1. (19pts) Let $\phi(x, y) = \sqrt{x^2 + y^2}$.

a) Find $\nabla \phi(x, y)$. What is $||\nabla \phi(x, y)||$?

b) Roughly draw the vector field $\nabla \phi(x, y)$, scaling the vectors for a better picture.

c) How could you have roughly done b) without the actual computation in a)?

d) What is $\int_C \nabla \phi \cdot d\mathbf{s}$ if C is part of the curve $y = x^3$ from (0,0) to (2,8)? How about if C is a straight line segment from (0,0) to (2,8)?

2. (15pts) Let C be part of the helix $x = 4 \cos t$, $y = 4 \sin t$, z = t, for $t \in [2\pi, 4\pi]$. a) Set up $\int_C xz \, ds$.

b) Set up $\int_C \mathbf{F} \cdot d\mathbf{s}$, if $\mathbf{F}(x, y, z) = \langle y, x, z^2 \rangle$.

In both cases simplify the set-up, but do not evaluate the integral.

3. (16pts) One of the two vectors fields below is not a gradient field, and the other one is (cross partials, remember?). Identify which is which, and find the potential function for the one that is.

$$\mathbf{F}(x,y,z) = \langle x^2 + y^2, y^2 + z^2, z^2 + x^2 \rangle \qquad \qquad \mathbf{G}(x,y,z) = \langle e^z, e^z, e^z(x+y+z+1) \rangle$$

4. (24pts) Find $\iint_S \mathbf{F} \cdot d\mathbf{S}$, if S is the part of the cylinder $x^2 + y^2 = 9$ between the planes z = 1 and z = 5, and $\mathbf{F}(x, y, z) = \langle -y, x - z, y \rangle$. (The surface does not include the top or the bottom, just part of the cylinder.) Use the normal vectors to the surface that point toward the z-axis. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from.

5. (26pts) Find the surface integral $\iint_S xz \, dS$, if S is part of the plane 4x + 2y + z = 4 that is in the octant $x, y, z \ge 0$. Draw the surface (intercepts with the axes will help you draw the plane), parametrize it and specify the planar region D where your parameters come from.

Bonus. (10pts) A spherical cap (eek! It again!) of height h is the set $x^2 + y^2 + z^2 \leq R^2$, $z \geq R - h$. Show that its surface area is $A = 2\pi Rh$. Then use this formula to get the surface area of a ball or radius R.