1. (18pts) Find $\iint_D y \, dA$ if D is the region bounded by the lines $y=0,\,y=x$ and y=6-x. Sketch the region of integration.

2. (18pts) Evaluate $\int_0^1 \int_{2y}^2 y e^{x^3} dx dy$ by changing the order of integration. Sketch the region of integration.

3. (16pts) Use polar coordinates to evaluate the integral $\int_0^5 \int_0^{\sqrt{25-x^2}} (x+y) \, dy \, dx$. Sketch the region of integration first.

4. (16pts) Sketch the region W given by $x^2 + y^2 + z^2 \le 9$, $z \ge 2$, $y \ge 0$. Then write the two iterated triple integrals that stand for $\iiint_W f \, dV$ which end in $dz \, dy \, dx$, and $dy \, dx \, dz$.

5. (16pts) Use cylindrical coordinates to set up $\iiint_W \frac{xyz}{x^2+y^2+1} dV$ where W is the region above the cone $z=\frac{1}{2}\sqrt{x^2+y^2}$, under the plane z=10 and between the planes y=x and y=0 $(x,y\geq 0)$. Sketch the region of integration. Do not evaluate the integral.

6. (16pts) Use change of variables to find the integral $\iint_D e^{x-y} dA$ if D is the rectangle bounded by $y=x, \ y=x-4, \ y=-x$ and y=8-x. Sketch the region D.

Bonus. (10pts) Use spherical coordinates to find the volume of the region W from problem 4.