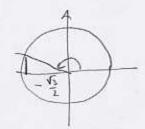
(2pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.

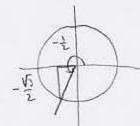
$$\frac{7\pi}{6}$$
 radians = $\frac{7\pi}{6} \cdot \frac{180^{\circ}}{7} = 210^{\circ}$

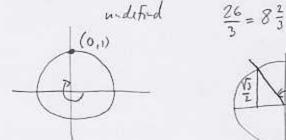
(8pts) Without using the calculator, find the exact values of the following trigonometric expressions. Draw the unit circle and the appropriate angle under the expression.

$$\cos 150^\circ = -\frac{\sqrt{3}}{2} \qquad \tan \frac{4\pi}{3} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{3}}$$

$$\tan\frac{4\pi}{3} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}$$


$$sec(-270^{\circ}) =$$


$$\sin\frac{26\pi}{3} = S_1 L \left(8\pi + \frac{2}{3}\pi\right)$$


$$= S_1 L \left(\frac{2}{3}\pi\right) - \frac{\sqrt{3}}{2}$$

$$=\frac{\sqrt{3}}{2}\cdot\frac{2}{1}=\sqrt{3}$$

$$\sec(-270^\circ) = \frac{1}{\cos(-270^\circ)} = \frac{1}{0}$$

(2pts) Use your calculator to evaluate (round to 4 decimals):

$$\sec 115^{\circ} = \frac{1}{\cos ||S^{\circ}|}$$

$$\tan \frac{4\pi}{9} = 5.6713$$

4. (5pts) In a right triangle, the leg opposite angle θ has length 3 and the hypothenuse has length 8. Compute $\cos \theta$, $\csc \theta$ and $\tan \theta$.

$$\frac{8}{a = \sqrt{55}}$$

$$\cos \theta = \frac{\sqrt{55}}{8}$$

$$\cos \theta = \frac{1}{5 \ln \theta} = \frac{8}{3}$$

$$a^{2} + 3^{2} = 8^{2}$$

$$a^{2} = 64 - 9$$

$$a^{2} = 55$$

$$4 = 55$$

5. (5pts) Use fundamental identities and complementary angles to simplify:

$$\frac{\sin 40^{\circ}}{\sin 50^{\circ}} - \tan 40^{\circ} = \frac{5 \times 40^{\circ}}{\cos 90^{\circ}} - \tan 40^{\circ} = \tan 40^{\circ} - \tan 40^{\circ} = 0$$

$$\sin 65^{\circ} \csc 65^{\circ} + \cos 41^{\circ} \csc 49^{\circ} = 51465^{\circ} \frac{1}{5149^{\circ}} + \cos 41^{\circ} \frac{1}{5149^{\circ}}$$

$$= 1 + \cos 41^{\circ} \cdot \frac{1}{\cos 41^{\circ}} \cdot \frac{1}{\cos 41^{\circ}} = 1 + 1 = 2$$

- 6. (4pts) Use the odd-even and periodicity properties to figure out:
- a) If $\sin \theta = 0.7$, what is $\sin(-\theta)$?
- b) If $\cos \theta = -0.35$, what is $\cos(-\theta)$?
- c) If $\sin \theta = 0.15$, what is $\sin \theta \pm 2 \sin(\theta + 4\pi) 3 \sin(\theta 6\pi)$?

a)
$$sh(-\theta) = -sh\theta = -0.7$$

4)
$$\cos(-\theta) = \cos \theta = -0.35$$

 Spts) The Moon revolves around Earth on an approximately circular orbit with radius 384,400km. What is the Moon's linear speed (in km/hr) if it completes one full revolution in 27.32 days?

$$N = W \cdot r = \frac{2\pi}{27.32 \, \text{Mys}} \cdot 384,400 = \frac{2\pi}{27.32 \cdot 24} \cdot 384,400$$

$$= 3683.59 \, \text{km/hr}$$

11. (5pts) A ship is just offshore of New York City. A sighting is taken of the Statue of Liberty, which about 305 feet tall. If the angle of elevation to the top of the statue is 20°, how far is the ship from the base of the statue?

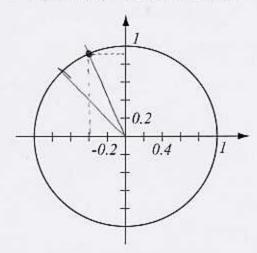
$$\frac{305}{x} = t_{m} 20^{\circ}$$

$$\frac{305}{x} = t_{m} 20^{\circ}$$

$$x = \frac{305}{t_{m} 20^{\circ}} = 837.98 \text{ pt}$$

Bonus. (5pts) Find the area of a right triangle, if its hypothenuse is 6cm and one of its angles is 37°.

onus. (5pts) Find the area of a right triangle, if its hypothenuse is och gles is 37°.


$$A = \frac{ab}{2} = \frac{6 \cos 37^{\circ} \cdot 6 \sin 37^{\circ}}{2}$$

$$= 18 \sin 37^{\circ} \cos 37^{\circ}$$

$$= 8.65 \cos^{2} 37^{\circ} \cdot 6 \cos 37^{\circ}$$

$$= 6 \cos 37^{\circ} \cdot 6 \sin 37^{\circ}$$

7. (4pts) Use the picture below to estimate $\sin \frac{5\pi}{8}$ and $\cos \frac{5\pi}{8}$. Compare your answer with results you get with a calculator.

calculator

$$\cos\left(\frac{5\pi}{8}\right) = -0.4 \qquad -0.38$$

$$\sin\left(\frac{5\pi}{8}\right) = 0.9$$

0.92

(5pts) If cos θ = ¹/₃ and θ is in the fourth quadrant, find sin θ, cot θ, sec θ. Draw a picture.

$$\cos\theta = \frac{1}{3} = \frac{x}{r}$$

$$sih\theta = -\frac{\sqrt{6}}{3}$$

$$co+\theta = -\frac{1}{\sqrt{s}}$$

(5pts) If
$$\cos \theta = \frac{1}{3}$$
 and θ is in the fourth quadrant, find $\sin \theta$, $\cot \theta$, $\sec \theta$. Draw a pict $\cos \theta = \frac{1}{3} = \frac{1}{3}$ $\cos \theta = \frac{1}{3} = \frac{1}{3}$ $\cos \theta = \frac{1}{3}$

$$Se_c\theta = \frac{1}{\cos\theta} = \frac{1}{\frac{1}{3}} = 3$$

(5pts) A Ferris wheel of diameter 70ft has rotated 35° between two stops. What is the distance (length of arc) that a point on the rim of the Ferris wheel has traveled?

$$s = r\theta = 35. \frac{7\pi}{36} = 21.38 \text{ ft}$$