angle = (relative frequency) · 360°
$$Z = \frac{X - \mu}{\sigma}$$

$$\mu = \frac{x_1 + x_2 + \dots + x_n}{n} \qquad \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2}{n}}$$

$$\mu = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{f_1 + f_2 + \dots + f_n} \qquad \sigma = \sqrt{\frac{f_1 (x_1 - \mu)^2 + f_2 (x_2 - \mu)^2 + \dots + f_n (x_n - \mu)^2}{f_1 + f_2 + \dots + f_n}}$$

- 1. (10pts) A middle school basketball team played 8 games. The numbers of points they scored in those games are 36, 76, 45, 46, 113, 63, 34 and 35.
- a) Find the team's median score.
- b) Find the team's mean score.
- c) Find the standard deviation of scores.

a) In increasing order: 34,35,36,45,46,63,76,113 middle two wedten =
$$\frac{45+46}{2}$$
 = 45.5

4)
$$M = \frac{34+35+36+45+46+63+75+113}{8} = \frac{448}{8} = 56$$

e)
$$\delta^2 = (34-56)^2 + (35-56)^2 + ... + (76-56)^2 + (113-56)^2$$

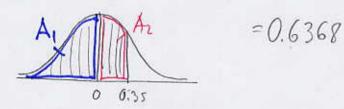
$$=\frac{5249}{8}=655.5$$

2. (13pts) A Calculus 1 class had the final grades given in the table. Assume the usual association of grades with numbers (A=4, B=3, C=2, D=1, E=0).

11m 12h

- a) What is the mode grade? A
- b) Find the median.
- c) Find the mean.
- d) Find the standard deviation.

Grade	Frequency	0: 0,0,1,1,2,-2,3,3,3,4,-4
A 4 B 3 C 2	6 3	4 4 2 7 6
C 2 D 1 E 0	3 5 4 4	Need 11/2: 2 weden = 2+2 = 2 12th: 2
	22	c) $M = \frac{6.4 + 3.3 + 5.2 + 4.1 + 4.0}{22} = 2.14$
		22


d)
$$\delta^{\frac{1}{2}} = \frac{6(4-2.14...)^{2}+3(3-2.14)^{2}+5(2-2.14...)^{2}+4(1-2.14...)^{2}+4(0-2.14...)^{2}}{22}$$

= $\frac{46.59}{22} = 2.1177...$

- 3. (10pts) The number of people living in each house of a particular neigborhood is shown below.
- a) Find the relative frequencies for each class.
- b) Find the appropriate angles and draw a pie chart for the data.
- c) Estimate the mean (find representative values first).

People in house	Number of houses	Relative frequency	Angle	Representative value	
12-14	3 6	0.02	6.59	13	12-14 9-11
9–11 6–8	6 36	0.04	13.17	10	1 / /
3–5	74	0.45	162,44	7 4	117
0-2	45	0.27	98.78	1 ()	
	164				(0-2 // 6-8)
1 ~ 3.1	3+6.10+	36.7+74	4+45		
'4 ~		164			3-5
~ <	7.22				

4. (10pts) Compute the following probabilities for a standard normal distribution. Draw a picture showing which area you are computing.

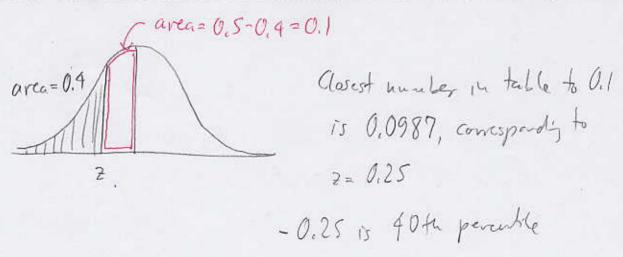
a)
$$P(Z < 0.35) = A_1 + A_2 = 0.5 + 0.1368$$

b)
$$P(1.5 \le Z) = A_1 - A_2 = 0.5 - 0.4332$$

 $A_1 = 0.0668$

5. (7pts) Scores on the mathematics SAT test in 1997 were approximately normally distributed with mean 511 and standard deviation 112. What percentage of scores lies in the range 400-600? Draw a picture showing which area you are computing.

$$P(400 \le X \le 600) = P(\frac{40_{12}SII}{112} \le 2 \le \frac{600 - 57I}{112})$$


$$= P(-0.99 \le Z \le 0.79)$$

$$= A_1 + A_2 = 0.3389 + 0.2852$$

$$= 0.6241$$

$$62.41\% \text{ of scores}$$

Bonus. (5pts) In a standard normal distribution, which score falls at the 40th percentile?

