1. (12pts) Find the equation of the tangent plane to the surface $x^{2}-\frac{y^{2}}{4}+z^{2}=1$ at the point $\left(1, \sqrt{2}, \frac{\sqrt{2}}{2}\right)$. Simplify the equation to standard form.
2. (20pts) A bug is moving along the path $\mathbf{r}(t)=\left\langle 2 t+3, t^{2}\right\rangle$ through a region where temperature is distributed according to the function $T(x, y)=\frac{e^{x-y}}{x}\left(\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$.
a) Find the point P where the bug is at $t=3$.
b) At what rate is the bug's temperature changing when $t=3$ (in seconds)? What are the units?
c) At P, in which direction does the temperature decrease the fastest?
3. (20pts) Let $f(x, y)=x \ln \left(x^{2}+y^{2}\right), x=\sin u+\cos v, y=\cos u \sin v$. Find $\frac{\partial f}{\partial u}$ when $u=\pi, v=\frac{\pi}{2}$.
4. (12pts) A cylinder is measured to have radius $x=20 \mathrm{~cm}$ and height $y=12 \mathrm{~cm}$, with an error in measurement at most 0.75 cm in each. Estimate the maximal error in computing the volume of the cylinder.
5. (12pts) Find $\frac{\partial y}{\partial z}$ using implicit differentiation, if $x^{2} y+y^{3} z+z^{4} x=13$.
6. $(24 \mathrm{pts})$ Find and classify the local extremes for the function $f(x, y)=x^{2} y^{2}+y^{4}-x^{2}+6 y$.

Bonus (10pts) Consider the function $f(x, y)=x+\sqrt{3} y$ on the domain $x^{2}+y^{2} \leq 1$.
a) Determine the global minimum and maximum values of f.
b) Draw the graph of f and justify your answer from a) using the picture.

