Sections 0, 2–4

Definitions	Greatest common divisor (0) Binary operation (2) Group (2) Commutativity of elements (2) \mathbf{Z}_n with multiplication and addition module n U(n) with multiplication modulo n (2) Dihedral group D_n , number and nature of elements (2) Order of an element (3) Subgroup (3) $GL(n, \mathbf{R})$ and $SL(n, \mathbf{R})$ (3) Cyclic Subgroup (3) Subgroup generated by a set S (3) Center of group $Z(G)$, centralizer of an element $C(a)$ Euler ϕ function (4)
Theorems	Division Algorithm (Theorem 0.1) GCD is a linear combination (Theorem 0.2) Fundamental Theorem of Arithmetic (Theorem 0.3) Inverse of a product (Theorem 2.4) Two-step subgroup test (Theorem 3.2) Proposition on subgroups of Z (3) Nature of a cyclic group (Theorem 4.1) $ a = \langle a \rangle $, if $a^k = e$, then $ a $ divides k (Corollaries 1, 2 to 4.1) If $ab = ba$, $ ab $ divides $ a b $ (Corollary 3 to 4.1) $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $ a^k = \frac{n}{gcd(n,k)}$ (Theorem 4.2) If $ a = n$, then $\langle a^i \rangle = \langle a^j \rangle$ iff $gcd(n, i) = gcd(n, j)$ and $ a^i = a^j $ iff $gcd(n, i) = gcd(n, j)$ (Corollary 2 to 4.2) Fundamental theorem of cyclic groups (Theorem 4.3) If d divides $ a $, number of elements of order d in $\langle a \rangle$ is $\phi(d)$ (Theorem 4.4) In finite group, no. of elts of order d is a multiple of $\phi(d)$ (Corollary to 4.4)
Proofs	\mathbf{Z}_n with addition modulo n is a group (2) U(n) with multiplication modulo n is a group (2) Proposition on subgroups of \mathbf{Z} (3) Nature of a cyclic group (Theorem 4.1) If d divides $ a $, number of elements of order d in $\langle a \rangle$ is $\phi(d)$ (Theorem 4.4)
B-problems section 2: section 3:	20, 23&27, 31, 33, 37, 43&44, 49, 50 8, 13&14&20, 15, 28&29, 37, 42d, 47, 50&52, 58, 73, 76, 78

section 4: 13, 14, 22, 30, 31, 34, 35, 57, 59, 65, 67, 71, 72

Sections 5, 10.1, 6

Definitions	Permutation of a set A (5) Permutation group of a set A (5) Even and odd permutations (5) Symmetric group S_n , alternating group A_n (5) Group homomorphism (10) Kernel of a homomorphism (10) Group isomorphism (6) Automorphism of a group, inner automorphism induced by $a \in G$ (6) Aut G , Inn(G)
Theorems	Every permutation is a product of disjoint cycles (5.1) Disjoint cycles commute (5.2) Order of a permutation (5.3) Every permutation is a product of 2-cycles (5.4), whose number for a given permutation is always either even or odd (5.5) $ S_n = n!, A_n = n!/2$ (5) Theorem 10.1 Theorem 10.2, 1–4, 6–7. Cayley's theorem: every group is isomorphic to a group of permutations (6.1) Theorem 6.2, 3–7 Theorem 6.3, 1–3, 6 Aut(\mathbf{Z}_n) $\approx U(n)$, Aut(\mathbf{Z}) $\approx \{1, -1\}$ (6.5)
Proofs	Theorem 5.7 Theorem 10.1 1, 4, 5 (1.3) Theorem 10.2 1, 7 Theorem 6.1
B-problems section 5: section 10.1: section 6:	9, 34, 37, 38, 41, 53, 57, 61, 65 20 $\&$ 52, 22, 23, 27, 28 $\&$ 34, 32 19, 20 $\&$ 23, 32, 40, 41, 50 $\&$ 63, 57, 62 $\&$ 64, 65

Sections 7–8

Definitions	Left and right coset of H in G (7) Direct product of groups $G_1 \times \cdots \times G_n$ (8) $U_k(n)$ (8)
Theorems	Lemma on properties of cosets (7) Lagrange's theorem: $ H $ divides $ G $ (7.1) Corollaries to Lagrange's theorem 1–4 Theorem 7.2 Order of an element (g_1, \ldots, g_n) is $\operatorname{lcm}(g_1 , \ldots, g_n)$ (8.1) Theorem 8.2 Corollary 2 of theorem 8.2 When $\operatorname{gcd}(s,t) = 1$, $U(st) = U(s) \times U(t)$ and $U_s(st) \approx U(t)$ (8.3)
Proofs	Lemma on cosets (2.2) Lagrange's theorem Theorem 8.2

B-problems

section 7:	20, 25, 27, 29 & 31, 40 & 46, 47, 51 & 52
section 8:	2&31, 5, 10&11, 22, 26, 41&54, 51, 65