
Integration Theory — Lecture notes
MAT 725, Fall 2024 — D. Ivanšić

1.1 Functions of

Bounded Variation

Definition. Let f : [a, b] → R and let P = (x0, x1, . . . , xn) be a partition of [a, b]. Define

The variation of f with respect to P: VP =
n∑

i=1

|f(xi)− f(xi−1)|

The variation of f over [a, b]: V = V[a,b] = sup{VP | P is a partition of [a, b]}

Clearly 0 ≤ V ≤ ∞. If V ̸= ∞ we say that f is of bounded variation on [a, b], if V = ∞, we
say that f is of unbounded variation on [a, b].

Example. If f(x) = k, then V[a,b] = 0 for every interval [a, b].

Example. If f(x) is monotone, then V[a,b] = |f(b)− f(a)|.

Example. Determine V[a,b] for any a, b ∈ R if f(x) =

{
1, if x = 0
0, if x ̸= 0
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Example. For f : [0, 1] → R pictured at right,
show V[0,1] = ∞.

Example. Show the Dirichlet function f(x) =

{
1, if x ∈ Q
0, if x /∈ Q

is of unbounded variation.

Example. If f is Lipschitz (there is a C > 0 such that |f(x)− f(u)| ≤ C|x− u|), then it is
of bounded variation. In particular, if f has a continuous first derivative on [a, b], then it is
Lipschitz, so of bounded variation.
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Theorem 1.1.

a) If f is of bounded variation on [a, b], then f is bounded on [a, b].

b) If f and g are of bounded variation on [a, b], then so are cf , f ± g, fg. Furthermore,
if there is a number ε > 0 such that |g(x)| > ε for all x ∈ [a, b], then f

g
is of bounded

variation.

Proof. Homework!

Theorem 1.2. Let f : [a, b] → R.

a) If [a′, b′] ⊆ [a, b], then V[a′,b′] ≤ V[a,b].

b) If a < c < b, then V[a,b] = V[a,c] + V[c,b].

Proof.
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Definition. For an x ∈ R, define x+ =

{
x, if x ≥ 0
0, if x < 0

x− =

{
0, if x ≥ 0
−x, if x < 0

The numbers x+, x− ≥ 0 are called the positive and negative parts of x.

Clearly: |x| = x+ + x− x = x+ − x− x+ = 1
2
(|x|+ x) x− = 1

2
(|x| − x).

Given a partition P of [a, b], define

PP =
n∑

i=1

(f(xi)− f(xi−1))
+ NP =

n∑
i=1

(f(xi)− f(xi−1))
−

Then VP = PP +NP and PP −NP =
∑n

i=1(f(xi)− f(xi−1)) = f(b)− f(a). Define

P = P[a,b] = sup{PP | P is a partition of [a, b]}
N = N[a,b] = sup{NP | P is a partition of [a, b]}

Note: 0 ≤ P,N ≤ ∞

Theorem 1.6. For a function f : [a, b] → R, if one of P,N, V is finite, so are the others. In
this case

V = P +N P −N = f(b)− f(a), or

P =
1

2
(V + f(b)− f(a)) N =

1

2
(V − f(a) + f(b))

Proof.

Jordan’s Theorem 1.7. A function f : [a, b] → R is of bounded variation if and only if it
is the difference of two increasing, bounded functions on [a, b].
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Proof.

Theorem 1.8. Every function of bounded variation has at most a countable number of
discontinuities.

Proof.

Theorem 1.9. If f : [a, b] → R is continuous, then V = lim
||P||→0

VP , that is, given an M < V ,

there exists a δ > 0 such VP > M for any partition P with ||P|| < δ.

Proof.
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Corollary 1.10. If f : [a, b] → R has a continuous derivative on [a, b] then

V =

∫ b

a

|f ′| P =

∫ b

a

(f ′)+ N =

∫ b

a

(f ′)−

Proof.
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Integration Theory — Lecture notes
MAT 725, Fall 2024 — D. Ivanšić 1.2 Rectifiable curves

A curve C in a plane or space is usually given by two or three parametric equations:

Curve in plane: x = x(t)

y = y(t)

t ∈ [a, b]

Curve in space: x = x(t)

y = y(t)

z = z(t)

t ∈ [a, b]

We may also view it as a vector function r : [a, b] → R2 or R3.

Definition. The graph of C is the set {r(t) | t ∈ [a, b]}. Note that the graph may have
self-intersections and need not be continuous or bounded.

Definition. Given a partition P = (t0, t1, . . . , tn) of [a, b], set

lP =
n∑

i=1

√
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2 + (z(ti)− z(ti−1))2 =

n∑
i=1

|r(ti)− r(ti−1)|

Note that lP is the sum of lengths of line segments with endpoints on C. The length of the
curve C (rather, of the parametrization) is defined as

L = L(C) = sup{lP | P is a partition of [a, b]}

Clearly 0 ≤ L(C) ≤ ∞, and if L(C) <∞, we say the curve C is rectifiable.

Note: If r(t) is not continuous, then L(C) counts the gap, too.

If r(t) traces out the graph more than once, then L(C) takes into account how many times
the curve has been traversed. Thus, while two parametrizations r(t) and s(t) may have
the same image set, the length computed using the two parametrizations could be different,
because one parametrization may trace parts of the image set more than once.
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Theorem 1.13. Let a curve C be parametrized by r(t) = (x(t), y(t), z(t)), t ∈ [a, b]. Then
C is rectifiable if and only if all of x, y and z are of bounded variation. Furthermore,

V (x), V (y), V (z) ≤ L(C) ≤ V (x) + V (y) + V (z)

Proof.

Example. Let r(t) = (f(t), f(t)), where f : [0, 1] → [0, 1] is a function of unbounded
variation. Then L(C) = ∞, even though the graph of r is a line segment.
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Theorem. If C is parametrized by r(t) = (x(t), y(t), z(t)), t ∈ [a, b], and each of x, y and z
has a continuous derivative, then

L(C) =

∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2

Proof. Homework!
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1.3 The Riemann-Stieltjes

Integral

Definition. Let Ṗ = (x0, x1, . . . , xn), ti ∈ [xi−1, xi] be a tagged partition of [a, b],
f, φ : [a, b] → R functions. The sum

S(f, Ṗ) =
n∑

i=1

f(ti)(φ(xi)− φ(xi−1))

is called the Riemann-Stieltjes sum for Ṗ .

If there exists a number L such that for every ε > 0 there exists a δ > 0 such that if ||Ṗ|| < δ,
then |S(f, Ṗ)− L| < ε, we say that f is Riemann-Stieltjes integrable with respect to φ, and
call the number L the Riemann-Stieltjes integral of f with respect to φ.

Notation. L =

∫ b

a

f dφ =

∫ b

a

f(x) dϕ(x)

Notes. 1) If
∫ b

a
f dφ exists, it is unique (like 7.1.2).

2) (Cauchy’s criterion)
∫ b

a
f dφ exists if and only if for every ε > 0 there exists a δ > 0 such

that if Ṗ , Q̇ are tagged partitions with ||Ṗ||, ||Q̇|| < δ, then |S(f, Ṗ)− S(f, Q̇)| < ε
(like 7.2.1).

3) If φ(x) = x, then
∫ b

a
f dφ =

∫ b

a
f , so the Riemann integral is a special case of the Riemann-

Stieltjes integral.

4) If f, φ′ are continuous on [a, b], then
∫ b

a
f dφ =

∫ b

a
fφ′

5) Let φ be a step function, so there is a partition (a0, a1, . . . , an) of [a, b] such that φ|(ai−1,ai)

is constant, and set

φ(ai−) = lim
x→ai−

φ(x), i = 1, . . . , n, φ(ai+) = lim
x→ai+

φ(x), i = 0, . . . , n− 1

di = φ(ai+)− φ(ai−), i = 1, . . . , n− 1, d0 = φ(a0+)− φ(a0), dn = φ(an)− φ(an−)

Then, for a continuous f ∫ b

a

f dφ =
n∑

i=0

f(ai)di

Proof is similar to 7.1.4b, integral of a step function.
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6) If f and φ have the same point of discontinuity, then
∫ b

a
f dφ does not exist.

Proof.
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Theorem 1.16. Let f, φ : [a, b] → R be functions, c ∈ R.

a) If
∫ b

a
f dφ exists, so do

∫ b

a
cf dφ and

∫ b

a
f d(cφ) and∫ b

a

cf dφ = c

∫ b

a

f dφ =

∫ b

a

f d(cφ)

b) If
∫ b

a
f dφ and

∫ b

a
g dφ exist, then

∫ b

a
f + g dφ exists and∫ b

a

f + g dφ =

∫ b

a

f dφ =

∫ b

a

g dφ

c) If
∫ b

a
f dφ and

∫ b

a
f dψ exist, then

∫ b

a
f d(φ+ ψ) exists and∫ b

a

f d(φ+ ψ) =

∫ b

a

f dφ+

∫ b

a

f dψ

Theorem 1.17. If
∫ b

a
f dφ exists and c ∈ (a, b), then∫ b

a

f dφ =

∫ c

a

f dφ+

∫ b

c

f dφ

Proofs. Are similar to those for Riemann integrals.
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Theorem 1.21. If
∫ b

a
f dφ, then so does

∫ b

a
φdf exists and (like integration by parts)∫ b

a

f dφ = f(b)φ(b)− f(a)φ(a)−
∫ b

a

φdf

Proof.
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When does
∫ b

a
f dφ exist? Here is a sufficient condition.

Theorem 1.24. Let f, φ : [a, b] → R and let f be continuous and φ be of bounded variation

on [a, b]. Then
∫ b

a
f dφ exists and∫ b

a

f dφ ≤ sup{|f(x)| | x ∈ [a, b]} · V[a,b](φ)

Proof.
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Mean Value Theorem for Riemann-Stieltjes Integrals 1.27. Let f, φ : [a, b] → R,
and let f be continuous and φ increasing on [a, b]. Then there exists a number c ∈ [a, b] such
that ∫ b

a

f dφ = f(c)(φ(b)− φ(a)
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1.4 Open, Closed

and Borel Sets

Definition. A set U ⊆ R is open if for every x ∈ U there exists an ε > 0 such that
(x− ε, x+ ε) ⊆ U . (Intuitively, U is open if it is “fat” around each of its points.)

Example. Show that each of the following subsets of R is open: (a, b), (a,∞), (−∞, b).
Show that [a, b] is not open.

Proposition 8.

1) ∅ and R are open.

2) If U1, . . . , Un are open, then U1 ∩ · · · ∩ Un is open.

3) If {Uα | α ∈ I} is a collection of open sets, then
∪
α∈I

Uα is an open set.

Recall that
∪
α∈I

Uα = {x | x ∈ Uβ for some β ∈ I}
∩
α∈I

Uα = {x | x ∈ Uα for all α ∈ I}

Proof.

Example. Find the union and intersection of the collections and explain. What does the
second question tell you about intersections of any collection of open sets?∪
n∈N

[
1
n
, 1
]
=

∩
n∈N

(
− 1

n
, 1
n

)
=
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Proposition 9. Every nonempty open subset of R is the union of a countable collection of
disjoint open intervals.

Proof.

Definition. If E ⊆ R, we say x is a point of closure of E or x is in the closure of E if every
open interval I around x contains a point in E (which may be x), that is I ∩ E ̸= ∅. We
define the closure of E as

E = {x ∈ R | x is a point of closure of E}

Notes. x is in the closure of E if and only if x is a cluster point of E or x ∈ E.

E ⊂ E and if E ⊆ F , then E ⊆ F .
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Example. Determine the closures of the sets below.

E = (a, b) F =
{

1
n
| n ∈ N

}
G = Q ∩ [0, 1]

Definition. We say the set E is closed if E = E, that is, if E contains all its points of
closure, E ⊆ E.

Example. Show the sets below are closed.

E = [a, b] F =
{

1
n
| n ∈ N

}
∪ {0} G = [0,∞)

Proposition 10. If E ⊆ R, then E is closed. Furthermore, E is the smallest closed set

containing E, that is, if F ⊇ E and F is closed, then E ⊆ F . Finally, E =
∩
E⊆F

F closed

F .

Proof.
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Proposition 11. A subset U ⊆ R is open if and only if U c is closed.

Proof.

Note. Setting F = U c the proposition says F is closed if and only if F c is open.

Proposition 12.

1) ∅ and R are closed.

2) If F1, . . . , Fn are closed, then F1 ∪ · · · ∪ Fn is closed.

3) If {Fα | α ∈ I} is a collection of closed sets, then
∩
α∈I

Fα is a closed set.

Proof. DeMorgan’s laws and Proposition 11.

Definition. A collection of sets {Uα, α ∈ I} is called a cover of a set E if E ⊆
∪
α∈I

Uα.

If additionally every Uα is open, then the cover is called an open cover of E. If the collection
{Uα, α ∈ I} is finite, the cover is called a finite cover of E. A subcover of a cover {Uα, α ∈ I}
is any subcollection that is still a cover of E.
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Example. Are the following collections covers of R? Are any subcovers of another one?

C1 = {(−∞, n), n ∈ N} C2 = {[a, a+ 1), a ∈ R} C3 = {[a, a+ 1), a ∈ Z}

C4 = {(a, a+ 1), a ∈ Z} C5 = {(a, a+ 1), a ∈ Q} C6 = {[2k, 2k + 1), k ∈ Z}

Example. Are the following collections covers of the interval [0, 1] or (0, 1)?

C1 = {
(
− 1

n
, 1 + 1

n

)
, n ∈ N} C2 = {

(
1
n
, 1− 1

n

)
, n ∈ N} C3 = {

(
q, q + 1

4

)
, q ∈ [−1, 1] ∩Q}

Definition. A subset F ⊆ R is called compact if every open cover of F has a finite subcover.

Example. The open intervals (0, 1), [0, 1) and (0, 1] are not compact.

Example. Does this cover of [0, 1] have a finite subcover: {
(
− 1

n
, 1 + 1

n

)
, n ∈ N}?
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Example. Does this cover of [0, 1] have a finite subcover: {
(
q, q + 1

4

)
, q ∈ [−1, 2] ∩Q}?

The Heine-Borel Theorem. A subset F ⊆ R is compact if and only if F is closed and
bounded.

Proof.
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Definition. A collection of sets {En, n ∈ N} is called

descending, if E1 ⊇ E2 ⊇ E3 ⊇ . . . ascending, if E1 ⊆ E2 ⊆ E3 ⊆ . . .

The Nested Set Theorem. Let F1 ⊇ F2 ⊇ F3 ⊇ . . . be a descending collection of

nonempty closed sets, where F1 is bounded. Then
∩
n∈N

Fn is not empty.

Proof.

Definition. Let X be any set. A collection A of subsets of X is called a σ-algebra if

1) ∅ ∈ A, X ∈ A.

2) If A ∈ A, then Ac ∈ A.

3) If An ∈ A for each n ∈ N, then
∪
n∈N

An ∈ A.

Example. {X, ∅} is a σ-algebra.

Example. 2X = P(X) = {A | A ⊆ X}, collection of all subsets of X, is a σ-algebra.

Note. Let A be a σ-algebra. Then

1) If An ∈ A, for every n ∈ N, then
∩
n∈N

An ∈ A.

2) If A1, . . . , An ∈ A, then A1 ∪A2 ∪ · · · ∪An, A1 ∩A2 ∩ · · · ∩An ∈ A. (finite unions and
intersections of elements of A are in A)
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Definition. Let An ⊆ X for every n ∈ N. We define

lim supAn =
∞∩
k=1

∞∪
n=k

An lim inf An =
∞∪
k=1

∞∩
n=k

An

Note. The collection {
∞∪
n=k

An, k ∈ N} is descending and the collection {
∞∩
n=k

An, k ∈ N} is

ascending. Furthermore,

lim supAn =
all x such that x ∈ An

for infinitely many n’s
lim inf An =

all x such that x ∈ An

for all but finitely many n’s

If A is a σ-algebra and An ∈ A for every n ∈ N, then lim supAn, lim inf An ∈ A.

Proposition 13. Let F be a collection of subsets of X. Then

A =
∩
B⊇F

B a σ-algebra

B is a σ-algebra

Moreover, A is the smallest σ-algebra containing F , that is, if A′ is a σ-algebra containing F
then A ⊆ A′.

Definition. Let F be the collection of open subsets of R. Then the smallest σ-algebra from
Proposition 13 containing this F is called the Borel sets of real numbers. The Borel sets
contain:

— Gδ-sets, countable intersections of open sets

— Fσ-sets, countable unions of closed sets

— lim supAn and lim inf An, where each An is either an open or closed set.
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