
Integration Theory — Lecture notes
MAT 725, Fall 2024 — D. Ivanšić

8.1 Pointwise and

Uniform Convergence

Definition. Let A ⊆ R and let fn : A → R be a function for every n ∈ N. We say that
(fn) is a sequence of functions. For each x ∈ A, (fn) gives rise to a sequence of numbers
(fn(x)). These sequences may converge for some x and diverge for others.

Definition 8.1.1. Let (fn) : A → R be a sequence of functions, A0 ⊆ A and let f : A0 → R.
We say that (fn) converges to f on A0 if for every x ∈ A0, fn(x) → f(x). In this case, we
say that f is the limit of (fn) on A0, or that (fn) converges pointwise on A0.

Notation. lim fn = f on A0 fn → f on A0

For the following examples, find the set A0 on which the sequence (fn) converges pointwise,
and find the limit of (fn) on A0. Draw graphs of the functions fn to help you see what is
happening.

Example. fn(x) =
x

n

Example. fn(x) = xn

Example. fn(x) =
x2 + nx

n
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Note. fn → f on A0 if and only if for every x ∈ A0 and every ε > 0 there is a K ∈ N such
that for all n ≥ K, |fn(x)− f(x)| < ε. Note that K depends on x and ε.

Compare the above statement to the definition below.

Definition 8.1.4. A sequence (fn) : A → R of functions
converges to f : A0 → R uniformly on A0 ⊆ A if for
every ε > 0 there is a k ∈ N such that for all n ≥ K,
|fn(x)− f(x)| < ε for all x ∈ A0.

Note that K depends only on ε, but not on x any more.

Notation. fn ⇒ f on A0 fn(x) ⇒ f(x) on A0

“uniformly” means convergence is occuring “with equal
speed” across all x ∈ A0.

Note. Clearly, if fn ⇒ f on A0, then fn → f on A0.

For the following examples, determine if there is set A0 on which the sequence (fn) converges
uniformly to a function f . and find the limit of (fn) on A0.

Example. fn(x) =
x

n

Example. Use negation of the definition of uniform continuity to show that fn(x) = xn

does not converge uniformly on [0, 1].
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Lemma 8.1.5. A sequence (fn) : A → R does not converge uniformly on A0 to a function
f : A0 → R if and only if there exists an ε0 > 0, a subsequence (fnk

) of (fn) and a sequence
xk ∈ A0 such that |fnk

(xk)− f(xk)| ≥ ε0 for all k ∈ N.

Definition 8.1.7. Let A ⊆ R, and let f : A → R be a bounded function (recall this means
that the set f(A) is bounded in R). We define the uniform norm of f on A as

||f ||A = sup{f(x) | x ∈ A}

Note that ||f ||A ≤ ε if and only if f(x) ≤ ε for every x ∈ A.

Lemma 8.1.8. A sequence (fn) : A → R of bounded functions converges uniformly to
f : A → R if and only if ||fn − f || → 0.

Proof.

Example. Show that the sequence fn(x) =
1

n
sin(nx + n) converges uniformly to the zero

function.
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Example. Show that sequence fn(x) = xn does not converge uniformly on the interval [0, 1].

Cauchy Criterion for Uniform Convergence 8.1.10. Let (fn) : A → R be a sequence
of bounded functions. Then (fn) converges uniformly to a bounded function f : A → R if
and only if for every ε > 0 there is a K ∈ N such that for all m,n ≥ K, ||fn − fm|| < ε.

Proof.
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Example. Let fn : [0, 1] → R, fn(x) = xn. lim fn = f , where f(x) =

{
0, if x ∈ [0, 1)
1, if x = 1

Comment on the continuity and differentiability of fn and f .

Example. Let fn : [0, 1] → R be the func-
tion pictured at right. Determine the fol-
lowing and comment.

f = lim fn =
∫ 1

0
f =∫ 1

0
fn = lim

∫ 1

0
fn =

Theorem 8.2.2. Let fn : A → R be a a sequence of continuous functions and let fn
converge uniformly on A to a function f : A → R. Then f is continuous on A.

Proof.
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Theorem 8.2.3. Let J be a bounded interval and let (fn) : J → R be a a sequence of
functions differentiable on J . Suppose there exists an x0 ∈ J such that (fn(x0)) converges
and that (f ′

n) converges uniformly on J to a function g : J → R. Then (fn) converges
uniformly on J to a a function g : J → R that is differentiable on J and f ′ = g.

Proof.
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Theorem 8.2.4. Let (fn) : [a, b] → R be a a sequence of Riemann-integrable functions
(that is, fn ∈ R[a, b]) that converges uniformly on [a, b] to a function f : [a, b] → R. Then
f ∈ R[a, b], and ∫ b

a

f = lim
n→∞

∫ b

a

fn

Proof.

Theorems 8.2.5 and 8.2.6. are some variations on convergence theorems 8.2.4 and 8.2.2
— read in book.
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8.3 The Exponential and

Logarithmic Functions

We wish to rigorously define the exponential function ex.

Theorem 8.3.1. There exists a function E : R → R such that:

i) E ′(x) = E(x) for all x ∈ R.

ii) E(0) = 1.

Proof.

Corollary 8.3.2. The function E(x) has derivatives of every order and E(n)(x) = E(x).

Corollary 8.3.3. If x ≥ −1, then 1 + x ≤ E(x), with equality achieved only for x = 0.

Proof.
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Theorem 8.3.4. The function E : R → R that satisfies the conditions from Theorem 8.3.1
is unique.

Proof.

Definition 8.3.5. The unique function E : R → R satisfying E ′(x) = E(x) and E(0) = 1
is called the exponential function. The number e = E(1) is called the Euler number, and we
often write E(x) = ex, because (as established in the next theorem), E(x) has properties of
taking powers.

Theorem 8.3.6. The exponential function E(x) has the following properties for all x, y ∈ R:

iii) E(x) ̸= 0.

iv) E(x+ y) = E(x)E(y).

v) E(r) = er, for all r ∈ Q.

Proof.
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Theorem 8.3.7. The exponential function E(x) is strictly increasing and has range (0,∞).
Furthermore,

vi) lim
x→∞

E(x) = ∞ and lim
x→−∞

E(x) = 0

Proof.

Note.

— Property (v) says that for rational numbers m
n
, E(m

n
) is the same as taking the power

e
m
n = n

√
em, which we have defined before. Because E is continuous, E(x) thus contin-

uously extends the idea of rational powers of e to irrational powers without (explicitly)
resorting to limits.

— Property (iv) tells us that the function E : (R,+) → (R+, ·) is a group isomorphism.
In other words, addition of real numbers and multiplication of positive numbers is
essentially the same thing, which is what inventors of logarithmic tables realized and
used to simplify computation of products and quotients.

Definition 8.3.8. Since E : R → (0,∞) is increasing and differentiable, and E ′(x) ̸= 0
it follows from Theorem 6.1.8. that E has an inverse function L : (0,∞) → R, called
the (natural) logarithm, also denoted ln. Then we have the standard equations for inverse
functions:

(L ◦ E)(x) = x ⇐⇒ ln ex = x and (E ◦ L)(y) = y ⇐⇒ eln y = y
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Theorem 8.3.9. The logarithm L : (0,∞) → R is strictly increasing and has the following
properties. For all x, y > 0:

vii) L′(x) = 1
x
.

viii) L(xy) = L(x) + L(y).

ix) L(1) = 0, L(e) = 1.

x) L(xr) = rL(x) for r ∈ Q.

xi) lim
x→∞

L(x) = ∞ and lim
x→0

L(x) = −∞.

Proof.
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Definition 8.3.10. Now we can extend the definition of the power function to any exponent
α ∈ R, including irrationals, by setting

xα = E(α ln x) = eα lnx

N
¯
ote. If α = r ∈ Q, we have

xα = E(αL(x)) = E(rL(x)) = E(L(xr)) = xr

which agrees with the original definition of the power function for rational powers.

Theorems 8.3.11–13. develop the usual properties of powers for the extended definition
(read).
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We establish existence of functions sin x, cos x.

Theorem 8.4.1. There exist functions C, S : R → R such that

i) C ′′(x) = −C(x) and S ′′(x) = −S(x) for all x ∈ R.

ii) C(0) = 1, C ′(0) = 0, S(0) = 0, S ′(0) = 1.

Proof.
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Corollary 8.4.2. The functions C and S from Theorem 8.4.1 satisfy:

iii) C ′(x) = −S(x) and S ′(x) = C(x).

Corollary 8.4.3. The functions C and S satisfy the Pythagorean identity:

iv) C(x)2 + S(x)2 = 1.

Proof.

Theorem 8.4.4. The functions C and S from Theorem 8.4.1 are unique.

Proof.

Definition 8.4.5. Since the functions C and S are unique, we give them names:

C(x) = cos x S(x) = sin x

Theorem 8.4.6. If a function f : R → R satisfies f ′′(x) = −f(x) then there exist α, β ∈ R
such that

f(x) = αC(x) + βS(x).

Proof.
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Theorem 8.4.7. The functions C and S have the following properties for all x, y ∈ R.

v) C is even: C(−x) = C(x) and S is odd: S(−x) = −S(x).

vi) C(x+ y) = C(x)C(y)− S(x)S(y) and S(x+ y) = S(x)C(y) + C(x)S(y).

Proof.

Theorems 8.4.8–11. have some more usual properties of C(x) and S(x) — including the
definition of π as the smallest positive zero of S — read.
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