(7pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist.

$$\lim_{x \to 3^{+}} f(x) = 1$$

$$\lim_{x \to 3^{+}} f(x) = 3$$

$$\lim_{x \to 3} f(x) = d. \text{ i.e. one-sided limits}$$

$$\lim_{x \to -2} f(x) = 2$$

$$\lim_{x \to -2} f(x) = 2$$

$$f(-2) = \text{ hot defined}$$

$$\lim_{x \to 3^{+}} f(x) = 2$$
Is f continuous at $x = -2$? No, because f
Why or why not?

is not defined at -2

2. (6pts) Algebraically find the following limits:

a)
$$\lim_{x \to 2} \frac{x+1}{x^3 - 4x^2 + x + 7} =$$
b) $\lim_{x \to 5} \frac{x-5}{x^2 - 3x - 10} =$

$$= \frac{2+1}{8-16+2+7} = \frac{3}{1} = 3$$

$$= \lim_{x \to 5} \frac{x-5}{(x+2)(x-8)} = \frac{5-5}{25-15-10} = \frac{0}{0}$$

$$= \lim_{x \to 5} \frac{x+5}{(x+2)(x-8)} = \lim_{x \to 5} \frac{x-5}{(x+2)(x-8)} = \lim_$$

- 3. (6pts) The polynomial $f(x) = x^3 5x^2 + 4x + 3$ is given.
- a) Graph the function on paper.
- b) Find all the turning points to three decimal places.
- c) Does this polynomial have the maximal number of turning points possible for a thirddegree polynomial?

- 4. (7pts) The accounting department at a company that produces a certain kind of window finds that it has fixed costs (at 0 output) of \$4,000 per day and total costs of \$12,000 per day when 160 windows are produced.
- a) Assuming total cost per day C(x) is a linear function, find an equation for C(x).
- b) What is the predicted cost of manufacturing 100 windows per day?
- c) Sketch the graph for $0 \le x \le 200$.

$$w = \frac{12000 - 4000}{160 - 0} = 50$$

$$y-4000 = 50(x-0)$$

$$C(x) = 50 \times +4000$$

(12pts) A company produces LCD televisions. Analysts at its financial department have found that the price-demand and cost functions are given by

$$p(x) = 950 - 40x$$
 $C(x) = 900 + 400x$

where x is in millions, p in dollars and C in millions of dollars.

- a) Write the revenue function R(x) and the profit function P(x).
- b) Graph the profit function on paper for $0 \le x \le 10$.
- c) Algebraically find the level of production that gives the highest profit. What is the highest profit possible?
- d) Algebraically find the break-even points.
- e) For what range of production levels is this enterprise profitable?

a)
$$R(x) = xy(x)$$

= $-40x^2 + 950x$
 $P(x) = R(x) - C(x)$
= $-40x^2 + 950x - (900 + 400)$

$$= -40x^{1} + 950x - (900 + 400x)$$
$$= -40x^{1} + 550x - 900$$

c)
$$L = -\frac{550}{2.(-40)} = \frac{550}{80} = 6.875$$

 $0 \le x \le 10$

6,875,000 LCD TVS product max profit is 990,625,000

$$-40x^{2} + 550x - 900 = 0$$

$$40x^{2} - 450x + 900 = 0$$

$$40x^{2} - 450x + 900 = 0$$

$$x = \frac{550 \pm \sqrt{550^{2} - 4.40.900}}{2.40}$$

6. (7pts) Let
$$f(x) = \frac{x+5}{x^2-9}$$
.

a) Find algebraically if the graph of this rational function has a horizontal asymptote.

b) Use your calculator to make a table of values for f that will help you find $\lim_{x\to\infty} f(x)$. Then estimate this limit.

c) How do your answers and a) and b) compare?

a) S(x) behaves here
$$\frac{x}{x^2} = \frac{1}{x}$$

$$\frac{1}{x} \to 0 \text{ when } x \to \infty$$
so $y=0$ is the horizontal asymptote

7. (5pts) Use a sign chart to solve the inequality: $\frac{3x+2}{4-2x} < 0$.

Bonus. (5pts) Draw the graph of a function that is continuous and defined at all points except x = 1 and x = 4 and satisfies all of the following:

$$\lim_{x \to 1^+} f(x) = \infty$$

$$\lim_{x \to 1^-} f(x) = \infty$$

$$\lim_{x \to 4^-} f(x) = -2$$

$$\lim_{x \to 4^+} f(x) = 3$$

