1. (6 pts) Let $\mathbf{u}=\langle 3,1,-7\rangle$ and $\mathbf{v}=\langle 2,-3,1\rangle$. Find the angle between \mathbf{u} and \mathbf{v}.
2. (16pts) The paraboloids $z=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and $z=36-x^{2}-y^{2}$ intersect in a circle.
a) Sketch a picture.
b) Find a parametrization for the circle.
c) Find the parametric equation of the tangent line to the circle at point $(3 \sqrt{2},-\sqrt{6}, 12)$ and draw it on your sketch.
3. (10pts) A line is given parametrically: $x=1+2 t, y=-3-t, z=5+2 t$. Find the equation of the plane that contains this line and the point $(-3,7,0)$.
4. (12pts) Let $f(x, y)=x^{2}-y$.
a) Draw a rough contour map for the function with contour interval 1 , going from $c=-3$ to $c=3$.
b) Find ∇f and roughly draw this vector field. Note that no computation is needed to draw the vector field.
c) What is $\int_{C} \nabla f \cdot d \mathbf{s}$ if C is the arc of the unit circle that is in the first quadrant, going counterclockwise?
5. (16pts) Let $f(x, y)=y e^{x y}, x=u^{3}-v^{3}, y=\frac{u}{v}$. Find $\frac{\partial f}{\partial v}$ when $u=2, v=1$.
6. (16pts) Find and classify the local extremes for the function $f(x, y)=x^{3}-x y+y^{3}$.
7. (18pts) Find $\iint_{D} x d A$ if D is the region bounded by the curves $y=x^{2}-10$ and $y=5 x+14$.
8. (16pts) Use cylindrical or spherical coordinates to set up $\iiint_{W} \frac{x^{2}+y^{2}+z^{2}}{x^{2}+y^{2}+1} d V$ where W is the region inside the sphere $x^{2}+y^{2}+z^{2} \leq 16$, between the planes $y=\sqrt{3} x$ and $y=-\frac{1}{\sqrt{3}} x$, and where $y \geq 0$. Sketch the region of integration. Do not evaluate the integral.
9. (24pts) Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, if S is the part of the cone $z=2 \sqrt{x^{2}+y^{2}}$ for which $z \leq 12$, and $\mathbf{F}(x, y, z)=\langle y z, x z, x y\rangle$. Use the normal vectors to the surface that point upwards. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from.
10. (16pts) Sketch the region W given by $x^{2}+y^{2} \leq z \leq 25, x \geq y, x, y \geq 0$. Then write the two iterated triple integrals that stand for $\iiint_{W} f d V$ which end in $d z d x d y$, and $d x d z d y$.

Bonus. (15pts) A spherical cap of height h is the set $x^{2}+y^{2}+z^{2} \leq R^{2}, z \geq R-h$. Show that its surface area is $A=2 \pi R h$. Then use this formula to get the surface area of a ball or radius R.

