
Integration Theory — Lecture notes
MAT 725, Fall 2024 — D. Ivanšić

2.1 Introduction to

Measure Theory

We wish to define a function (measure)

m : {some subsets of R} → [0,∞]

which captures the idea of “size,” which in R is “length.” (If we were working in R2 or R3,
“size” would be “area” or “volume.”)

Definition. Let A be a σ-algebra of subsets of R that contains all intervals. A function
m : A → [0,∞] = [0,∞)∪ {∞} is called a Lebesgue measure if it possesses these properties:

1) Meausure of an interval is its length. If I is an interval — (a, b), [a, b), (a, b], [a, b],
where open bounds could be ∞ — then m(I) =length of I (possibly ∞)

2) Measure is translation-invariant. If E ∈ A, then for every y ∈ R,
E + y = {e+ y | e ∈ E} is also in A and m(E + y) = m(E).

3) Measure is countably additive over countable disjoint unions. If {Ek, k ∈ N} is a dis-

joint collection of sets in A, then m

(∪
k∈N

Ek

)
=

∞∑
k=1

m(Ek) (disjoint collection means

for every i ̸= j, Ei ∩ Ej = ∅).

It turns out, it is not possible to achieve this for A = P(R) = all subsets of R, but it is for a
smaller collection, a σ-algebra called Lebesgue measurable sets, which contain the Borel sets.

To prove existence of such a measure function, we start with a function called outer measure.
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2.2 Lebesgue

Outer Measure

Definition. Let I be an open interval, I = (a, b), where a ∈ {−∞} ∪R and b ∈ R ∪ {∞}.
The length of I, ℓ(I), is defined as:

ℓ(I) =

{
b− a, if a, b ∈ R
∞, if a = −∞ or b = ∞

Definition. Let A ⊆ R. The outer measure of A, m∗(A) or m∗A, is defined as

m∗A = inf

{
∞∑
k=1

ℓ(Ik) | A ⊆
∞∪
k=1

Ik,
where {Ik, k ∈ N} is
a cover of A by open intervals

}

Note. 1) m∗∅ = 0 2) If A ⊆ B, then m∗A ≤ m∗B.

Example. If A is countable, then m∗A = 0.

Proposition 2.1. If I is an interval, then m∗I = ℓ(I).

Proof.
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Proposition 2.2. Outer measure is translation-invariant, that is, for every A ⊆ R, y ∈ R,
m∗(A+ y) = m∗A.

Proof.

Theorem 2.3. Outer measure is countably subadditive, that is, for every countable collec-

tion {Ek, k ∈ N} of subsets of R, m∗

(
∞∪
k=1

Ek

)
≤

∞∑
k=1

m∗Ek.

Proof.
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2.3 Lebesgue

Measurable Sets

For an outer measure m∗, we know that m∗(A ∪ B) ≤ m∗A + m∗B holds. However, there
exist disjoint sets for which

m∗(A ∪ B) < m∗A+m∗B, which is not desirable for a measure.

Setting E = A, C = A ∪ B, this can be rewritten as

m∗(C) < m∗(E ∩ C) +m∗(Ec ∩ C), again, not desirable for a measure.

Definition. A set E is measurable if for any set A

m∗A = m∗(A ∩ E) +m∗(A ∩ Ec)

It immediately follows that if one of A,B is measurable and A,B are disjoint, then
m∗(A ∪ B) = m∗A+m∗B.

Note.

1) Since m∗(A) ≤ m∗(A ∩ E) + m∗(A ∩ Ec), to show E is measurable we only need to
show the opposite inequality: m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A).

2) E is measurable if and only if Ec is measurable.

3) ∅ and R are measurable.

Proposition 2.4. Any set of outer measure zero is measurable. In particular, all countable
sets are measurable.

Proof.
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Proposition 2.5. The union of a finite collection of sets is measurable.

Proof.

Proposition 2.5 shows that the collection of measurable sets is an algebra (defined like a
σ-algebra, except with closure with respect to finite unions instead of countable).

Proposition 2.6. Let E1, . . . , En be disjoint measurable sets and A ⊆ R. Then

m∗

(
A ∩

(
n∪

k=1

Ek

))
=

n∑
k=1

m∗(A ∩ Ek) and m∗

(
n∪

k=1

Ek

)
=

n∑
k=1

m∗Ek

Proof.
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Proposition 2.7. The union of a countable collection of measurable sets is measurable.
The collection of measurable sets is a σ-algebra.

Proof.

Proposition 2.8. Every interval is measurable.

Proof.
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Note.

1) The collection of measurable sets is a σ-algebra.

2) Every open set is measurable — it is a countable union of open intervals.

3) Every closed set is measurable — it is a complement of an open set.

4) Every Fσ and Gδ set is measurable — they are intersections and unions of countable
collections of closed and open sets

5) Every Borel set is measurable — it is in the smallest σ-algebra that contains open sets
and measurable sets are one σ-algebra that contains open sets.

Thus we have proved:

Theorem 2.9. The collection of measurable sets is a σ-algebra that contains the Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

Proof.

Ch.2-8



Integration Theory — Lecture notes
MAT 725, Fall 2024 — D. Ivanšić

2.4 Outer/Inner Approx. of

Lebesgue Measurable Sets

Let A be measurable, m∗A < ∞. Then for any set B ⊇ A we have

m∗(B − A) = m∗B −m ∗ A the excision property

Theorem 2.11. Let E be any set. Then measurability of E is equivalent to any of the
following four conditions.

Outer approximation by open and Gδ sets:

1) For every ε > 0 there is an open set U ⊇ E such that m∗(U − E) < ε.

2) There exists a Gδ-set G ⊇ E such that m∗(G− E) = 0.

Inner approximation by closed and Fσ sets:

3) For every ε > 0 there is a closed set F ⊆ E such that m∗(E − F ) < ε.

4) There exists an Fσ-set F ⊆ E such that m∗(E − F ) = 0.

Proof.

Ch.2-9



Note. The theorem implies that measurable sets have form E = G − Y = F ∪ Z where G
is a Gδ-set, F is an Fσ-set and Y and Z are sets of measure zero.

Note. For any set E there is an open set U =
∪∞

k=1 Ik such that m∗U < m∗E + ε, so
assuming m∗E is finite, m∗U − m∗E < ε, but this does not mean that m∗(U − E) < ε
because m∗(U − E) = m∗U −m∗E is valid only for measurable sets E.
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Theorem 2.12. Let E be measurable and m∗E < ∞. Then for every ε > 0 there is a
disjoint collection of open intervals I1, . . . , In such that

m∗(E − U) +m∗(U − E) < ε, where U = I1 ∪ · · · ∪ In.

Proof.
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2.5 Countable Additivity,

Continuity, Borel-Cantelli

Definition. Let M be the σ-algebra of measurable subsets of R.
The function m : M → [0,∞] defined by mE = m∗E is called the Lebesgue measure.

Theorem 2.13. Lebesgue measure is countably additive, that is, if {Ek, k ∈ N} is a disjoint
collection of measurable sets, then

∞∪
k=1

Ek is measurable and m

(
∞∪
k=1

Ek

)
=

∞∑
k=1

mEk

Proof.

Theorem 2.14. The function m : M → [0,∞] is a Lebesgue measure as defined in 2.1
(assigns length to any interval, is translation invariant and countably additive).

Theorem 2.15 (continuity of measure).

1) If {Ak, k ∈ N} is an ascending collection
of measurable sets, then

m

(
∞∪
k=1

Ak

)
= lim

k→∞
mAk

2) If {Bk, k ∈ N} is a descending collection
of measurable sets, then

m

(
∞∩
k=1

Bk

)
= lim

k→∞
mBk
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Proof.

Definition. If E is measurable, we say a property P holds almost everywhere on E (a.e.
on E, holds for almost all x ∈ E) if there is a subset E0 ⊆ E such that mE0 = 0 and P holds
for all x ∈ E − E0.
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The Borel Cantelli Lemma. Let {Ek, k ∈ N} be a collection of measurable sets satisfying
∞∑
k=1

m(Ek) < ∞. Then almost all x ∈ R belong to at most finitely many of the sets Ek.

Proof.
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