1. (10pts) Write the parametrization of the circle that is the intersection of the sphere $x^{2}+y^{2}+z^{2}=16$ with the plane $x=2$. Sketch a picture.
2. (20pts) A curve is given by $\mathbf{r}(t)=\langle 4 t, t \cos t, t \sin t\rangle, t \in[0,4 \pi]$.
a) Sketch this curve.
b) Find the parametric equation of the tangent line to the curve at time $t=\pi$ and draw this tangent line on your sketch.
3. (22pts) After another ill-fated attempt at lunch, Wile E. Coyote finds himself ejected from the edge of a 60 -meter tall canyon at angle 30° above the horizontal with initial speed 40 meters per second.
a) Find his position at time t. (For simplicity of calculation, blaspheme away and set $g=10$.)
b) When does he hit the bottom of the canyon?
c) What is his speed when he hits the bottom?
4. (18pts) Find the length of the curve with the parametrization $\mathbf{r}(t)=\left\langle\frac{t^{2}}{2}, \frac{2 \sqrt{2}}{\sqrt{3}} t^{\frac{3}{2}}, 3 t+7\right\rangle$, $t \in[1,5]$.
5. (20pts) Let $f(x, y)=x^{2} y$.
a) Identify and draw vertical traces for this function.
b) Using a), draw the graph of the function (in your 3-D coordinate system, orient the x-axis to the right, and the y-axis away from you).
c) Draw a rough contour map for the function, with contour interval 1 , going from $c=-3$ to $c=3$.
d) By looking at the contour map, indicate the direction (if any), in which we would have to move from $(1,2)$ in order to decrease the value of the function.
6. (10pts) Determine and sketch the domain of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}-9}$.

Bonus (10pts) Let $\mathbf{r}(t)$ the position of a moving object in space. If $\mathbf{r}^{\prime \prime \prime}(t)=\mathbf{0}$, use differentiation rules for products to help you show that the volume of the parallelepiped spanned by the position, velocity and acceleration vectors is constant. (Hint: triple product.)

