1.1 Functions of Bounded Variation

Definition. Let $f:[a,b] \to \mathbf{R}$ and let $\mathcal{P} = (x_0, x_1, \dots, x_n)$ be a partition of [a,b]. Define

The variation of f with respect to
$$\mathcal{P}$$
: $V_{\mathcal{P}} = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$

The variation of f over [a, b]: $V = V_{[a,b]} = \sup\{V_{\mathcal{P}} \mid \mathcal{P} \text{ is a partition of } [a, b]\}$

Clearly $0 \le V \le \infty$. If $V \ne \infty$ we say that f is of bounded variation on [a, b], if $V = \infty$, we say that f is of unbounded variation on [a, b].

Example. If f(x) = k, then $V_{[a,b]} = 0$ for every interval [a, b].

Example. If f(x) is monotone, then $V_{[a,b]} = |f(b) - f(a)|$.

Example. Determine $V_{[a,b]}$ for any $a, b \in \mathbf{R}$ if $f(x) = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{if } x \neq 0 \end{cases}$

Example. For $f : [0,1] \to \mathbf{R}$ pictured at right, show $V_{[0,1]} = \infty$.

Example. Show the Dirichlet function $f(x) = \begin{cases} 1, & \text{if } x \in \mathbf{Q} \\ 0, & \text{if } x \notin \mathbf{Q} \end{cases}$ is of unbounded variation.

Example. If f is Lipschitz (there is a C > 0 such that $|f(x) - f(u)| \le C|x - u|$), then it is of bounded variation. In particular, if f has a continuous first derivative on [a, b], then it is Lipschitz, so of bounded variation.

Theorem 1.1.

- a) If f is of bounded variation on [a, b], then f is bounded on [a, b].
- b) If f and g are of bounded variation on [a, b], then so are cf, $f \pm g$, fg. Furthermore, if there is a number $\varepsilon > 0$ such that $|g(x)| > \varepsilon$ for all $x \in [a, b]$, then $\frac{f}{g}$ is of bounded variation.

Proof. Homework!

Theorem 1.2. Let $f : [a, b] \rightarrow \mathbf{R}$.

- a) If $[a', b'] \subseteq [a, b]$, then $V_{[a', b']} \leq V_{[a, b]}$.
- b) If a < c < b, then $V_{[a,b]} = V_{[a,c]} + V_{[c,b]}$.

Definition. For an $x \in \mathbf{R}$, define $x^+ = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}$ $x^- = \begin{cases} 0, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

The numbers $x^+, x^- \ge 0$ are called the *positive and negative parts of x*.

Clearly: $|x| = x^+ + x^ x = x^+ - x^ x^+ = \frac{1}{2}(|x| + x)$ $x^- = \frac{1}{2}(|x| - x).$

Given a partition \mathcal{P} of [a, b], define

$$P_{\mathcal{P}} = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^+ \qquad N_{\mathcal{P}} = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^-$$

Then $V_{\mathcal{P}} = P_{\mathcal{P}} + N_{\mathcal{P}}$ and $P_{\mathcal{P}} - N_{\mathcal{P}} = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = f(b) - f(a)$. Define

$$P = P_{[a,b]} = \sup\{P_{\mathcal{P}} \mid \mathcal{P} \text{ is a partition of } [a,b]\}$$
$$N = N_{[a,b]} = \sup\{N_{\mathcal{P}} \mid \mathcal{P} \text{ is a partition of } [a,b]\}$$

Note: $0 \le P, N \le \infty$

Theorem 1.6. For a function $f : [a, b] \to \mathbf{R}$, if one of P, N, V is finite, so are the others. In this case

$$V = P + N \qquad P - N = f(b) - f(a), \text{ or}$$
$$P = \frac{1}{2}(V + f(b) - f(a)) \qquad N = \frac{1}{2}(V - f(a) + f(b))$$

Proof.

Jordan's Theorem 1.7. A function $f : [a, b] \to \mathbf{R}$ is of bounded variation if and only if it is the difference of two increasing, bounded functions on [a, b].

Proof.

Theorem 1.8. Every function of bounded variation has at most a countable number of discontinuities.

Proof.

Theorem 1.9. If $f : [a, b] \to \mathbf{R}$ is continuous, then $V = \lim_{||\mathcal{P}|| \to 0} V_{\mathcal{P}}$, that is, given an M < V, there exists a $\delta > 0$ such $V_{\mathcal{P}} > M$ for any partition \mathcal{P} with $||\mathcal{P}|| < \delta$.

Corollary 1.10. If $f : [a, b] \to \mathbf{R}$ has a continuous derivative on [a, b] then

$$V = \int_{a}^{b} |f'| \qquad P = \int_{a}^{b} (f')^{+} \qquad N = \int_{a}^{b} (f')^{-}$$

1.2 Rectifiable curves

A curve C in a plane or space is usually given by two or three parametric equations:

Curve in plane: x = x(t) y = y(t) $t \in [a, b]$ Curve in space: x = x(t) y = y(t) z = z(t) $t \in [a, b]$

We may also view it as a vector function $\mathbf{r}: [a, b] \to \mathbf{R}^2$ or \mathbf{R}^3 .

Definition. The graph of C is the set $\{\mathbf{r}(t) \mid t \in [a, b]\}$. Note that the graph may have self-intersections and need not be continuous or bounded.

Definition. Given a partition $\mathcal{P} = (t_0, t_1, \ldots, t_n)$ of [a, b], set

$$l_{\mathcal{P}} = \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2 + (z(t_i) - z(t_{i-1}))^2} = \sum_{i=1}^{n} |\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})|$$

Note that $l_{\mathcal{P}}$ is the sum of lengths of line segments with endpoints on C. The length of the curve C (rather, of the parametrization) is defined as

 $L = L(C) = \sup\{l_{\mathcal{P}} \mid \mathcal{P} \text{ is a partition of } [a, b]\}$

Clearly $0 \le L(C) \le \infty$, and if $L(C) < \infty$, we say the curve C is *rectifiable*.

Note: If $\mathbf{r}(t)$ is not continuous, then L(C) counts the gap, too.

If $\mathbf{r}(t)$ traces out the graph more than once, then L(C) takes into account how many times the curve has been traversed. Thus, while two parametrizations $\mathbf{r}(t)$ and $\mathbf{s}(t)$ may have the same image set, the length computed using the two parametrizations could be different, because one parametrization may trace parts of the image set more than once. **Theorem 1.13.** Let a curve C be parametrized by $\mathbf{r}(t) = (x(t), y(t), z(t)), t \in [a, b]$. Then C is rectifiable if and only if all of x, y and z are of bounded variation. Furthermore,

$$V(x), V(y), V(z) \le L(C) \le V(x) + V(y) + V(z)$$

Proof.

Example. Let $\mathbf{r}(t) = (f(t), f(t))$, where $f : [0, 1] \to [0, 1]$ is a function of unbounded variation. Then $L(C) = \infty$, even though the graph of \mathbf{r} is a line segment.

Theorem. If C is parametrized by $\mathbf{r}(t) = (x(t), y(t), z(t)), t \in [a, b]$, and each of x, y and z has a continuous derivative, then

$$L(C) = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}}$$

Proof. Homework!

1.3 The Riemann-Stieltjes Integral

Definition. Let $\dot{\mathcal{P}} = (x_0, x_1, \dots, x_n), t_i \in [x_{i-1}, x_i]$ be a tagged partition of $[a, b], f, \varphi : [a, b] \to \mathbf{R}$ functions. The sum

$$S(f, \dot{\mathcal{P}}) = \sum_{i=1}^{n} f(t_i)(\varphi(x_i) - \varphi(x_{i-1}))$$

is called the Riemann-Stieltjes sum for $\dot{\mathcal{P}}$.

If there exists a number L such that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $||\dot{\mathcal{P}}|| < \delta$, then $|S(f, \dot{\mathcal{P}}) - L| < \varepsilon$, we say that f is Riemann-Stieltjes integrable with respect to φ , and call the number L the Riemann-Stieltjes integral of f with respect to φ .

Notation.
$$L = \int_{a}^{b} f \, d\varphi = \int_{a}^{b} f(x) \, d\phi(x)$$

Notes. 1) If $\int_a^b f \, d\varphi$ exists, it is unique (like 7.1.2).

2) (Cauchy's criterion) $\int_{a}^{b} f \, d\varphi$ exists if and only if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\dot{\mathcal{P}}, \dot{\mathcal{Q}}$ are tagged partitions with $||\dot{\mathcal{P}}||, ||\dot{\mathcal{Q}}|| < \delta$, then $|S(f, \dot{\mathcal{P}}) - S(f, \dot{\mathcal{Q}})| < \varepsilon$ (like 7.2.1).

3) If $\varphi(x) = x$, then $\int_a^b f \, d\varphi = \int_a^b f$, so the Riemann integral is a special case of the Riemann-Stieltjes integral.

4) If f, φ' are continuous on [a, b], then $\int_a^b f \, d\varphi = \int_a^b f \varphi'$

5) Let φ be a step function, so there is a partition (a_0, a_1, \ldots, a_n) of [a, b] such that $\varphi|_{(a_{i-1}, a_i)}$ is constant, and set

$$\varphi(a_i-) = \lim_{x \to a_i-} \varphi(x), \quad i = 1, \dots, n, \qquad \varphi(a_i+) = \lim_{x \to a_i+} \varphi(x), \quad i = 0, \dots, n-1$$

 $d_i = \varphi(a_i+) - \varphi(a_i-), \quad i = 1, \dots, n-1, \quad d_0 = \varphi(a_0+) - \varphi(a_0), \quad d_n = \varphi(a_n) - \varphi(a_n-)$ Then, for a continuous f

$$\int_{a}^{b} f \, d\varphi = \sum_{i=0}^{n} f(a_i) d_i$$

Proof is similar to 7.1.4b, integral of a step function.

6) If f and φ have the same point of discontinuity, then $\int_a^b f \, d\varphi$ does not exist.

Theorem 1.16. Let $f, \varphi : [a, b] \to \mathbf{R}$ be functions, $c \in \mathbf{R}$. a) If $\int_a^b f \, d\varphi$ exists, so do $\int_a^b cf \, d\varphi$ and $\int_a^b f \, d(c\varphi)$ and

$$\int_{a}^{b} cf \, d\varphi = c \int_{a}^{b} f \, d\varphi = \int_{a}^{b} f \, d(c\varphi)$$

b) If $\int_a^b f \, d\varphi$ and $\int_a^b g \, d\varphi$ exist, then $\int_a^b f + g \, d\varphi$ exists and

$$\int_{a}^{b} f + g \, d\varphi = \int_{a}^{b} f \, d\varphi = \int_{a}^{b} g \, d\varphi$$

c) If $\int_a^b f \, d\varphi$ and $\int_a^b f \, d\psi$ exist, then $\int_a^b f \, d(\varphi + \psi)$ exists and

$$\int_{a}^{b} f \, d(\varphi + \psi) = \int_{a}^{b} f \, d\varphi + \int_{a}^{b} f \, d\psi$$

Theorem 1.17. If $\int_a^b f \, d\varphi$ exists and $c \in (a, b)$, then

$$\int_{a}^{b} f \, d\varphi = \int_{a}^{c} f \, d\varphi + \int_{c}^{b} f \, d\varphi$$

Proofs. Are similar to those for Riemann integrals.

Theorem 1.21. If $\int_a^b f \, d\varphi$, then so does $\int_a^b \varphi \, df$ exists and (like integration by parts)

$$\int_{a}^{b} f \, d\varphi = f(b)\varphi(b) - f(a)\varphi(a) - \int_{a}^{b} \varphi \, df$$

When does $\int_a^b f \, d\varphi$ exist? Here is a sufficient condition.

Theorem 1.24. Let $f, \varphi : [a, b] \to \mathbf{R}$ and let f be continuous and φ be of bounded variation on [a, b]. Then $\int_a^b f \, d\varphi$ exists and

$$\int_{a}^{b} f \, d\varphi \le \sup\{|f(x)| \mid x \in [a, b]\} \cdot V_{[a, b]}(\varphi)$$

Mean Value Theorem for Riemann-Stieltjes Integrals 1.27. Let $f, \varphi : [a, b] \to \mathbf{R}$, and let f be continuous and φ increasing on [a, b]. Then there exists a number $c \in [a, b]$ such that

$$\int_{a}^{b} f \, d\varphi = f(c)(\varphi(b) - \varphi(a))$$

$\frac{1.4 \text{ Open, Closed}}{\text{and Borel Sets}}$

Definition. A set $U \subseteq \mathbf{R}$ is open if for every $x \in U$ there exists an $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq U$. (Intuitively, U is open if it is "fat" around each of its points.)

Example. Show that each of the following subsets of **R** is open: (a, b), (a, ∞) , $(-\infty, b)$. Show that [a, b] is not open.

Proposition 8.

- 1) \emptyset and **R** are open.
- 2) If U_1, \ldots, U_n are open, then $U_1 \cap \cdots \cap U_n$ is open.
- 3) If $\{U_{\alpha} \mid \alpha \in I\}$ is a collection of open sets, then $\bigcup U_{\alpha}$ is an open set.

Recall that $\bigcup_{\alpha \in I} U_{\alpha} = \{ x \mid x \in U_{\beta} \text{ for some } \beta \in I \} \quad \bigcap_{\alpha \in I} U_{\alpha} = \{ x \mid x \in U_{\alpha} \text{ for all } \alpha \in I \}$

Proof.

Example. Find the union and intersection of the collections and explain. What does the second question tell you about intersections of any collection of open sets?

$$\bigcup_{n \in \mathbf{N}} \left[\frac{1}{n}, 1\right] = \bigcap_{n \in \mathbf{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) =$$

Proposition 9. Every nonempty open subset of \mathbf{R} is the union of a countable collection of disjoint open intervals.

Proof.

Definition. If $E \subseteq \mathbf{R}$, we say x is a point of closure of E or x is in the closure of E if every open interval I around x contains a point in E (which may be x), that is $I \cap E \neq \emptyset$. We define the closure of E as

 $\overline{E} = \{ x \in \mathbf{R} \mid x \text{ is a point of closure of } E \}$

Notes. x is in the closure of E if and only if x is a cluster point of E or $x \in E$. $E \subset \overline{E}$ and if $E \subseteq F$, then $\overline{E} \subseteq \overline{F}$. Example. Determine the closures of the sets below.

$$E = (a, b) \qquad \qquad F = \left\{ \frac{1}{n} \mid n \in \mathbf{N} \right\} \qquad \qquad \qquad G = \mathbf{Q} \cap [0, 1]$$

Definition. We say the set E is *closed* if $E = \overline{E}$, that is, if E contains all its points of closure, $\overline{E} \subseteq E$.

Example. Show the sets below are closed.

$$E = [a, b] \qquad \qquad F = \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\} \qquad \qquad G = [0, \infty)$$

Proposition 10. If $E \subseteq \mathbf{R}$, then \overline{E} is closed. Furthermore, \overline{E} is the smallest closed set containing E, that is, if $F \supseteq E$ and F is closed, then $\overline{E} \subseteq F$. Finally, $\overline{E} = \bigcap_{\substack{E \subseteq F \\ F \text{ closed}}} F$.

Proposition 11. A subset $U \subseteq \mathbf{R}$ is open if and only if U^c is closed.

Proof.

Note. Setting $F = U^c$ the proposition says F is closed if and only if F^c is open.

Proposition 12.

- 1) \emptyset and **R** are closed.
- 2) If F_1, \ldots, F_n are closed, then $F_1 \cup \cdots \cup F_n$ is closed.
- 3) If $\{F_{\alpha} \mid \alpha \in I\}$ is a collection of closed sets, then $\bigcap F_{\alpha}$ is a closed set.

 $\alpha \in I$

Proof. DeMorgan's laws and Proposition 11.

Definition. A collection of sets $\{U_{\alpha}, \alpha \in I\}$ is called a *cover of a set* E if $E \subseteq \bigcup U_{\alpha}$.

If additionally every U_{α} is open, then the cover is called an *open cover of* E. If the collection $\{U_{\alpha}, \alpha \in I\}$ is finite, the cover is called a *finite cover of* E. A *subcover* of a cover $\{U_{\alpha}, \alpha \in I\}$ is any subcollection that is still a cover of E.

Example. Are the following collections covers of **R**? Are any subcovers of another one? $C_1 = \{(-\infty, n), n \in \mathbf{N}\}$ $C_2 = \{[a, a + 1), a \in \mathbf{R}\}$ $C_3 = \{[a, a + 1), a \in \mathbf{Z}\}$

$$C_4 = \{(a, a+1), a \in \mathbf{Z}\}$$
 $C_5 = \{(a, a+1), a \in \mathbf{Q}\}$ $C_6 = \{[2k, 2k+1), k \in \mathbf{Z}\}$

Example. Are the following collections covers of the interval [0,1] or (0,1)? $C_1 = \{\left(-\frac{1}{n}, 1+\frac{1}{n}\right), n \in \mathbf{N}\}$ $C_2 = \{\left(\frac{1}{n}, 1-\frac{1}{n}\right), n \in \mathbf{N}\}$ $C_3 = \{\left(q, q+\frac{1}{4}\right), q \in [-1,1] \cap \mathbf{Q}\}$

Definition. A subset $F \subseteq \mathbf{R}$ is called *compact* if every open cover of F has a finite subcover.

Example. The open intervals (0, 1), [0, 1) and (0, 1] are not compact.

Example. Does this cover of [0, 1] have a finite subcover: $\left\{\left(-\frac{1}{n}, 1+\frac{1}{n}\right), n \in \mathbf{N}\right\}$?

Example. Does this cover of [0, 1] have a finite subcover: $\{(q, q + \frac{1}{4}), q \in [-1, 2] \cap \mathbf{Q}\}$?

The Heine-Borel Theorem. A subset $F \subseteq \mathbf{R}$ is compact if and only if F is closed and bounded.

Definition. A collection of sets $\{E_n, n \in \mathbf{N}\}$ is called

descending, if $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$ ascending, if $E_1 \subseteq E_2 \subseteq E_3 \subseteq \dots$

The Nested Set Theorem. Let $F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots$ be a descending collection of nonempty closed sets, where F_1 is bounded. Then $\bigcap_{n \in \mathbb{N}} F_n$ is not empty.

Proof.

Definition. Let X be any set. A collection \mathcal{A} of subsets of X is called a σ -algebra if

1) $\emptyset \in \mathcal{A}, X \in \mathcal{A}.$ 2) If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}.$ 3) If $A_n \in \mathcal{A}$ for each $n \in \mathbf{N}$, then $\bigcup_{n \in \mathbf{N}} A_n \in \mathcal{A}.$

Example. $\{X, \emptyset\}$ is a σ -algebra.

Example. $2^X = \mathcal{P}(X) = \{A \mid A \subseteq X\}$, collection of all subsets of X, is a σ -algebra.

Note. Let \mathcal{A} be a σ -algebra. Then

- 1) If $A_n \in \mathcal{A}$, for every $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$.
- 2) If $A_1, \ldots, A_n \in \mathcal{A}$, then $A_1 \cup A_2 \cup \cdots \cup A_n, A_1 \cap A_2 \cap \cdots \cap A_n \in \mathcal{A}$. (finite unions and intersections of elements of \mathcal{A} are in \mathcal{A})

Definition. Let $A_n \subseteq X$ for every $n \in \mathbb{N}$. We define

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \qquad \qquad \limsup A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

Note. The collection $\{\bigcup_{n=k}^{\infty} A_n, k \in \mathbf{N}\}$ is descending and the collection $\{\bigcap_{n=k}^{\infty} A_n, k \in \mathbf{N}\}$ is ascending. Furthermore,

 $\limsup A_n = \frac{\text{all } x \text{ such that } x \in A_n}{\text{for infinitely many } n's} \qquad \qquad \liminf A_n = \frac{\text{all } x \text{ such that } x \in A_n}{\text{for all but finitely many } n's}$

If \mathcal{A} is a σ -algebra and $A_n \in \mathcal{A}$ for every $n \in \mathbb{N}$, then $\limsup A_n$, $\limsup A_n$, A_n, $\limsup A_n$, $\limsup A_n$, A_n, $\limsup A_n$, A_n, A_n, $\limsup A_n$, A_n, A_n

Proposition 13. Let \mathcal{F} be a collection of subsets of X. Then

$$\mathcal{A} = igcap_{\substack{\mathcal{B} \supseteq \mathcal{F} \\ \mathcal{B} \text{ a } \sigma ext{-algebra}}} \mathcal{B} \quad ext{ is a } \sigma ext{-algebra}$$

Moreover, \mathcal{A} is the smallest σ -algebra containing \mathcal{F} , that is, if \mathcal{A}' is a σ -algebra containing \mathcal{F} then $\mathcal{A} \subseteq \mathcal{A}'$.

Definition. Let \mathcal{F} be the collection of open subsets of **R**. Then the smallest σ -algebra from Proposition 13 containing this \mathcal{F} is called the *Borel sets of real numbers*. The Borel sets contain:

- G_{δ} -sets, countable intersections of open sets
- F_{σ} -sets, countable unions of closed sets
- $\limsup A_n$ and $\liminf A_n$, where each A_n is either an open or closed set.