1. (19pts) Let $\phi(x, y)=\sqrt{x^{2}+y^{2}}$.
a) Find $\nabla \phi(x, y)$. What is $\|\nabla \phi(x, y)\|$?
b) Roughly draw the vector field $\nabla \phi(x, y)$, scaling the vectors for a better picture.
c) How could you have roughly done b) without the actual computation in a)?
d) What is $\int_{C} \nabla \phi \cdot d \mathbf{s}$ if C is part of the curve $y=x^{3}$ from $(0,0)$ to $(2,8)$? How about if C is a straight line segment from $(0,0)$ to $(2,8)$?
2. (15pts) Let C be part of the helix $x=4 \cos t, y=4 \sin t, z=t$, for $t \in[2 \pi, 4 \pi]$.
a) Set up $\int_{C} x z d s$.
b) Set up $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, if $\mathbf{F}(x, y, z)=\left\langle y, x, z^{2}\right\rangle$.

In both cases simplify the set-up, but do not evaluate the integral.
3. (16pts) One of the two vectors fields below is not a gradient field, and the other one is (cross partials, remember?). Identify which is which, and find the potential function for the one that is.
$\mathbf{F}(x, y, z)=\left\langle x^{2}+y^{2}, y^{2}+z^{2}, z^{2}+x^{2}\right\rangle$

$$
\mathbf{G}(x, y, z)=\left\langle e^{z}, e^{z}, e^{z}(x+y+z+1)\right\rangle
$$

4. (24pts) Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, if S is the part of the cylinder $x^{2}+y^{2}=9$ between the planes $z=1$ and $z=5$, and $\mathbf{F}(x, y, z)=\langle-y, x-z, y\rangle$. (The surface does not include the top or the bottom, just part of the cylinder.) Use the normal vectors to the surface that point toward the z-axis. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from.
5. (26pts) Find the surface integral $\iint_{S} x z d S$, if S is part of the plane $4 x+2 y+z=4$ that is in the octant $x, y, z \geq 0$. Draw the surface (intercepts with the axes will help you draw the plane), parametrize it and specify the planar region D where your parameters come from.

Bonus. (10pts) A spherical cap (eek! It again!) of height h is the set $x^{2}+y^{2}+z^{2} \leq R^{2}$, $z \geq R-h$. Show that its surface area is $A=2 \pi R h$. Then use this formula to get the surface area of a ball or radius R.

