1. (18pts) Find $\iint_{D} y d A$ if D is the region bounded by the lines $y=0, y=x$ and $y=6-x$. Sketch the region of integration.
2. (18pts) Evaluate $\int_{0}^{1} \int_{2 y}^{2} y e^{x^{3}} d x d y$ by changing the order of integration. Sketch the region of integration.
3. (16pts) Use polar coordinates to evaluate the integral $\int_{0}^{5} \int_{0}^{\sqrt{25-x^{2}}}(x+y) d y d x$. Sketch the region of integration first.
4. (16pts) Sketch the region W given by $x^{2}+y^{2}+z^{2} \leq 9, z \geq 2, y \geq 0$. Then write the two iterated triple integrals that stand for $\iiint_{W} f d V$ which end in $d z d y d x$, and $d y d x d z$.
5. (16pts) Use cylindrical coordinates to set up $\iiint_{W} \frac{x y z}{x^{2}+y^{2}+1} d V$ where W is the region above the cone $z=\frac{1}{2} \sqrt{x^{2}+y^{2}}$, under the plane $z=10$ and between the planes $y=x$ and $y=0(x, y \geq 0)$. Sketch the region of integration. Do not evaluate the integral.
6. (16pts) Use change of variables to find the integral $\iint_{D} e^{x-y} d A$ if D is the rectangle bounded by $y=x, y=x-4, y=-x$ and $y=8-x$. Sketch the region D.

Bonus. (10pts) Use spherical coordinates to find the volume of the region W from problem 4.

