Modern Algebra 1 — Lecture notes 7 Cosets and
MAT 513/613, Fall 2024 — D. Ivansié Lagrange’s Theorem

Definition. Let G be a group and H its subgroup. We define

the left coset of H containing a: aH = {ah | h € H}
the right coset of H containing a: Ha = {ha | h € H}

The element a is called a coset representative of aH or Ha.

Example. Consider the subgroup 4Z of Z. List the left cosets (same as right) of this
subgroup.

Example. Consider the subgroup H = {a € S5 | a(l) = 1} of S5. List the left and the
right cosets of this subgroup and show that they are not equal. Furthermore, show there is
an o € G such that aHa™! # H.

Note. In our examples, the cosets were either disjoint or equal. Only one of the cosets is a
subgroup — the one containing the identity.
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Lemma. Let H be a subgroup of G and let a,b € GG. Then the following hold for left cosets,
and analogous statements are true for right cosets.

)
)
) (ab)H = a(bH)
) aH = bH if and only if a € bH.
5) aH = bH or aH NbH = ().
) aH = bH if and only if a='0 € H and Ha = Hb if and only if ba™! € H.
) laH| = [bH]| = |H]
) aH = Ha if and only if aHa ! = H
) aH is a subgroup of G if and only if a € H, so aH = H.

Note. The bijection z + 27! sends every coset aH to Ha™!, establishing a bijective
correspondence between the collections of left and right cosets.
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Lagrange’s Theorem 7.1. If G is a finite group and H a subgroup of G, then |H| di-
vides |G|. Moreover, the number of distinct left or right cosets of H in G is |G|/|H]|.

Proof.

Definition. The index of a subgroup H in G is the number of left (or right) cosets of H in
G. It is denoted by |G : H].

Note. G and H need not be finite subgroups for the index to be defined, for example
|Z : 47| = 4.

Corollaries to Theorem 7.1. Let H be a subgroup of G and let a € G. Then
1) If G is finite, then |G : H| = %
2) If G is finite and a € G, the order of a divides the order of G.
3) Every group of prime order is cyclic, hence isomorphic to Z, for some prime p.
)
)

alfl = e

W~

5) Fermat’s Little Theorem: For every integer a and every prime p,

a? mod p = amod p.

Proof.
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Example. Inspired by Lagrange’s theorem, one could ask: if k divides |G|, must there exist
a subgroup of order k in G7 This is true for cyclic groups, but not in general. Show that Ay
does not have a subgroup of order 6, yet |A4| = 12 and 6]12.

Theorem 7.2. Let H and K be two finite subgroups of a group, and consider the set

H||K
HK = {hk | h € H,k € K} (may not be a subgroup). Then |HK| = %

Proof.
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Theorem 7.3. Every group of order 2p, where p is prime, is isomorphic to either Zs, or D,,.

Proof.
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Modern Algebra 1 — Lecture notes
MAT 513/613, Fall 2024 — D. Ivansié 8 Direct Product

Definition. The direct product of groups G, ...,G, is the set G; x - - - X GG, of n-tuples for
which the i-th component is in (G; and the componentwise operation

(g1, 9u)(Gh -1 00) = (91905 - -, GnGn,)

Note. The textbook uses @ instead of x, but @ is usually used when all groups Gy, ...,G,
are abelian.

Example. The group Z x Z is all pairs (x,y) where both coordinates are integers, may be
imagined as the set of all vectors in the plane with initial point the origin and the terminal
a point whose both coordinages are integers.

Example. The group Zj3 x Z, has 12 elements. What is the order of the element (1,3)?

Example. Every group of order 4 is isomorphic to either Z, or Zy X Zs.
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Theorem 8.1. For an element (g1,...,¢9,) € G; X -+ X G,), where every G, i = 1,...,n
is finite, we have

’(glu s agn)l = lcm(|gl|’ te |g7’b|)

Proof.

Example. Show that Zg x Z; is cyclic of order 120, thus isomorphic to Zy.

Theorem 8.2. Let G and H be finite cyclic groups. Then G x H is cyclic if and only if |G|
and |H| are relatively prime.

Proof.

Corollary. Let Gy,...,G, be finite cyclic groups.
1) Gy x --- x G, is cyclic if and only if |G;| and |G|| are relatively prime when ¢ # j.

2) Zp,.n, =Ly, X ---xZ,, if and only if n, and n; are relatively prime when i # j.
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Direct products help us better understand groups by breaking them up into smaller groups.
For example, we can use it on the groups U(n).

Definition. If £ divides n, we define
Ux(n) ={z€U(n)|zmodk =1} ={1+kq|1+kqeU(n)}
It is not hard to see that Uy(n) is a subgroup of U(n).

Example. For every divisor k of 20, determine Uj(20).

Theorem 8.3. Let s and t be relatively prime. Then

Us(st) = U(t) Ui(st) = Ul(s) U(st) = U(s) x U(t)
Corollary. If n =ninsy...ny, and ged(n;, n;) = 1 when i # j, then

Un)=U(ny) x U(ng) x -+ x U(ng)

Note. Due to prime factorization, this means we only need to know what U(p™) is for a
prime p:

U(2) = {0} U(2") = Zy X Zign—2, for n > 2 U(p") = Zyn_pn—1, for p prime n > 1

P

Example. Determine U(42) and U(36).

Note. It is now a lot easier to see what orders of elements U(n) has.
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Proposition. Let H,G4,...,G, be groups. Then

1) The map ix : G — G1 x -+ X G, given by ir(gr) = (€1, ., €k—1, ks Chtls---En)
is an isomorphism onto a subgroup of Gy x --- x G, called the inclusion of the k-th
component. Thus, we may think of Gy as a subgroup of Gy x --- x G,,.

2) The map py : Gy X -+ X G, — Gy, given by p(g1,--.,9n) = gr is a homomorphism
onto Gy, called the projection to the k-th component.

3) Amap f: H— Gy X -+ x G, is a homomorphism if and only if p,.f : H — Gy is a
homomorphism. In that case f(h) = (p1f(h),...,paf(h)).

Proof: easy!

Proof of Theorem 8.3. Also, follow the proof on the example of U(20).
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