Definition. Let G be a group and H its subgroup. We define

the left coset of H containing a: $aH = \{ah \mid h \in H\}$ the right coset of H containing a: $Ha = \{ha \mid h \in H\}$

The element a is called a *coset representative* of aH or Ha.

Example. Consider the subgroup $4\mathbf{Z}$ of \mathbf{Z} . List the left cosets (same as right) of this subgroup.

Example. Consider the subgroup $H = \{ \alpha \in S_5 \mid \alpha(1) = 1 \}$ of S_5 . List the left and the right cosets of this subgroup and show that they are not equal. Furthermore, show there is an $\alpha \in G$ such that $\alpha H \alpha^{-1} \neq H$.

Note. In our examples, the cosets were either disjoint or equal. Only one of the cosets is a subgroup — the one containing the identity.

Lemma. Let H be a subgroup of G and let $a, b \in G$. Then the following hold for left cosets, and analogous statements are true for right cosets.

- 1) $a \in aH$
- 2) aH = H if and only if $a \in H$
- 3) (ab)H = a(bH)
- 4) aH = bH if and only if $a \in bH$.
- 5) aH = bH or $aH \cap bH = \emptyset$.
- 6) aH = bH if and only if $a^{-1}b \in H$ and Ha = Hb if and only if $ba^{-1} \in H$.
- 7) |aH| = |bH| = |H|
- 8) aH = Ha if and only if $aHa^{-1} = H$
- 9) aH is a subgroup of G if and only if $a \in H$, so aH = H.

Proof.

Note. The bijection $x \mapsto x^{-1}$ sends every coset aH to Ha^{-1} , establishing a bijective correspondence between the collections of left and right cosets.

Lagrange's Theorem 7.1. If G is a finite group and H a subgroup of G, then |H| divides |G|. Moreover, the number of distinct left or right cosets of H in G is |G|/|H|.

Proof.

Definition. The *index of a subgroup* H *in* G is the number of left (or right) cosets of H in G. It is denoted by |G:H|.

Note. G and H need not be finite subgroups for the index to be defined, for example $|\mathbf{Z}: 4\mathbf{Z}| = 4$.

Corollaries to Theorem 7.1. Let H be a subgroup of G and let $a \in G$. Then

- 1) If G is finite, then $|G:H| = \frac{|G|}{|H|}$
- 2) If G is finite and $a \in G$, the order of a divides the order of G.
- 3) Every group of prime order is cyclic, hence isomorphic to \mathbf{Z}_p for some prime p.
- 4) $a^{|G|} = e$
- 5) Fermat's Little Theorem: For every integer a and every prime p, $a^p \mod p = a \mod p$.

Proof.

Example. Inspired by Lagrange's theorem, one could ask: if k divides |G|, must there exist a subgroup of order k in G? This is true for cyclic groups, but not in general. Show that A_4 does not have a subgroup of order 6, yet $|A_4| = 12$ and 6|12.

Theorem 7.2. Let H and K be two finite subgroups of a group, and consider the set $HK = \{hk \mid h \in H, k \in K\}$ (may not be a subgroup). Then $|HK| = \frac{|H||K|}{|H \cap K|}$.

Proof.

Theorem 7.3. Every group of order 2p, where p is prime, is isomorphic to either Z_{2p} or D_p . *Proof.*

Modern Algebra 1 — Lecture notes MAT 513/613, Fall 2024 — D. Ivanšić

8 Direct Product

Definition. The *direct product* of groups G_1, \ldots, G_n is the set $G_1 \times \cdots \times G_n$ of *n*-tuples for which the *i*-th component is in G_i and the componentwise operation

$$(g_1,\ldots,g_n)(g_1',\ldots,g_n')=(g_1g_n',\ldots,g_ng_n')$$

Note. The textbook uses \oplus instead of \times , but \oplus is usually used when all groups G_1, \ldots, G_n are abelian.

Example. The group $\mathbf{Z} \times \mathbf{Z}$ is all pairs (x, y) where both coordinates are integers, may be imagined as the set of all vectors in the plane with initial point the origin and the terminal a point whose both coordinages are integers.

Example. The group $\mathbf{Z}_3 \times \mathbf{Z}_4$ has 12 elements. What is the order of the element (1,3)?

Example. Every group of order 4 is isomorphic to either \mathbf{Z}_4 or $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Theorem 8.1. For an element $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$, where every G_i , $i = 1, \ldots, n$ is finite, we have

$$|(g_1,\ldots,g_n)| = \operatorname{lcm}(|g_1|,\ldots,|g_n|)$$

Proof.

Example. Show that $\mathbf{Z}_8 \times \mathbf{Z}_{15}$ is cyclic of order 120, thus isomorphic to \mathbf{Z}_{120} .

Theorem 8.2. Let G and H be finite cyclic groups. Then $G \times H$ is cyclic if and only if |G| and |H| are relatively prime.

Proof.

Corollary. Let G_1, \ldots, G_n be finite cyclic groups.

1) $G_1 \times \cdots \times G_n$ is cyclic if and only if $|G_i|$ and $|G_j|$ are relatively prime when $i \neq j$.

2) $\mathbf{Z}_{n_1...n_k} \approx \mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_k}$ if and only if n_i and n_j are relatively prime when $i \neq j$.

Direct products help us better understand groups by breaking them up into smaller groups. For example, we can use it on the groups U(n).

Definition. If k divides n, we define

$$U_k(n) = \{x \in U(n) \mid x \mod k = 1\} = \{1 + kq \mid 1 + kq \in U(n)\}\$$

It is not hard to see that $U_k(n)$ is a subgroup of U(n).

Example. For every divisor k of 20, determine $U_k(20)$.

Theorem 8.3. Let s and t be relatively prime. Then

$$U_s(st) \approx U(t)$$
 $U_t(st) \approx U(s)$ $U(st) \approx U(s) \times U(t)$

Corollary. If $n = n_1 n_2 \dots n_k$, and $gcd(n_i, n_j) = 1$ when $i \neq j$, then

$$U(n) = U(n_1) \times U(n_2) \times \cdots \times U(n_k)$$

Note. Due to prime factorization, this means we only need to know what $U(p^n)$ is for a prime p:

 $U(2) = \{0\}$ $U(2^n) = \mathbf{Z}_2 \times \mathbf{Z}_{2^{n-2}}, \text{ for } n \ge 2$ $U(p^n) = \mathbf{Z}_{p^n - p^{n-1}}, \text{ for } p \text{ prime } n \ge 1$

Example. Determine U(42) and U(36).

Note. It is now a lot easier to see what orders of elements U(n) has.

Proposition. Let H, G_1, \ldots, G_n be groups. Then

- 1) The map $i_k : G_k \to G_1 \times \cdots \times G_n$ given by $i_k(g_k) = (e_1, \ldots, e_{k-1}, g_k, e_{k+1}, \ldots, e_n)$ is an isomorphism onto a subgroup of $G_1 \times \cdots \times G_n$, called the inclusion of the k-th component. Thus, we may think of G_k as a subgroup of $G_1 \times \cdots \times G_n$.
- 2) The map $p_k : G_1 \times \cdots \times G_n \to G_k$ given by $p_k(g_1, \ldots, g_n) = g_k$ is a homomorphism onto G_k , called the projection to the k-th component.
- 3) A map $f: H \to G_1 \times \cdots \times G_n$ is a homomorphism if and only if $p_k f: H \to G_k$ is a homomorphism. In that case $f(h) = (p_1 f(h), \dots, p_n f(h))$.

Proof: easy!

Proof of Theorem 8.3. Also, follow the proof on the example of U(20).