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7 Cosets and

Lagrange’s Theorem

Definition. Let G be a group and H its subgroup. We define

the left coset of H containing a: aH = {ah | h ∈ H}
the right coset of H containing a: Ha = {ha | h ∈ H}

The element a is called a coset representative of aH or Ha.

Example. Consider the subgroup 4Z of Z. List the left cosets (same as right) of this
subgroup.

Example. Consider the subgroup H = {α ∈ S5 | α(1) = 1} of S5. List the left and the
right cosets of this subgroup and show that they are not equal. Furthermore, show there is
an α ∈ G such that αHα−1 6= H.

Note. In our examples, the cosets were either disjoint or equal. Only one of the cosets is a
subgroup — the one containing the identity.
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Lemma. Let H be a subgroup of G and let a, b ∈ G. Then the following hold for left cosets,
and analogous statements are true for right cosets.

1) a ∈ aH

2) aH = H if and only if a ∈ H

3) (ab)H = a(bH)

4) aH = bH if and only if a ∈ bH.

5) aH = bH or aH ∩ bH = ∅.
6) aH = bH if and only if a−1b ∈ H and Ha = Hb if and only if ba−1 ∈ H.

7) |aH| = |bH| = |H|
8) aH = Ha if and only if aHa−1 = H

9) aH is a subgroup of G if and only if a ∈ H, so aH = H.

Proof.

Note. The bijection x 7→ x−1 sends every coset aH to Ha−1, establishing a bijective
correspondence between the collections of left and right cosets.
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Lagrange’s Theorem 7.1. If G is a finite group and H a subgroup of G, then |H| di-
vides |G|. Moreover, the number of distinct left or right cosets of H in G is |G|/|H|.

Proof.

Definition. The index of a subgroup H in G is the number of left (or right) cosets of H in
G. It is denoted by |G : H|.

Note. G and H need not be finite subgroups for the index to be defined, for example
|Z : 4Z| = 4.

Corollaries to Theorem 7.1. Let H be a subgroup of G and let a ∈ G. Then

1) If G is finite, then |G : H| = |G|
|H|

2) If G is finite and a ∈ G, the order of a divides the order of G.

3) Every group of prime order is cyclic, hence isomorphic to Zp for some prime p.

4) a|G| = e

5) Fermat’s Little Theorem: For every integer a and every prime p,
ap mod p = amod p.

Proof.
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Example. Inspired by Lagrange’s theorem, one could ask: if k divides |G|, must there exist
a subgroup of order k in G? This is true for cyclic groups, but not in general. Show that A4

does not have a subgroup of order 6, yet |A4| = 12 and 6|12.

Theorem 7.2. Let H and K be two finite subgroups of a group, and consider the set

HK = {hk | h ∈ H, k ∈ K} (may not be a subgroup). Then |HK| = |H||K|
|H ∩K|

.

Proof.
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Theorem 7.3. Every group of order 2p, where p is prime, is isomorphic to either Z2p or Dp.

Proof.
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Definition. The direct product of groups G1, . . . , Gn is the set G1 × · · · ×Gn of n-tuples for
which the i-th component is in Gi and the componentwise operation

(g1, . . . , gn)(g
′
1, . . . , g

′
n) = (g1g

′
n, . . . , gng

′
n)

Note. The textbook uses ⊕ instead of ×, but ⊕ is usually used when all groups G1, . . . , Gn

are abelian.

Example. The group Z× Z is all pairs (x, y) where both coordinates are integers, may be
imagined as the set of all vectors in the plane with initial point the origin and the terminal
a point whose both coordinages are integers.

Example. The group Z3 × Z4 has 12 elements. What is the order of the element (1, 3)?

Example. Every group of order 4 is isomorphic to either Z4 or Z2 × Z2.
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Theorem 8.1. For an element (g1, . . . , gn) ∈ G1 × · · · × Gn), where every Gi, i = 1, . . . , n
is finite, we have

|(g1, . . . , gn)| = lcm(|g1|, . . . , |gn|)

Proof.

Example. Show that Z8 × Z15 is cyclic of order 120, thus isomorphic to Z120.

Theorem 8.2. Let G and H be finite cyclic groups. Then G×H is cyclic if and only if |G|
and |H| are relatively prime.

Proof.

Corollary. Let G1, . . . , Gn be finite cyclic groups.

1) G1 × · · · ×Gn is cyclic if and only if |Gi| and |Gj| are relatively prime when i 6= j.

2) Zn1...nk
≈ Zn1 × · · · × Znk

if and only if ni and nj are relatively prime when i 6= j.
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Direct products help us better understand groups by breaking them up into smaller groups.
For example, we can use it on the groups U(n).

Definition. If k divides n, we define

Uk(n) = {x ∈ U(n) | xmod k = 1} = {1 + kq | 1 + kq ∈ U(n)}

It is not hard to see that Uk(n) is a subgroup of U(n).

Example. For every divisor k of 20, determine Uk(20).

Theorem 8.3. Let s and t be relatively prime. Then

Us(st) ≈ U(t) Ut(st) ≈ U(s) U(st) ≈ U(s)× U(t)

Corollary. If n = n1n2 . . . nk, and gcd(ni, nj) = 1 when i 6= j, then

U(n) = U(n1)× U(n2)× · · · × U(nk)

Note. Due to prime factorization, this means we only need to know what U(pn) is for a
prime p:

U(2) = {0} U(2n) = Z2 × Z2n−2 , for n ≥ 2 U(pn) = Zpn−pn−1 , for p prime n ≥ 1

Example. Determine U(42) and U(36).

Note. It is now a lot easier to see what orders of elements U(n) has.
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Proposition. Let H,G1, . . . , Gn be groups. Then

1) The map ik : Gk → G1 × · · · × Gn given by ik(gk) = (e1, . . . , ek−1, gk, ek+1, . . . , en)
is an isomorphism onto a subgroup of G1 × · · · × Gn, called the inclusion of the k-th
component. Thus, we may think of Gk as a subgroup of G1 × · · · ×Gn.

2) The map pk : G1 × · · · × Gn → Gk given by pk(g1, . . . , gn) = gk is a homomorphism
onto Gk, called the projection to the k-th component.

3) A map f : H → G1 × · · · × Gn is a homomorphism if and only if pkf : H → Gk is a
homomorphism. In that case f(h) = (p1f(h), . . . , pnf(h)).

Proof: easy!

Proof of Theorem 8.3. Also, follow the proof on the example of U(20).
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