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We recall some basic facts about divisibility of numbers.

Definition. A nonzero integer n divides an integer m if there exists an integer q such that
m = q · n. We write n | m and say: n divides m, n is a divisor of m, or m is a multiple of n.
Note that 0 does not divide any integer.

Definition. A prime or a prime number is a positive integer greater than 1 whose only
positive divisors are 1 and itself.

Definition. Let n ∈ N, a, b ∈ Z. We say a is congruent to b modulo n if n | a− b.
We write a ≡ b (mod n).

Theorem. Let a and b be integers, n ∈ N. If a ≡ b (mod n) and c ≡ d (mod n), then

a+ c ≡ b+ d (mod n) and ac ≡ bd (mod n)

Division Algorithm Theorem 0.1. Let n ∈ N. For every integer a, there exist unique
integers q and r, 0 ≤ r < n such that a = q · n+ r.

Definition. The greatest common divisor of two nonzero integers a and b is the largest of
all common divisors of a and b. We say a and b are relatively prime if their greatest common
divisor is 1.

Notation. Greatest common divisor of a and b = gcd(a, b) Note that gcd(a, b) ≥ 1.

Theorem 0.2. For any nonzero integers a and b there exist integers s and t such that
gcd(a, b) = as+bt. Also, gcd(a, b) is the smallest positive integer in the set {as+bt | s, t ∈ Z}.

Proof.
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Example. Verify Theorem 0.2 for gcd(18, 30) and gcd(4, 7).

Corollary. Nonzero integers a and b are relatively prime if and only if there exist integers
s and t such that as+ bt = 1.

Proof.

Euclid’s Lemma. Let a and b be integers. If a prime number p divides ab, then p divides
a or p divides b.

Proof.

Fundamental Theorem of Arithmetic 0.3. Every integer greater than 1 is a prime or a
product of primes. This product is unique except for the order in which the primes appear.
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In our experience with mathematics so far, the word “algebra” generally means “arithmetic,”
in other words, computation with various objects. In school, we start with addition and mul-
tiplication of numbers, and expand from there. Both of those operations take two numbers
and combine them to create another number.

Try to think of all examples in mathematics you have encountered so far where you take two
objects and combine them to get another object of the same kind. (These are examples of binary

operations on some set G, essentially functions that send pairs of objects in G to objects in G, in effect, functions G×G → G).

Examples.

Set, operation Label Properties
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Set, operation Label Properties
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Set, operation Label Properties
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Definition. Let G be a nonempty set. A binary operation on G is a function m : G×G → G
that assigns to each ordered pair in G an element of G. Generally, for brevity, we do not
write m(a, b), but ab or a · b. Any of m(a, b), ab, a · b is called the product of a and b.

Above, we have described some binary operations for various sets G.

Definition. A set G with a binary operation · is said to be a group under this operation if
the following three properties are satisfied:

1) Associativity. For all a, b, c ∈ G, (ab)c = a(bc)

2) Identity. There exists an element e ∈ G, called the identity, such that ae = ea = a for
every a ∈ G.

3) Inverses. For every element a ∈ G, there is an element b ∈ G, called the inverse of a,
such that ab = ba = e, where e is the identity from 2).

Notation. As various binary operation may be in play on the same set, it is customary to
write that (G, ·) is a group, which emphasizes the operation under consideration.

Note. Written in function m notation

1) associativity is m(m(a, b), c) = m(a,m(b, c))

2) identity element has the property m(a, e) = m(e, a) = a

3) the inverse has the property m(a, b) = m(b, a) = e

You can see why we don’t write it this way.

Definition. If the operation on G further satisfies

Commutativity. For all a, b ∈ G, ab = ba.

the group (G, ·) is said to be abelian. A group is said to be non-abelian if the opposite holds,
that is, there exist a, b ∈ G such that ab 6= ba. Clearly, abelian groups, having an additional
property, are easier to deal with.

Definition. A set G with a binary operation · is said to be a monoid under this operation if
only properties of associativity and identity are satisfied (inverses need not exist). Clearly,
every group is a monoid.

Examples. For all the examples that we started with, state if the set with the operation is
a binary operation, a monoid or a group, or none.

While a group only has three properties, they are strong enough that they have many
consequences.

Theorem 2.1. In a group G there is only one identity element.

Proof.
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Note. We actually proved this stronger statement: if a binary operation has a left identity e
(ea = a for all a ∈ G) and a right identity f (af = a for all a ∈ G), they are equal.

Cancellation Theorem 2.2. In a group G, the left and right cancellation laws hold, that is

ab = ac implies b = c ab = ac implies b = c

Proof.

Uniqueness of Inverses Theorem 2.3. For each element a in a group G, there is a unique
element b ∈ B such that ab = ba = e.

Proof.

Definition. The unique inverse of a in a group is denoted a−1.

Theorem 2.4. For every a, b in a group G, (ab)−1 = b−1a−1.

Proof.

Example. Given elements a, b in a group G, show that the equations ax = b and xa = b
always have a solution.
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Due to associativity, a product of any finite number of group elements a1a2 . . . an is uniquely
determined, regardless of which product of a pair is computed first, for example

abcd = (ab)(cd) = ((ab)c)d = (a(bc))d = a((bc)d)

Note. In general, we cannot reorder the group elements in the expression unless the group
is abelian.

Definition. For an integer n and a group element g, we define:

g0 = e if n > 0, gn =
n factors︷ ︸︸ ︷
gg . . . g if n < 0, gn = (g−1)|n| =

|n| factors︷ ︸︸ ︷
g−1g−1 . . . g−1

Example. Write out the product: a3b−4c2 =

Power Rules Proposition. For a group element g and any m,n ∈ Z,

gmgn = gm+n and (gm)n = gmn

Note. In general (ab)n 6= anbn, but it does hold in an abelian group. Why?

Notation. Often the operation in the group is denoted + (usually this is for an abelian
group). In keeping with usual way of writing addition of numbers, we write powers and
inverses a little differently in this situation.

Multiplicative Additive
notation notation

operation ab or a · b a+ b
identity e or 1 0
inverse a−1 −a
powers an na

quotient ab−1 a− b (difference)
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Example. Show that the set (R2 \ {(0, 0)}, ·) is a group, where the operation is given
by (a, b) · (c, d) = (ac + 2bd, ad + bc). (Note that a similar multiplication (a, b) · (c, d) =
(ac− bd, ad+ bc) is the product in C = R2.)
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Example. Let Zn = {0, 1, . . . , n−1}. On this set we can define addition and multiplication
modulo n. For any integer k, let kmodn denote the remainder of division of k by n, a
number in Zn. Note that kmodn ≡ k (mod n).

1) a+ b = (a+ b)modn — show that Zn is a group under this operation.

2) ab = (ab)modn — show that Zn is a monoid under this operation. Consider Z12 and
determine which elements have an inverse under multiplication.

3) Let U(n) = set of all elements of Zn that are relatively prime to n. Show that U(n)
is a group under multiplication modulo n. Write the Cayley table (of multiplication)
for U(15).
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Example. Consider the regular n-gon Pn, n ≥ 3, and the all the bijections Pn → Pn that
preserve distance between points (isometries, symmetries). Such bijections send vertices to
vertices and edges to edges and form a group Dn, the dihedral group.

Useful fact. Isometries R2 → R2 are determined by their action on three noncollinear
points. More precisely, if f, g : R2 → R2 are isometries such that f(Pi) = g(Pi), for three
points P1, P2, P3 not all on the same line, then f(P ) = g(P ) for all P ∈ R2.

1) Think of all possible symmetries of P4 and P5.

2) How many elements does Dn have?

3) D2 is interpreted as all symmetries of the “di-gon.” How many elements does D2 have?

4) D1 is interpreted as all symmetries of two points. How many elements does D1 have?
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3 Finite Groups and

Subgroups

Definition. The number of elements in a group G (finite or infinite) is called the order of
the group G and denoted |G|.

Example. |Zn| = n, |U(n)| ≤ n since U(n) ⊆ Zn

Find |U(10)| =

Definition. The order of an element g in a group G is the smallest positive integer n
such that gn = e. We say g has infinite order if no such integer exists. The order of g is
denoted |g|.

Example. Find the orders of all elements of (Z10,+) and U(10). What happens if you try
to apply the same idea to (Z10, ·)?

Example. What is the order of any nonzero element in (Z,+), (Q,+), (R,+), (C,+)?

Example. We know that Z ⊆ Q ⊆ R, and each is a group with the same (inherited)
operation, addition. This is essentially because Z and Q are closed under addition and
taking of inverses. This is a common occurrence, so it gets a name: subgroup.

Definition. If a subset H of a group G is a group under the operation of G, we say that H
is a subgroup of G.

Notation. H is a subgroup of G: H ≤ G
H is a proper subgroup of G (that is, H 6= G): H < G

Note. The set {e} and all of G are always subgroups of G.
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To show that H is a subgroup, we have to show (associativity is inherited):

— H is closed under the operation of G.

— e ∈ H.

— For every a ∈ H, a−1 ∈ H.

Two-Step Subgroup Test Theorem 3.2. Let G be a group and H a nonempty subset
of G. If H satisfies the following two conditions, H is a subgroup of G.

1) For every a, b ∈ H, ab ∈ H.

2) For every a ∈ H, a−1 ∈ H.

Proof.

Example. GL(n,R) = {A ∈ Mn(R) | detA 6= 0}, SL(n,R) = {A ∈ Mn(R) | detA = 1}.
Show that SL(n,R) is a subgroup of GL(n,R).

Proposition. Every subgroup of (Z,+) is of form nZ for some n ∈ N, where
nZ = {nk | k ∈ Z} = {. . . ,−2n,−n, 0, n, 2n, 3n, . . . }.

Test 3.2 can be shortened:

One-Step Subgroup Test Theorem 3.1. Let G be a group and H a nonempty subset of
G. If H satisfies that for every a, b in H, ab−1 is also in H, then H is a subgroup of G.
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Finite Subgroup Test Theorem 3.3. Let H be a nonempty finite subset of G. If H is
closed under the operation of G, then H is a subgroup of G.

Proof.

Definition. Let 〈a〉 = {an | n ∈ Z} = {. . . , a−2, a−1, a0, a, a2, . . . }.

Theorem 3.4. For any element a of a group G, 〈a〉 is a subgroup of G and | 〈a〉 | = |a|.

Proof.

Definition. The subgroup 〈a〉 is called the cyclic subgroup of G generated by a. Note that
〈a〉 is finite if |a| is finite, and infinite otherwise.

Example. Consider the example above, (Z10,+) and U(10), and write the elements of all
of their cyclic subgroups.

Example. In the dihedral group Dn, let H denote the subset of rotations. Then H is a
cyclic subgroup of Dn generated by the rotation by 2π

n
.

Note. The group of rotations is a good visualization of any cyclic group generated by an
element of order n. (That’s why it’s called cyclic!)
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Definition. Let S ⊂ G be any subset of a group G and let S−1 = {a−1 | a ∈ S}. We define
the subgroup generated by S as

〈S〉 = {a1a2 . . . an | a1, a2, . . . , an ∈ S ∪ S−1, n ∈ N}

Example. Show that

— 〈S〉 is a subgroup of G.

— If H is any subgroup of G that contains S, then 〈S〉 ≤ H. This says that 〈S〉 is the
smallest subgroup of G that contains S, because it is contained in any other subgroup
with the same property.

Note. 〈S〉 can also be defined as
⋂

H≤G, S⊆H

H, the intersection of all subgroups of G that

contain S. One gets the same subgroup.

Definition. The center Z(G) of a group G is the subset of all elements of G that commute
with every element of G.

Z(G) = {a ∈ G | ax = xa for every x ∈ G}

Theorem 3.5. The center of a group G is a subgroup of G.

Proof.
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Example. Determine the center of GL(2,R). The same method can be used for GL(n,R).

Definition. For an element a ∈ G we define C(a), the centralizer of a in G as all elements
in G that commute with a.

C(a) = {g ∈ G | ga = ag}

Theorem 3.5. The centralizer of a in G is a subgroup of G.

Proof. Essentially the same as for the center of a group.

Example. Determine the centralizer of

[
1 3
2 −1

]
in GL(2,R). (For a fun related problem,

show using Theorem 3.2 that the form of the matrices in the centralizer form a subgroup.)
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Recall that a group G is cyclic if G = 〈a〉 = {an | n ∈ Z}.

Example. Not every group is cyclic. Show that (Q,+), (R,+) and (U(8), ·) are not cyclic.

Theorem 4.1. Let G be a group and let a ∈ G. Then

a) If a has infinite order ai = aj if and only if i = j.

b) If a has finite order n, then ai = aj if and only if i ≡ j (mod n), so 〈a〉 = {e, a, a2, . . . an−1}.

Proof.

Corollary. Let G be a group and let a, b ∈ G.

1) |a| = | 〈a〉 |.
2) If |a| = n and ak = e for some k ∈ Z, then n divides k.

3) If ab = ba, then |ab| divides |a||b|.
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Proof.

Theorem 4.2. Let G be a group, a ∈ G and let |a| = n. For any k ∈ N,
〈
ak
〉
=

〈
agcd(n,k)

〉
and |ak| = n

gcd(n, k)
.

Proof.

Example. Apply the theorem to (Z10,+) to find orders of all elements without going
through their powers.
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Corollary. Let G be a group and let a, b ∈ G.

1) In a finite cyclic group, the order of every element divides the order of the group.

2) If |a| = n, then 〈ai〉 = 〈aj〉 if and only if gcd(n, i) = gcd(n, j), and |ai| = |aj| if and
only if gcd(n, i) = gcd(n, j).

3) If |a| = n, then 〈aj〉 = 〈a〉 if and only if gcd(n, j) = 1, and |aj| = |a| if and only if
gcd(n, j) = 1.

4) An integer k ∈ Zn generates Zn if and only if gcd(n, k) = 1.

Proof.

Fundamental Theorem of Cyclic Groups 4.3. Every subgroup of a cyclic group is
cyclic. Furthemore, if |a| = n, the order of any subgroup of 〈a〉 is a divisor of n; and for each
divisor k of n, the group 〈a〉 has exactly one subgroup of order k, namely

〈
a

n
k

〉
.

Proof.
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Corollary. For each positive divisor k of n, the subgroup
〈
n
k

〉
is the unique subgroup of

order k, and these are the only subgroups of Zn.

Example. Find all the generators of the subgroup of order 4 in Z20.

Definition. The Euler phi function is the function ϕ : N → N given by: ϕ(1) = 1, and

ϕ(n) = number of positive integers less than n and relatively prime with n, if n > 1

Clearly, ϕ(n) = |U(n)|.

Theorem 4.4. If d > 0 divides n, the number of elements of order d in a cyclic group of
order n is ϕ(d).

Proof.

Note. The number of elements of order d does not depend on n: for example, Z6, Z30 and
Z150 all have ϕ(6) = 2 elements of order 6.
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Corollary. In a finite group, the number of elements of order d is a multiple of ϕ(d).

Proof.

One can draw the lattice of subgroups of a group G: a picture where all the subgroups are
listed and it is shown which one is contained in which. For cyclic groups, this can be done
easily based on the statements we had in this chapter.

Example. Draw the lattice of subgroups of Z24.
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Definition. Let A be a set. Any bijection f : A → A is called a permutation of A. The set
of all bijections of A with the operation of composition is a group, called the permutation
group of A.

The permutation group of the finite set A = {1, 2, . . . , n} is called the symmetric group of
degree n and is denoted Sn. (This is the permutation group we study in this section.)

Any element of Sn can be given by a table of values. For example, a permutation α ∈ S5

can be written as

α =

[
1 2 3 4 5
4 5 1 3 2

]
which denotes that α(1) = 3, α(2) = 4, etc.

The name “permutation” comes from the fact that the bottom row in this notation is simply
a permutation of the numbers 1, 2, . . . , n, of which there are n!.

Proposition. |Sn| = n!

Note. In keeping with the usual convention of order of composition — for f ◦ g, it is g that
acts first — permutation products are computed so that the rightmost permutation acts
first, and then the next one to the left, thus:[

1 2 3 4 5
4 5 1 3 2

] [
1 2 3 4 5
3 2 5 1 4

]
=

[
1 2 3 4 5
1 5 2 4 3

]
and NOT

[
1 2 3 4 5
1 4 3 5 2

]

For the permutation α above, note the following:

1
α7−→ 4

α7−→ 3
α7−→ 1, 2

α7−→ 5
α7−→ 2

In other words, we can form cycles of values that completely describe the permutation,
written as α = (143)(25), and this notation can be interpreted as the composite of the
permutation that cycles 2 and 5 (and leaves 1, 4 and 3 fixed) and another permutation that
cycles 1, 4 and 3 (and leaves 2 and 5 fixed).

Definition. Let α be a permutation of the set {1, 2 . . . , n}. A cycle of values of a number
a ∈ {1, 2, . . . , n} is the set [a] = {αk(a) | k ∈ Z} (images of a by all powers of α). The length
of a cycle of values [a] is the number of elements in [a], that is |[a]|.

Note. The length of a cycle of values is ≥ 1.

Example. State the cycles of values and their lengths for the permutation α above.
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Proposition. For a permutation α ∈ Sn and a, b ∈ {1, 2, . . . , n} we have:

1) [a] = {αk(a) | k ∈ Z} = {αk(a) | k ∈ Z, k ≥ 0}
2) Cycles of values are either disjoint or equal, that is, either [a] = [b] or [a] ∩ [b] = ∅.
3) [a] = {a1, a2, . . . , am}, where α(a1) = a2, α(a2) = a3, . . . , α(am) = a1 (may take a1 =

a), where a1, a2, . . . , am are distinct numbers and m is the smallest k ≥ 1 such that
αk(a1) = a1.

Definition. A cycle α is a permutation in Sn for which there exist distinct numbers
a1, a2, . . . , am ∈ {1, 2, . . . , n} so that α(a1) = a2, α(a2) = a3, . . . , α(am) = a1 and α(a) = a
for any a /∈ {a1, a2, . . . , am}. This cycle is denoted (a1, a2, . . . , am) (order matters). The
length of a cycle is the number of elements m in {a1, a2, . . . , am}. A cycle of length m is
called an m-cycle.

Note. The order of a cycle |α| is equal to the length of the cycle.
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Theorem 5.1. Every permutation of a finite set is a cycle or a product of disjoint cycles.

Proof.

Theorem 5.2. If cycles α = (a1, a2, . . . , al) and β = (b1, b2, . . . , bm) have no entries in
common, then αβ = βα.

Proof.

Theorem 5.3. The order of a permutation written in disjoint cycle form is the least common
multiple of the lengths of the cycles.

Proof.
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Example. Find the order of the permutation α ∈ S9 if α = (7, 3, 1, 4)(5, 8)(6, 9).

Theorem 5.4. Every permutation in Sn is a product of 2-cycles (non-disjoint).

Proof.

Lemma. If ε = β1β2 . . . βr, where βi’s are 2-cycles, then r is even (ε = identity).

Proof.

Theorem 5.5. If a permutation α is a product of 2-cycles, then the number of 2-cycles
always has the same parity (odd or even). That is, if β1β2 . . . βr = α = γ1γ2 . . . γs, where the
βi’s and γj’s are 2-cycles, then r and s are both even or both odd.
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Proof.

Definition. A permutation in Sn is even if it is a product of an even number of 2-cycles, odd
if it is a product of an odd number of 2-cycles. We can define a function sign : Sn → {−1, 1}
as

sign(α) =

{
1 = (−1)even, if α is even

−1 = (−1)odd, if α is odd

Theorem 5.6. The set of even permutations forms a subgroup of Sn.

Proof.

Definition. The group of even permutations of n elements is denoted An and called the
alternating group of degree n.

Theorem 5.7. For n > 1, the order of An is
n!

2
.

Proof.
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Permutations play an essential role in the definition of the determinant.

Definition. The determinant of an n× n matrix is given as

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =
∑
α∈Sn

sign(α) a1α(1)a2α(2) . . . anα(n) (has n! terms)

Example. For 2× 2 and 3× 3 matrices, show that the above definition is the same as you
learned before.
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6, 10 Group Homomorphisms

and Isomorphisms

Definition. A homomorphism from group G to group G is a map ϕ : G → G that preserves
the group operation, that is

for every a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b)

Example. Verify that the following maps are homomorphisms.

ϕ : (R,+) → (R,+)
ϕ(x) = cx for some c ∈ R

ϕ : (C− {0}, ·) → (R+, ·)
ϕ(z) = |z|

det : (GL(n,R), ·) → (R, ·)

ϕ : (R− {0}, ·) → (R− {0}, ·) What if ϕ : (R− {0},+) → (R− {0},+)?
ϕ(x) = xn

ϕ : (G, ·) → (G, ·)
where G is abelian
ϕ(a) = an

ϕ : (Z,+) → (Zn,+)
ϕ(k) = kmodn

Definition. The kernel of a homomorphism ϕ : G → G is the set

kerϕ = {x ∈ G | ϕ(x) = e} = ϕ−1({e}) (inverse image of {e})

Example. Determine the kernels of the above homomorphisms.

Sec.6-1



Theorem 10.1. Let ϕ : G → G be a homomorphism, and a, b ∈ G. Then

1) ϕ(e) = e, where e, e are identities in G,G.

2) ϕ(an) = (ϕ(a))n for all n ∈ Z. In particular, ϕ(a−1) = (ϕ(a))−1.

3) If |a| is finite, then |ϕ(a)| divides |a|.
4) kerϕ is a subgroup of G.

5) ϕ(a) = ϕ(b) if and only if ab−1 ∈ kerϕ. In particular, ϕ is injective if and only if
kerϕ = {e}.

6) If ϕ(a) = c, then ϕ−1(c) = a kerϕ. In other words, the inverse image of c is
(particular element sent to c)kerϕ.

Proof.
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Theorem 10.2. Let ϕ : G → G be a homomorphism, and let H be a subgroup of G and K
a subgroup of G. Then

1) ϕ(H) = {ϕ(h) | h ∈ H} is a subgroup of G.

2) If H is cyclic, so is ϕ(H).

3) If H is abelian, so is ϕ(H).

4) If H is normal in G, then ϕ(H) is normal in ϕ(G).

5) If | kerϕ| = n, then ϕ is an n-to-1 mapping from G onto ϕ(G)

6) If |H| = n, then |ϕ(H)| divides n.
7) ϕ−1(K) = {x ∈ G | ϕ(x) ∈ K} is a subgroup of G.

8) If K is a normal subgroup of G, then ϕ−1(K) is a normal subgroup of G.

9) If ϕ is onto and ker ϕ = {e}, then ϕ is a bijection.

Proof.
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Definition. An isomorphism from a group G to a group G is a map ϕ : G → G that
preserves the group operation and is bijective. Thus, ϕ : G → G is an isomorphism if

1) ϕ is a homomorphism: ϕ(ab) = ϕ(a)ϕ(b) 2) ϕ is a bijection

If there is an isomorphism ϕ : G → G, we say that G and G are isomorphic and write G ≈ G.

An isomorphism between groups tells us that they are essentially the same set with the same
operation, merely taking different guises.

Example. Let 〈a〉 be a cyclic group.
If |a| is not finite, ϕ : Z → 〈a〉, ϕ(k) = ak is an isomorphism.
If |a| = n, ϕ : Zn → 〈a〉, ϕ(k) = ak is an isomorphism.

Note. The subgroup H of rotations in Dn is cyclic of order n so it is isomorphic to (Zn,+).

Example. The map ϕ(x) = ex is an isomorphism between (R,+) and (R+, ·).

Note. This tells us that multiplication of positive real numbers and addition of real numbers
are essentially the same operation. This was exploited since the 17th century with logarithmic
tables, which helped turn multiplication and division of numbers (hard) into addition and
subtraction (much easier).

Sec.6-4



There is a good reason we study groups of permutations: every group can be viewed as a
subgroup of the group of bijections on some set A.

Example. Every symmetry in Dn permutes the vertices of a regular n-gon in a unique way
(why?), so it can be viewed as a permutation of the set {1, 2, . . . , n}. However, not every
permutation of {1, 2, . . . , n} is realizable by a symmetry: give an example of a permutation
of {1, . . . , 4} that is not the result of a symmetry.

Cayley’s Theorem 6.1. Every group is isomorphic to a subgroup of the group of permu-
tations on some set A.

Proof.

Example. Follow the proof above to see what subgroup of permutations of R is (R,+)
isomorphic to.
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Note. The theorem allows us to view every group as a more concrete object, permutations
of some set A. The proof of the theorem has every group G as a subgroup of permutations
of A = G. In practice, this is not very efficient or useful, as we generally strive for the set A
to be “small.”

For example, associating elements of Dn with permutations of {1, 2, . . . , n} (n elements) is
an improvement of the default association of Dn with permutation of Dn, which has 2n
elements.

Theorem 6.2. Let ϕ : G → G be an isomorphism, and a, b ∈ G. Then

1) ϕ(e) = e, where e, e are identities in G,G.

2) ϕ(an) = (ϕ(a))n for all n ∈ Z. In particular, ϕ(a−1) = (ϕ(a))−1.

3) a and b commute if and only if ϕ(a) and ϕ(b) commute.

4) G = 〈a〉 if and only if G = 〈ϕ(a)〉.
5) |a| = |ϕ(a)|
6) For a fixed integer k, the equation xk = b has the same number of solutions in G as

the equation xk = ϕ(b) in G.

7) If G is finite, then G and G have the same number of elements of every order.

8) kerϕ = {e}

Proof.
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Theorem 6.3. Let ϕ : G → G be a isomorphism, and let H be a subgroup of G and K a
subgroup of G. Then

1) ϕ−1 : G → G is an isomorphism.

2) G is abelian if and only if G is abelian.

3) G is cyclic if and only if G is cyclic.

4) ϕ(H) = {ϕ(h) | h ∈ H} is a subgroup of G.

5) ϕ−1(K) = {x ∈ G | ϕ(x) ∈ K} is a subgroup of G.

6) ϕ(Z(G)) = Z(ϕ(G))

Proof.

Example. Z12, D6 and A4 all have order 12. Show they are not isomorphic by considering
the largest orders of elements in every group or the number of elements of order 2.

Example. Show (Q,+) is not isomorphic to (Q − {0}, ·) by considering the number of
order-2 elements.
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Note. As one can glean from theorems 6.2 and 6.3, any property expressed in the language
of group theory is true for a group if and only if it is true for an isomorphic group. That is
why we think of isomorphic groups as “same.”

Definition. An automorphism of a group G is any isomorphism from G to G. The set of
all automorphisms of a group G is denoted Aut(G).

Example. For k = 0, . . . , 9, consider the function ϕ : Z10 → Z10, ϕ(n) = kn.
a) Show ϕ is a homomorphism.
b) Why is it enough to consider k ∈ {0, 1, . . . , 9}, rather than k ∈ Z?
c) For which k is ϕ an automorphism?

Example. Let a ∈ G, and define ϕa : G → G, ϕ(x) = axa−1. Show that phia is an
isomorphism.
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Definition. The automorphism ϕa of G is called the inner automorphism induced by a.
Define Inn(G) = {ϕa | a ∈ G}, the set of all inner automorphisms.

Note. ϕa = ε if and only if a ∈ Z(G), so in an abelian group, all inner isomorphisms are
the identity (not very interesting).

Example. Let H be a subgroup of G. Then for every a ∈ G, ϕa(H) is a subgroup isomorphic
to H. When G is not abelian, this may give us a number of subgroups in H that are
isomorphic to H, but different from H.
a) When a ∈ H, what is ϕa(H)?
b) Let G = Dn, H = 〈a〉, where a is a reflection. Determine ϕa(H) for every a ∈ G.

Theorem 6.4. Aut(G) is a group under the operation of composition, and Inn(G) is a
subgroup of Inn(G). (Note Aut(G) is itself a subgroup of the group of permutations of G.)

Proof. Homework!

Example. Determine the group Aut(Z10).
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Theorem 6.5. Aut(Zn) ≈ U(n)

Example. In most examples we have considered, the isomorphism of the groups was pretty
apparent. However, some groups that do not seem “same” are in fact isomorphic. These
examples are surprising and require somewhat more advanced techniques to show:
— (R,+) is isomorphic to (C,+)
— (C− {0}, ·) is isomorphic to ({z ∈ C | |z| = 1}, ·)
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