Integration Theory — Lecture notes 2.1 Introduction to
MAT 725, Fall 2024 — D. Ivansié Measure Theory

We wish to define a function (measure)
m : {some subsets of R} — [0, o0

which captures the idea of “size,” which in R is “length.” (If we were working in R? or R?,
“size” would be “area” or “volume.”)

Definition. Let A be a o-algebra of subsets of R that contains all intervals. A function
m: A —[0,00] = [0,00) U{oo} is called a Lebesgue measure if it possesses these properties:

1) Meausure of an interval is its length. If I is an interval — (a,b), [a,b), (a,b], [a,?],
where open bounds could be co — then m(I) =length of I (possibly o)

2) Measure is translation-invariant. If E € A, then for every y € R,
E+y={e+yleec E}isalsoin A and m(E +y) = m(E).

3) Measure is countably additive over countable disjoint unions. If {Ey, k € N} is a dis-
joint collection of sets in A, then m (U Ek> = Z m(Ey) (disjoint collection means

kEN k=1
for every i # j, E; N E; = 0).

It turns out, it is not possible to achieve this for A = P(R) = all subsets of R, but it is for a
smaller collection, a o-algebra called Lebesgue measurable sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called outer measure.
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Integration Theory — Lecture notes 2.2 Lebesgue
MAT 725, Fall 2024 — D. Ivansié Outer Measure

Definition. Let I be an open interval, [ = (a,b), where a € {—oco} UR and b € R U {o0}.
The length of I, ((I), is defined as:

E(I):{ b—a, ifa,beR

0, ifa=—o0orb=o00

Definition. Let A C R. The outer measure of A, m*(A) or m*A, is defined as

. : - > where {Ix, k € N} is
= -
m"A = inf {;é([k) |AC H[k’ a cover of A by open intervals }
Note. 1) m*@ =0 2) If AC B, then m*A <m*B.

Example. If A is countable, then m*A = 0.

Proposition 2.1. If I is an interval, then m*I = ¢(I).

Proof.
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Proposition 2.2. Outer measure is translation-invariant, that is, for every A C R, y € R,
m*(A+y) = m*A.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collec-

tion {Ex, k € N} of subsets of R, m* (U Ek> < Zm*Ek
k=1 k=1

Proof.
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Integration Theory — Lecture notes 2.3 Lebesgue
MAT 725, Fall 2024 — D. Ivansié Measurable Sets

For an outer measure m*, we know that m*(AU B) < m*A + m*B holds. However, there
exist disjoint sets for which

m* (AU B) < m*A+ m*B, which is not desirable for a measure.
Setting ' = A, C' = AU B, this can be rewritten as

m*(C) <m*(ENC)+m*(E°NC), again, not desirable for a measure.

Definition. A set E is measurable if for any set A

m*A=m"(ANE)+m*"(AN E°)

It immediately follows that if one of A, B is measurable and A, B are disjoint, then
m*(AU B) = m*A+ m*B.

Note.

1) Since m*(A) < m* (AN E) +m*(AnN E°), to show E is measurable we only need to
show the opposite inequality: m*(AN E) +m* (AN E°) < m*(A).
2) E is measurable if and only if E¢ is measurable.

3) 0 and R are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable
sets are measurable.

Proof.
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Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a
o-algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let Ey, ..., E, be disjoint measurable sets and A C R. Then

n

m* (Aﬂ <O Ek>> = im*(AﬂEk) and m* (O Ek> = Zm*Ek

k=1 =

Proof.
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Proposition 2.7. The union of a countable collection of measurable sets is measurable.
The collection of measurable sets is a o-algebra.

Proof.

Proposition 2.8. Every interval is measurable.

Proof.
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Note.

—_

The collection of measurable sets is a o-algebra.

[\

Every open set is measurable — it is a countable union of open intervals.

w

)
)
) Every closed set is measurable — it is a complement of an open set.
)

4) Every F, and Gy set is measurable — they are intersections and unions of countable

collections of closed and open sets

5) Every Borel set is measurable — it is in the smallest o-algebra that contains open sets
and measurable sets are one g-algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a o-algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

Proof.
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MAT 725, Fall 2024 — D. Ivansié

2.4 Outer/Inner Approx. of

Lebesgue Measurable Sets

Let A be measurable, m*A < co. Then for any set B O A we have

m*(B—A)=m"B—m=xA

the excision property

Theorem 2.11. Let F be any set. Then measurability of F is equivalent to any of the

following four conditions.

Outer approximation by open and Gj sets:

1) For every € > 0 there is an open set U 2 E such that m*(U — F) < e.
2) There exists a Gg-set G D E such that m*(G — E) = 0.

Inner approximation by closed and F, sets:

3) For every € > 0 there is a closed set I’ C F such that m*(E — F) < e.
4) There exists an F,-set F' C E such that m*(E — F) = 0.

Proof.
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Note. The theorem implies that measurable sets have foorm £ =G —Y = F U Z where G
is a Gs-set, F'is an F,-set and Y and Z are sets of measure zero.

Note. For any set E there is an open set U = |J;—, Iy such that m*U < m*E + ¢, so
assuming m*F is finite, m*U — m*E < ¢, but this does not mean that m*(U — F) < ¢
because m*(U — F) = m*U — m*FE is valid only for measurable sets F.
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Theorem 2.12. Let E be measurable and m*E < oco. Then for every € > 0 there is a
disjoint collection of open intervals Iy, ..., I, such that

m(E—-U)+m"(U—-FE) <e, where U =1, U---UI,.

Proof.
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Integration Theory — Lecture notes 2.5 Countable Additivity,
MAT 725, Fall 2024 — D. Ivansié Continuity, Borel-Cantelli

Definition. Let M be the o-algebra of measurable subsets of R.
The function m : M — [0, 0o] defined by mE = m*FE is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if { Ex, k € N} is a disjoint
collection of measurable sets, then

G E. is measurable and m (G Ek) = f: mE;
k=1

k=1 k=1

Proof.

Theorem 2.14. The function m : M — [0,00] is a Lebesgue measure as defined in 2.1
(assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If {Ag, k € N} is an ascending collection 2) If { By, k € N} is a descending collection
of measurable sets, then of measurable sets, then

m U Ak> = lim mA; m (ﬂ Bk) = lim mB;,
(k:l k—oo o1 k—o00
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Proof.

Definition. If E is measurable, we say a property P holds almost everywhere on E (a.e.
on E, holds for almost all x € E) if there is a subset Fy C E such that mE, = 0 and P holds
for all z € F — Ej.
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The Borel Cantelli Lemma. Let {Ey, &k € N} be a collection of measurable sets satisfying

[e.9]

m(FEy) < co. Then almost all z € R belong to at most finitely many of the sets FEj.
k=1

Proof.
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