We wish to define a function (measure)

 $m: \{\text{some subsets of } \mathbf{R}\} \to [0, \infty]$

which captures the idea of "size," which in \mathbf{R} is "length." (If we were working in \mathbf{R}^2 or \mathbf{R}^3 , "size" would be "area" or "volume.")

Definition. Let \mathcal{A} be a σ -algebra of subsets of \mathbf{R} that contains all intervals. A function $m : \mathcal{A} \to [0, \infty] = [0, \infty) \cup \{\infty\}$ is called a *Lebesgue measure* if it possesses these properties:

- 1) Meausure of an interval is its length. If I is an interval (a, b), [a, b), (a, b], [a, b], where open bounds could be ∞ then m(I) =length of I (possibly ∞)
- 2) Measure is translation-invariant. If $E \in \mathcal{A}$, then for every $y \in \mathbf{R}$, $E + y = \{e + y \mid e \in E\}$ is also in \mathcal{A} and m(E + y) = m(E).
- 3) Measure is countably additive over countable disjoint unions. If $\{E_k, k \in \mathbf{N}\}$ is a disjoint collection of sets in \mathcal{A} , then $m\left(\bigcup_{k \in \mathbf{N}} E_k\right) = \sum_{k=1}^{\infty} m(E_k)$ (disjoint collection means for every $i \neq j, E_i \cap E_j = \emptyset$).

It turns out, it is not possible to achieve this for $\mathcal{A} = \mathcal{P}(\mathbf{R}) = \text{all subsets of } \mathbf{R}$, but it is for a smaller collection, a σ -algebra called *Lebesgue measurable* sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called *outer measure*.

Integration Theory — Lecture notes MAT 725, Fall 2024 — D. Ivanšić

 $\frac{2.2 \text{ Lebesgue}}{\text{Outer Measure}}$

Definition. Let I be an open interval, I = (a, b), where $a \in \{-\infty\} \cup \mathbb{R}$ and $b \in \mathbb{R} \cup \{\infty\}$. The *length of* I, $\ell(I)$, is defined as:

$$\ell(I) = \begin{cases} b-a, & \text{if } a, b \in \mathbf{R} \\ \infty, & \text{if } a = -\infty \text{ or } b = \infty \end{cases}$$

Definition. Let $A \subseteq \mathbf{R}$. The outer measure of A, $m^*(A)$ or m^*A , is defined as

$$m^*A = \inf\left\{\sum_{k=1}^{\infty} \ell(I_k) \mid A \subseteq \bigcup_{k=1}^{\infty} I_k, \quad \text{where } \{I_k, k \in \mathbf{N}\} \text{ is } a \text{ cover of } A \text{ by open intervals }\right\}$$

Note. 1)
$$m^* \emptyset = 0$$
 2) If $A \subseteq B$, then $m^* A \leq m^* B$.

Example. If A is countable, then $m^*A = 0$.

Proposition 2.1. If I is an interval, then $m^*I = \ell(I)$.

Proposition 2.2. Outer measure is translation-invariant, that is, for every $A \subseteq \mathbf{R}$, $y \in \mathbf{R}$, $m^*(A+y) = m^*A$.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collection $\{E_k, k \in \mathbf{N}\}$ of subsets of \mathbf{R} , $m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^* E_k$.

2.3 Lebesgue Measurable Sets

For an outer measure m^* , we know that $m^*(A \cup B) \leq m^*A + m^*B$ holds. However, there exist disjoint sets for which

 $m^*(A \cup B) < m^*A + m^*B$, which is not desirable for a measure.

Setting E = A, $C = A \cup B$, this can be rewritten as

 $m^*(C) < m^*(E \cap C) + m^*(E^c \cap C)$, again, not desirable for a measure.

Definition. A set E is *measurable* if for any set A

$$m^*A = m^*(A \cap E) + m^*(A \cap E^c)$$

It immediately follows that if one of A, B is measurable and A, B are disjoint, then $m^*(A \cup B) = m^*A + m^*B$.

Note.

- 1) Since $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$, to show E is measurable we only need to show the opposite inequality: $m^*(A \cap E) + m^*(A \cap E^c) \leq m^*(A)$.
- 2) E is measurable if and only if E^c is measurable.
- 3) \emptyset and **R** are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable sets are measurable.

Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a σ -algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let E_1, \ldots, E_n be disjoint measurable sets and $A \subseteq \mathbf{R}$. Then

$$m^*\left(A \cap \left(\bigcup_{k=1}^n E_k\right)\right) = \sum_{k=1}^n m^*(A \cap E_k) \quad \text{and} \quad m^*\left(\bigcup_{k=1}^n E_k\right) = \sum_{k=1}^n m^*E_k$$

Proposition 2.7. The union of a countable collection of measurable sets is measurable. The collection of measurable sets is a σ -algebra.

Proof.

Proposition 2.8. Every interval is measurable.

Note.

- 1) The collection of measurable sets is a σ -algebra.
- 2) Every open set is measurable it is a countable union of open intervals.
- 3) Every closed set is measurable it is a complement of an open set.
- 4) Every F_{σ} and G_{δ} set is measurable they are intersections and unions of countable collections of closed and open sets
- 5) Every Borel set is measurable it is in the smallest σ -algebra that contains open sets and measurable sets are one σ -algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a σ -algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

$\frac{2.4 \text{ Outer/Inner Approx. of}}{\text{Lebesgue Measurable Sets}}$

Let A be measurable, $m^*A < \infty$. Then for any set $B \supseteq A$ we have

 $m^*(B-A) = m^*B - m * A$ the excision property

Theorem 2.11. Let E be any set. Then measurability of E is equivalent to any of the following four conditions.

Outer approximation by open and G_{δ} sets:

- 1) For every $\varepsilon > 0$ there is an open set $U \supseteq E$ such that $m^*(U E) < \varepsilon$.
- 2) There exists a G_{δ} -set $G \supseteq E$ such that $m^*(G E) = 0$.

Inner approximation by closed and F_{σ} sets:

- 3) For every $\varepsilon > 0$ there is a closed set $F \subseteq E$ such that $m^*(E F) < \varepsilon$.
- 4) There exists an F_{σ} -set $F \subseteq E$ such that $m^*(E F) = 0$.

Note. The theorem implies that measurable sets have form $E = G - Y = F \cup Z$ where G is a G_{δ} -set, F is an F_{σ} -set and Y and Z are sets of measure zero.

Note. For any set E there is an open set $U = \bigcup_{k=1}^{\infty} I_k$ such that $m^*U < m^*E + \varepsilon$, so assuming m^*E is finite, $m^*U - m^*E < \varepsilon$, but this does not mean that $m^*(U - E) < \varepsilon$ because $m^*(U - E) = m^*U - m^*E$ is valid only for measurable sets E.

Theorem 2.12. Let *E* be measurable and $m^*E < \infty$. Then for every $\varepsilon > 0$ there is a disjoint collection of open intervals I_1, \ldots, I_n such that

$$m^*(E-U) + m^*(U-E) < \varepsilon$$
, where $U = I_1 \cup \cdots \cup I_n$.

Integration Theory — Lecture notes MAT 725, Fall 2024 — D. Ivanšić

2.5 Countable Additivity, Continuity, Borel-Cantelli

Definition. Let \mathcal{M} be the σ -algebra of measurable subsets of \mathbf{R} . The function $m : \mathcal{M} \to [0, \infty]$ defined by $mE = m^*E$ is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if $\{E_k, k \in \mathbb{N}\}$ is a disjoint collection of measurable sets, then

$$\bigcup_{k=1}^{\infty} E_k \text{ is measurable and } m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m E_k$$

Proof.

Theorem 2.14. The function $m : \mathcal{M} \to [0, \infty]$ is a Lebesgue measure as defined in 2.1 (assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If $\{A_k, k \in \mathbf{N}\}$ is an ascending collection of measurable sets, then

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} mA_k$$

2) If $\{B_k, k \in \mathbf{N}\}$ is a descending collection of measurable sets, then

$$m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} mB_k$$

Proof.

Definition. If E is measurable, we say a property \mathcal{P} holds almost everywhere on E (a.e. on E, holds for almost all $x \in E$) if there is a subset $E_0 \subseteq E$ such that $mE_0 = 0$ and \mathcal{P} holds for all $x \in E - E_0$.

The Borel Cantelli Lemma. Let $\{E_k, k \in \mathbb{N}\}$ be a collection of measurable sets satisfying $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the sets E_k .