1. (10pts) Write the parametrization of the circle that is the intersection of the sphere $x^2 + y^2 + z^2 = 16$ with the plane x = 2. Sketch a picture.

2. (20pts) A curve is given by $\mathbf{r}(t) = \langle 4t, t \cos t, t \sin t \rangle, t \in [0, 4\pi].$

a) Sketch this curve.

b) Find the parametric equation of the tangent line to the curve at time $t = \pi$ and draw this tangent line on your sketch.

3. (22pts) After another ill-fated attempt at lunch, Wile E. Coyote finds himself ejected from the edge of a 60-meter tall canyon at angle 30° above the horizontal with initial speed 40 meters per second.

a) Find his position at time t. (For simplicity of calculation, blaspheme away and set g = 10.)

- b) When does he hit the bottom of the canyon?
- c) What is his speed when he hits the bottom?

4. (18pts) Find the length of the curve with the parametrization $\mathbf{r}(t) = \left\langle \frac{t^2}{2}, \frac{2\sqrt{2}}{\sqrt{3}}t^{\frac{3}{2}}, 3t+7 \right\rangle, t \in [1, 5].$

5. (20pts) Let $f(x, y) = x^2 y$.

a) Identify and draw vertical traces for this function.

b) Using a), draw the graph of the function (in your 3-D coordinate system, orient the x-axis to the right, and the y-axis away from you).

c) Draw a rough contour map for the function, with contour interval 1, going from c = -3 to c = 3.

d) By looking at the contour map, indicate the direction (if any), in which we would have to move from (1, 2) in order to decrease the value of the function.

6. (10pts) Determine and sketch the domain of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 9}$.

Bonus (10pts) Let $\mathbf{r}(t)$ the position of a moving object in space. If $\mathbf{r}''(t) = \mathbf{0}$, use differentiation rules for products to help you show that the volume of the parallelepiped spanned by the position, velocity and acceleration vectors is constant. (*Hint: triple product.*)