
Integration Theory — Problem Farm 1.1
MAT 725, Fall 2024 — D. Ivanšić Bounded Variation

Type A problems (5pts each)

A1. Show that if f is of bounded variation on [a, b], then f is bounded on [a, b].

A2. Let f, g : [a, b] → R be of bounded variation. Show that for any c ∈ R the functions
f ± g, cf are of bounded variation.

A3. Let f(x) = sin 1
x
if x ∈ (0, 1], f(0) = 0. Is f of bounded variation on [0, 1]?

A4. Let f : [a, b] → R be a function, and suppose there is a partition (c0, c1, . . . , cn) of [a, b]
such that on every subinterval [ci−1, ci] the function f is monotone. Determine the variation
of f over [a, b].

A5. Let f, g : [a, b] → R be of bounded variation. In A2 one shows that f +g is of bounded
variation and that V (f + g) ≤ V (f) + V (g). Give a simple example of f and g so that
V (f + g) < V (f) + V (g).

Type B problems (8pts each)

B1. Let f, g : [a, b] → R be of bounded variation. Show that f · g is of bounded variation.
Additionally, if there exists an ϵ > 0 such that g(x) ≥ ϵ on [a, b], show that f

g
is of bounded

variation.

B2. Let f(x) = x2 sin 1
x
if x ∈ (0, 1], f(0) = 0. Show that f is of bounded variation on [0, 1].

Why can’t you use Corollary 1.10? (Use the Mean Value Theorem in VP instead.)

B3. Let fn : [a, b] → R be a sequence of functions of bounded variation so that fn → f
(pointwise). If Vn is the variation of fn, and Vn ≤ M < ∞ for all n ∈ N, show that f is a
function of bounded variation and that V ≤M .

B4. Give an example of a uniformly convergent sequence fn of functions of bounded variation
whose limit is not of bounded variation.

B5. Let f : [a, b] → R be a function such that for every δ > 0, f : [a + δ, b] → R is of
bounded variation. Assume further that V[a+δ,b] ≤ M < ∞ for every δ > 0. Show that
f : [a, b] → R is of bounded variation. Give a (super-simple) counterexample to show that
V[a,b] ≤M does not necessarily follow. What additional condition will guarantee V[a,b] ≤M?

B6. Let f : [a, b] → R be a continuous function of bounded variation. Then, like in the proof
of Jordan’s Theorem, we define the function V (x) = V[a,x]. Show that V (x) is continuous,
and that this implies that P (x) and N(x) are continuous, too. Hints: use additivity of V
over intervals to get continuity of V (x). Show first this tool for estimating V[c,x] : if c ∈ [a, b],
x > c, and P = (a, x1, . . . , xn−2, c, x) is a partition of [a, x] that includes c, then

VP − |f(x)− f(c)| ≤ V[a,x] − V[c,x].



Type C problems (12pts each)

C1. Is Thomae’s function (5.1.6.h in Bartle & Sherbert) of bounded variation on [0,1]?



Integration Theory — Problem Farm 1.2
MAT 725, Fall 2024 — D. Ivanšić Rectifiable Curves

Type A problems (5pts each)

A1. Let C be the line segment r : [0, 1] → R3: r(t) = (1 − t)r0 + tr1. Find L(C) from the
definition.

A2. Let C be the curve r : [a, b] → R3: r(t) = r0, if t ∈ [a, c] and r(t) = r1, if t ∈ (c, b] for
some c ∈ [a, b). Find L(C) from the definition.

A3. Let f : [a, b] → R be a function. Parametrize the graph C of f in the usual way:
r(t) = (t, f(t)), t ∈ [a, b]. Show that C is rectifiable if and only if f is of bounded variation.

A4. Show that a curve C given by r : [a, b] → R3 is rectifiable if and only if both curves
r|[a,c] : [a, c] → R3 and r|[c,b] : [c, b] → R3 are rectifiable. (There is no need for writing out
sums here, just use existing theorems.)

A5. For any c ≥ 0 and d such that c + d ≥ 0, show that c −
√

|d| ≤
√
c+ d ≤

√
c +

√
|d|.

When does equality hold?

A6. Give a simple example that shows that conclusion of problem B2, L(C) = L(C1) +
L(C2) + d(r1(c), r2(c)), is not valid if r2 is not continuous at c.

A7. Give a simple example that shows that C1 is not true if we remove the assumption of
continuity for r. That is, give an example of a simple (discontinuous) curve r : [a, b] → R3

so that there is an M < L(C) such that for every δ > 0 there is a partition P of [a, b] with
||P|| < δ and lP < M .

Type B problems (8pts each)

B1. Let C be the line segment r : [0, 1] → R3 (seeA1). Show L(C) =
√
V (x)2 + V (y)2 + V (z)2,

where V (x) is the variation of the x-coordinate function of r, etc. But:

a) Give a curvy 2-dimensional counterexample r : [0, 1] → R2 that shows above is not
true in general.

b) Give a counterexample r : [0, 1] → R2 that shows above is not true even for piecewise-
linear curves.

B2. Suppose that a curve C given by r : [a, b] → R3 is rectifiable. If C1 and C2 are
the restrictions r|[a,c] : [a, c] → R3 and r|[c,b] : [c, b] → R3 (rectifiable by A4), show that
L(C) = L(C1) + L(C2). (See proof of Theorem 1.2.)

B3. Suppose rectifiable curves C1 and C2 are given by functions r1 : [a, c] → R3 and
r2 : [c, b] → R3, where r2 is continuous at c. Define r : [a, b] → R3 as r(t) = r1(t), if
t ∈ [a, c], and r(t) = r2(t), if t ∈ (c, b]. Show that L(C) = L(C1) + L(C2) + d(r1(c), r2(c)),
where d is distance between points in R3.



B4. Prove the theorem at the end of section 1.2: if C is the curve r : [a, b] → R3, r(t) =
(x(t), y(t), z(t)), and x, y, z all have continuous derivatives on [a, b], then

L(C) =

∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

Start with the sum lP and use the Mean Value Theorem on x(ti) − x(ti−1), etc. Note that
it will give you different points ui, vi, wi in the interval [ti−1, ti] for each of the x, y and z
components. Now use A5 and uniform continuity of x′, y′ and z′ to show this expression
can be made close to one where ui = vi = wi, which is a Riemann sum for the function√
x′(t)2 + y′(t)2 + z′(t)2.

Type C problems (12pts each)

C1. Let C be a continuous curve r : [a, b] → R3. Show that L(C) = lim||P||→0 lP , that is,
show that for every M < L(C) there exists a δ > 0, such that if ||P|| < δ, then lP > M .
(See the proof of 1.9.)



Integration Theory — Problem Farm 1.3
MAT 725, Fall 2024 — D. Ivanšić Riemann-Stieltjes Integral

Type A problems (5pts each)

A1. Use the definition to find
∫ b

a
f dφ in the following cases:

a) φ is a constant function, b) f is constant.

A2. Compute
∫ π

2

0
x2 d sin x using B2.

A3. Show Cauchy’s criterion: f is Riemann-Stieltjes integrable if and only if for every ϵ > 0
there exists a δ > 0 such that for any two tagged partitions Ṗ , Q̇ with ||Ṗ||, ||Q̇|| < δ we
have |S(f, Ṗ)− S(f, Q̇)| < ϵ.

A4. Give an example (simple — A1 can help!) where a < c < b and
∫ c

a
f dφ and

∫ b

c
f dφ

both exist, but
∫ b

a
f dφ does not. Does this contradict Theorem 1.17?

A5. Prove Theorem 1.16a: If
∫ b

a
f dφ exists, so do

∫ b

a
cf dφ and

∫ b

a
f d(cφ) and∫ b

a
cf dφ = c

∫ b

a
f dφ =

∫ b

a
f d(cφ).

A6. Prove Theorem 1.16c: If
∫ b

a
f dφ and

∫ b

a
f dψ exist, then

∫ b

a
f d(φ + ψ) exists and∫ b

a
f d(φ+ ψ) =

∫ b

a
f dφ+

∫ b

a
f dψ.

A7. Prove the Mean Value Theorem: If f is continuous and φ is increasing on [a, b], then

there exists a c ∈ [a, b] such that
∫ b

a
f dφ = f(c)(φ(b)− φ(a)).

Type B problems (8pts each)

B1. Let φ : [a, b] → R be a step function with subdivision a = a0 < a1 < · · · < an = b of [a, b]
such that φ|(ai−1,ai) is constant. Set φ(ai−) = limx→ai− φ(x) and φ(ai+) = limx→ai+ φ(x)

(φ(a0−) = φ(a), φ(am+) = φ(b)). Show that
∫ b

a
f dφ =

∑n
i=0 f(ai)(φ(ai+) − φ(ai−)) for a

continuous f : [a, b] → R. Hint: use induction on n, applying Theorem 1.17.

B2. If f and φ′ are both continuous, prove that
∫ b

a
f dφ =

∫ b

a
fφ′, where the latter is a

Riemann integral.

B3. Prove Theorem 1.17:
∫ b

a
f dφ exists, and c ∈ (a, b), then

∫ c

a
f dφ and

∫ b

c
f dφ both exist,

and
∫ b

a
f dφ =

∫ c

a
f dφ+

∫ b

c
f dφ. (See proof of corresponding theorem for Riemann integrals,

7.2.9.)



Type C problems (12pts each)

C1. Suppose f is continuous and φ is of bounded variation on [a, b]. Show:
a) ψ(x) =

∫ x

a
f dφ is of bounded variation on [a, b].

b) If g is continuous on [a, b], then
∫ b

a
g dψ =

∫ b

a
gf dφ.

C2. Suppose f is continuous and φ and ψ are of bounded variation on [a, b]. Show that∫ b

a
f d(φψ) =

∫ b

a
fψ dφ+

∫ b

a
fφ dψ.



Integration Theory — Problem Farm 1.4
MAT 725, Fall 2024 — D. Ivanšić Open and Closed Sets

Type A problems (5pts each)

A1. Prove Proposition 12 in 1.4.

A2. Let A = {1 + (−1)n 1
n
| n ∈ N}. Determine A with explanation.

A3. Let A = Qc ∩ [0, 1]. Determine A with explanation.

A4. Determine IntQ with explanation.

A5. Show that a finite subset of R is always closed.

A6. Is A = { 1
n
| n ∈ N} compact? Justify your answer.

Type B problems (8pts each)

B1. Prove Proposition 13 in 1.4.

B2. For a set A ⊆ R, show that x ∈ A if and only if there exists a sequence (xn) such that
xn ∈ A for all n ∈ N and xn → x. Conclude that A is closed if and only if every convergent
sequence in A converges to an element of A.

B3. For a set A ⊆ R, show that A = ∩A⊂F, F closed F . Conclude that A is the smallest closed
set that contains A in the sense that if F is closed and A ⊆ F , then A ⊆ F .

B4. For a set A ⊆ R, show that IntA = ∪U⊂A, U open U . Conclude that IntA is the largest
open set contained in A in the sense that if U is open and U ⊆ A, then U ⊆ IntA.

B5. Show that a set A ⊂ R is compact if and only if every sequence in A has a subsequence
that converges to an element of A. (Slap Borel’s Heine.)

B6. Let f : R → R. Show that f is continuous if and only if for every open set V ⊆ R,
f−1(V ) is an open set.

B7. For a set A ⊆ R, show that Int(Ac) = (A)c.

B8. For sets A,B ⊆ R, show that A ∪ B = A ∪B.

Type C problems (12pts each)

(none)


