous $f:[a,b]\to \mathbf{R}$. Hint: use induction on n, applying Theorem 1.17.
- **B2.** If f and φ' are both continuous, prove that $\int_a^b f \, d\varphi = \int_a^b f \varphi'$, where the latter is a Riemann integral.
- **B3.** Prove Theorem 1.17: $\int_a^b f \, d\varphi$ exists, and $c \in (a, b)$, then $\int_a^c f \, d\varphi$ and $\int_c^b f \, d\varphi$ both exist, and $\int_a^b f \, d\varphi = \int_a^c f \, d\varphi + \int_c^b f \, d\varphi$. (See proof of corresponding theorem for Riemann integrals, 7.2.9.)

Type C Problems (12pts each)

C1. Suppose f is continuous and φ is of bounded variation on [a,b]. Show: a) $\psi(x) = \int_a^x f \, d\varphi$ is of bounded variation on [a,b]. b) If g is continuous on [a,b], then $\int_a^b g \, d\psi = \int_a^b g f \, d\varphi$.

- **C2.** Suppose f is continuous and φ and ψ are of bounded variation on [a,b]. Show that $\int_a^b f \, d(\varphi \psi) = \int_a^b f \psi \, d\varphi + \int_a^b f \varphi \, d\psi$.

Integration Theory — Problem Farm 1.4 MAT 725, Fall 2024 — D. Ivanšić

Open and Closed Sets

Type A problems (5pts each)

- **A1.** Prove Proposition 12 in 1.4.
- **A2.** Let $A = \{1 + (-1)^n \frac{1}{n} \mid n \in \mathbb{N}\}$. Determine \overline{A} with explanation.
- **A3.** Let $A = \mathbf{Q}^c \cap [0, 1]$. Determine \overline{A} with explanation.
- A4. Determine Int Q with explanation.
- **A5.** Show that a finite subset of \mathbf{R} is always closed.
- **A6.** Is $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ compact? Justify your answer.

Type B problems (8pts each)

- **B1.** Prove Proposition 13 in 1.4.
- **B2.** For a set $A \subseteq \mathbf{R}$, show that $x \in \overline{A}$ if and only if there exists a sequence (x_n) such that $x_n \in A$ for all $n \in \mathbf{N}$ and $x_n \to x$. Conclude that A is closed if and only if every convergent sequence in A converges to an element of A.
- **B3.** For a set $A \subseteq \mathbf{R}$, show that $\overline{A} = \bigcap_{A \subset F, \ F \text{ closed}} F$. Conclude that \overline{A} is the smallest closed set that contains A in the sense that if F is closed and $A \subseteq F$, then $\overline{A} \subseteq F$.
- **B4.** For a set $A \subseteq \mathbf{R}$, show that Int $A = \bigcup_{U \subset A, U \text{ open }} U$. Conclude that Int A is the largest open set contained in A in the sense that if U is open and $U \subseteq A$, then $U \subseteq \text{Int } A$.
- **B5.** Show that a set $A \subset \mathbf{R}$ is compact if and only if every sequence in A has a subsequence that converges to an element of A. (Slap Borel's Heine.)
- **B6.** Let $f: \mathbf{R} \to \mathbf{R}$. Show that f is continuous if and only if for every open set $V \subseteq \mathbf{R}$, $f^{-1}(V)$ is an open set.
- **B7.** For a set $A \subseteq \mathbf{R}$, show that $\operatorname{Int}(A^c) = (\overline{A})^c$.
- **B8.** For sets $A, B \subseteq \mathbf{R}$, show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Type C problems (12pts each)

(none)