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Abstract

In this paper, we look at a model depicting the relationship of cancer cells
in different development stages with immune cells and a cell cycle specific
chemotherapy drug. The model includes a constant delay in the mitotic phase.
By applying the optimal control theory, we seek to minimize the cost associated
with the chemotherapy drug and look at minimizing the tumor cells.Global ex-
istence of a solution has been shown for this model and existence of an optimal
control has also been proven. Optimality conditions and characterization of the
control is discussed.

1 Introduction

Cells that can not regulate their own growth and division are classified as can-
cerous. Cancer cells that don’t match the growth of normal tissue create an abnormal
mass of tissue referred to as tumors. Lu et. al [9] paper took a more extensive look
at the development of cancer cells by noting the three phases through which they
travel. These stages are the mitotic-phase (dividing), quiescent phase (resting), and
the interphase. The body’s main defenses against tumors are the white blood cells,
often called lymphocytes, generated by the immune system. Benign type tumor can
be contained or it can grow into surrounding tissue. Tumors that grow into and
destroy surrounding tissue are referred to as malignant. When either type of tumor
begins to grow, it is common for them to be surgically removed and/or treated with
chemotherapy.

Chemotherapy is the administering of anti-cancer drugs [2]. Numerous vari-
ables, such as toxicity, cause treatment to be highly complex. This complexity causes
the strategy of treatment to vary widely from person to person. Immunotherapy is
also another way to fight cancer. This type of treatment is a process of boosting the
immune system in specific areas which target cancer cells and leave healthy cells rel-
atively untouched. While both treatments are usually used separately, Kirschner and
Panetta [8] investigate the biological perspective of a combination therapy approach.
This research has sparked interest in theoretical exploration using mathematical mod-
eling.
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It can be quite useful to use mathematical modeling when determining strate-
gies for fighting diseases which will enhance the quality of life for the patients. By us-
ing updated mathematical models, it is possible to make quantitative and testable pre-
dictions about real life patients. This enables a more accurate approach to treatments
[10]. Fletcher[5], author of a text on practical methods of optimization described op-
timization as finding the ’best’ solution to a mathematical problem. Fletcher’s book
describes the behavior of many methods for solving optimal control problems. Part of
these methods include finding the optimal criteria and most efficient strategy needed
for specific results to be found [5].

Optimal control dates back to the 1950’s and has often been applied to cancer
therapy strategies. A study from 2000 uses optimal control techniques in designing
drug protocols that will kill a desired amount of tumor cells without killing the host.[1]
Works by Kim et. al [7], Swan and Vincent [12], and Murray [11] have successfully
applied optimal control to maximize the effects of the chemotherapy drug while min-
imizing the toxicity and damage done by the drug. For this model and paper, we will
find the optimal strategy for minimizing the number of cancer cells and amount of
chemotherapy drug needed. Ideally, we want to eliminate all the cancer cells and do
as little damage to the body as possible.

A recent study by Lu et. al [9] looks at the stability of a mitotic phase-
specific drug and its interaction with the immune system and cancer cells, whose
results show a significant decrease in the number of cancer cells but no change in
the stability. Another study by Villasana and Radunskaya [13] also considered the
stability of using a cycle-specific drug and found that the stability depended on a
delay of the cells moving from the interphase to mitosis. It is important to note that
[13] didn’t look at the quiescent phase; whereas, [9] found that this phase greatly
influences the cancer as a whole. The nondimensionalized model in [9] is the model
this paper will use to conduct further study using optimal control techniques.

The arrangement of this paper starts with describing the model being used
in Section 2. Section 3.1 gives context to the objective functional and establishes
the existence of a solution to our problem given an optimal control in the admissible
control set. Characterization of the controls is located in 3.4, while section 4 is the
numerical solutions.

2 Model

The cell cycle is split up into 3 phases; the quiescent phase where cells rest, the
interphase where cells prepare for mitosis, and then the mitotic phase where cells
divide. Lu et. al [9] develops the interaction between cells and the three phases, the
immune system, and the cycle- specific drug. The variables used are as follows:

• x- number of cancer cells in interphase phase

• y- number of cancer cells in mitotic phase

• z- number of cancer cells in the quiescent phase
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• I- number of lymphocytes

• u- biomass of chemotherapy drug

The model is:

dx

dt
= s α3 z(t)− α1x(t)− (σ1 + k1I(t))x(t) (1)

dy

dt
= α1x(t− τ)− (α2 + σ2 + k2I(t))y(t)− k4(1− (e−k5u(t))y(t) (2)

dz

dt
= 2s−1α2y(t)− (α3 + σ3 + k3I(t))z(t) (3)

dI

dt
= k +

(
ρI(t)(x+ y + sz)n

a+ (x+ y + sz)n

)
− (σ4 + c1x(t) + c2y(t) + c3z(t)) I(t) (4)

− k6(1− e−k7u(t))I(t) (5)

du

dt
= −γu(t) + v(t) (6)

(7)

where the initial conditions are

x(t) = φ1, t ∈ [−τ, 0], y(0) = y0, z(0) = z0, I(0) = I0, u(0) = u0 (8)

It is important to note that all the constants are positive and that the mitotic
phase is the only one with a delay present. The terms α1, α2, α3 describe the rate at
which cells travel from each phase. The natural death rate of cells have parameters
denoted by σ1, σ2, σ3, while the death rate parameters by the immune cells are given
as c1, c2, c3. The term ρI(t)(x+y+sz)n

a+(x+y+sz)n is the nonlinear growth of the immune system [13].

Destruction by drugs is shown by (1 − (e−k5u(t)) and (1 − e−k7u(t)) [13]. We assume
that once the chemotherapy drug is given, it has an exponential decay rate of −γ.
We also assume that u0 > 1.

3 Quadratic Control

3.1 Objective Functional

There will be two objective functionals, one without salvage terms and the other with
salvage terms. We seek to minimize the first objective functional

J1(v) =

∫ tf

0

[
ε

2
v2(t) + x(t) + y(t) + sz(t)]dt (9)

over the set V = {t ∈ [0, tf ]| 0 ≤ v(t) ≤ 1}. Here ε is a weight factor, representing
the cost to the system and x, y, z are the cancer cells. So we are minimizing both
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the tumor cells and the cost associated with the chemotherapy drug. We will also
minimize the second objective functional

J2(v) =

∫ tf

0

ε

2
v2(t)dt+ [x(tf ) + y(tf ) + sz(tf )] (10)

over the same set and with the same weight factor ε. The cost associated with drug
is being minimized, but the cancer cells x, y, and z are minimized at the final time.

3.2 Existence

We establish the existence of a solution to the delay differential system using results
from R.D. Driver’s text [4]. For notational purposes, we use

f(−→x ) =


sα3 z(t)− α1x(t)− (α1 + k1I(t))x(t)

α1x(t− τ)− (α2 + σ2 + k2I(t))y(t)− k4(1− (e(−k5u(t))y(t)))
2s−1α2y(t)− (α3 + σ3 + k3I(t))z(t)

k +

(
ρI(t)(x+y+sz)n

a+(x+y+sz)n

)
− (σ4 + c1x(t) + c2y(t) + c3z(t)) I(t) −k6(1− e−k7u(t))I(t)

−γu(t)


We will use a lemma from [4] that will help establish existence on a smaller interval,
which will aide in the quest for existence on the whole interval.

Theorem 3.1. [4] If f(−→x ) : [0, tf ) has continuous first partial derivatives with respect
to all but its first argument, then f(−→x ) is locally Lipschiztian.

Proof. The partial of f(−→x ) with respect to its first argument is

−α1 − σ1 − k1I(t) 0 sα3 0 0

α1 −(α2 + σ2 + k2I(t))− k4(1− e−k5u(t)) 0 0 0

0 2s−1α2 −(α3 + σ3 + k3I(t)) 0 0

I(t)ρn(x+Y +sz)n−1

(a+(x+y+sz)n)2
− C1

I(t)ρn(x+Y +sz)n−1

(a+(x+y+sz)n)2
− C2

I(t)ρns(x+Y +sz)n−1

(a+s(x+y+sz)n)2
− C3 I(t)− k6(1− e−k7u(t)) 0

0 0 0 0 −γ


Since a, x, y, z > 0, then all the partials are continuous. Thus f(−→x ) is locally Lips-
chitzian on [−τ, tf − τ).

We then provide the following transformation:
F (t, xt(−τ), y(t), z(t), I(t), u(t)) ≡ f(t, x(t− τ), y(t), z(t), I(t), u(t))

By using example 6 and theorem 3.1 from Driver [4], we can now say that F is locally
Lipschitzian on [−τ, tf − τ). Also F (t, xt, y, z, I, u) is continuous with respect to t in
[−τ, tf − τ) which satisfies the Continuity Condition located in the Appendix. Thus
since F (t, xt, y, z, I, u) is locally Lipschitzian and is continuous, then F (t, xt, y, z, I, u)
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gives existence and a unique solution on [−τ, tf − τ).
Now that existence and uniqueness has been proved for the interval [−τ, tf − τ), we
need to use another theorem from Driver [4] to prove existence and uniqueness on the
entire interval.

Theorem 3.2. Global Existence: Let F (t, x, yt, z, I, u) satisfy the continuity condition
and be locally Lipschiztian on [−τ, tf − τ). Assume further that ||F (t, ψ)|| ≤M(t) +
N(t)||ψ|| where M(t) and N(t) are continuous functions and ψ = (xt, y, z, I, u)T then
the unique noncontinuable solution exists on the entire interval [0, tf ).

Proof. F (t, xt, y, z, I, u) has already been shown to be locally Lipschitzian and to
satisfy the continuity condition, so we just need to show ||F (t, ψ)|| ≤M(t)+N(t)||ψ||
on [0, tf ).
We recognize physically that x > 0, y > 0, z > 0, and we consider supersolutions
of x(t), y(t), z(t) as Xmax, Ymax, Zmax respectively. With performing separation of
variables on the differential equation (5), we find the solution for u which is u(t) =
(u0 − 1)e−γt ≤ u0. With this replacement the set of supersolutions become

X
Y
Z
I


′

=


0 0 sα3 0
α1 k4e

−k5u0 0 0
0 2s−1α2 0 0
0 0 ρ+ k6e

−k7u0 0



X
Y
Z
I

 +


0
0
0
k


Note that the matrix doesn’t include the growth due to stimulus term because

(x+ y + sz)n

(a+ (x+ y + sz)n)
=

w

a+ w
≤ 1 if w = (x+ y + sz)n

We have that||F (t, ψ)|| ≤M+N ||ψ|| whereM =


0
0
0
k

 andN =


0 0 sα3 0
α1 k4e

−k5u0 0 0
0 2s−1α2 0 0
0 0 ρ+ k6e

−k7u0 0

.

Thus, F (t, ψ) has global existence on [0, tf ).

3.3 Existence of an Optimal Control

Theorem 3.3. There exists an optimal control in our admissible control set, V for
J2(v).

The theorem we used to prove the existence of an optimal control is located in
the appendix. A similar analysis follows for J1(v).

Proof. First we must note that the assumptions A1 through A3, for formulating an
optimal control problem, are met because our problem is defined and continuous for all
variables. It has also been shown that f(t, xt, y, z, I, u, v(t)) is bounded above in the
proof of existence of a solution to our problem. Since these assumptions are met, then
we must show each of the remaining parts of the theorem in the appendix to properly
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prove the existence of an optimal control in V that minimizes the functional Ji(v)
for i = 1, 2. As stated above, the assumptions A1 through A3 have been met. Since
the initial conditions are all constants then the fixed initial function φε([α, t0], S).
In addition, since our solution is bounded and exists along with our control then a
target set is nonempty and upper semicontinuous. Also, our control being bounded,
provides us with the change in our control being bounded by a constant. We note
that there exists a minimizing sequence vn εV such that

lim
n→∞

J2(v
n) = inf

v εV
J(v) (11)

Since we know there exists a solution to our problem equations (1 − 5), we define
xn = x(vn), yn = y(vn),zn = z(vn). Also, this solution set is bounded on Rn. We
see that xn(tf ) → x∗(tf ), yn(tf ) → y∗(tf ), and zn(tf ) → z∗(tf ). Moreover, we have
that vn ⇀ v∗ in  L2(0, tf ) since vn is in V. We must analyze limn→∞ inf J2(v

n) =

lim infn→∞[
∫ tf

0
ε
2
(vn)2 dt + (xn(tf ) + yn(tf ) + szn(tf ))]

By Fatou’s Lemma,

lim inf
n→∞

J2(v
n) ≥

∫ tf

0

ε

2
lim inf
n→∞

[vn]2 dt + (x∗ + y∗ + sz∗) (12)

≥
∫ tf

0

ε

2
(v∗) dt + (x∗ + y∗ + sz∗) (13)

So
lim inf
n→∞

J(vn) ≤ lim
n→∞

J(vn) ≤ J(v) (14)

Thus J(v∗) ≤ J(v) with V being nonempty.
All five properties are fulfilled from Das and Sharma’s theorem, thus there is an

optimal control in V.

3.4 Characterization of the Controls

Theorem 3.4 (Characterization of the Optimal Control). Given an optimal control,
v∗(t), and solutions of the corresponding state system, there exist adjoint variables λi

for i = 1, 2, ...5 satisfying the following:
For J1(v) we have

−∂H
∂xt

− ∂H

∂xt−τ

= λ′1 =− 1 + λ1(α1 + σ1) + λ1k1I − λ4
ρIna(x+ y + sz)n

(a+ (x+ y + sz)n)2

+ λ4c1 − λ2α2|t+τ

for0 ≤ t ≤ tf − τ

−∂H
∂xt

= λ′1 =λ1(α1 + σ1) + λ1k1I − λ4
ρIna(x+ y + sz)n

(a+ (x+ y + sz)n)2

+ λ4c1
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fortf − τ ≤ t ≤ tf

−∂H
∂y

= λ′2 =− 1 + λ2k2I + λ2k4(1− e−k5u) + λ2(α2 + σ2)− λ3(2s
−1α2)

− λ4

((aρI(t)n(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− c2

)
−∂H
∂z

= λ′3 =− s− λ1sα3 + λ3I(t)k3 − λ4

(aρI(t)nas(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− λ4c3I(t)

−∂H
∂I

= λ′4 =λ1k1x+ λ2k2y − λ4

(( ρ(x+ y + sz)n

a+ (x+ y + sz)n
+ c3z + k6e

−k7u
))

+ λ3k3z

−∂H
∂u

= λ′5 =λ2k4k5e
−k5u(t) + λ4k6k7e

−k7u(t) + λ5γ

with λi(tf ) = 0 for i = 1, 2, ..5
and associated with J2(v) we have

−∂H
∂xt

− ∂H

∂xt−τ

= λ′1 =λ1(α1 + σ1) + λ1k1I − λ4
ρIna(x+ y + sz)n−1

(a+ (x+ y + sz)n)2

+ λ4c1 − λ2α2|t+τ

for 0 ≤ t ≤ tf − τ

−∂H
∂xt

= λ′1 =λ1(α1 + σ1) + λ1k1I − λ4
ρIna(x+ y + sz)n−1

(a+ (x+ y + sz)n)2

+ λ4c1

for tf − τ ≤ t ≤ tf

−∂H
∂y

= λ′2 =λ2k2I + λ2((α2 + σ2) + λ2k4(1− e−k5u)− λ3(2s
−1α2)

− λ4

((aρI(t)n(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− c2

)
−∂H
∂z

= λ′3 =− λ1sα3 + λ3(α3 + σ3) + λ3I(t)k3 − λ4

(aρI(t)nas(x+ y + sz)(n−1)

(a+ (x+ y + sz)n)2

)
− λ4I(t)

−∂H
∂I

= λ′4 =λ1k1x+ λ2k2y + λ3k3z − λ4

(( ρ(x+ y + sz)n

a+ (x+ y + sz)n

)
− k6k7e

−k7u(t)
)

−∂H
∂u

= λ′5 =λ2k4k5e
−k5u(t) + λ4k6k7e

−k7u(t) + λ5γ
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with

λ1(tf ) = 1 (15)

λ2(tf ) = 1 (16)

λ3(tf ) = 1 (17)

λ4(tf ) = 0 (18)

λ5(tf ) = 0 (19)

Furthermore, v∗(t) can be represented by

v∗ = min

(
max

(
0,
−λ5

ε

)
, 1

)

Proof. We begin by forming the Lagrangian. Since 0 ≤ v ≤ 1, the controls are
bounded; thus, the Lagrangian takes the following form:

L = H −W1(t)v(t)−W2(t)(1− v(t)),

where Hi is the Hamiltonian associated with Ji(v) for i = 1, 2.

H1 =x(t) + y(t) + sz(t) +
ε

2
v2(t)

+ λ1[(−(α1 + σ1)x(t) + sα3z(t)− k1x(t)I(t))]

+ λ2[(α1x(t− τ)− (α2 + σ2)y(t)− k2y(t)I(t)− k4(1− e−k5u(t))y(t))]

+ λ3[2s
−1α2y(t)− (α3 + σ3)z(t)− k3z(t)I(t)]

+ λ4[k +
ρI(t)(x+ y + sz)n

(a+ (x+ y + sz)n)
− (σ4 + c1x(t) + c2y(t) + c3z(t)I(t)− k6(1− e−k7u(t))I(t))]

+ λ5[−γu(t) + v(t)]

for J(v1) and

H2 =
ε

2
v2(t)

+ λ1[(−(α1 + σ1)x(t) + sα3z(t)− k1x(t)I(t))]

+ λ2[(α1x(t− τ)− (α2 + σ2)y(t)− k2y(t)I(t)− k4(1− e−k5u(t))y(t))]

+ λ3[2s
−1α2y(t)− (α3 + σ3)z(t)− k3z(t)I(t)]

+ λ4[k +
ρI(t)(x+ y + sz)n

(a+ (x+ y + sz)n)
− (σ4 + c1x(t) + c2y(t) + c3z(t)I(t)− k6(1− e−k7u(t))I(t))]

+ λ5[−γu(t) + v(t)]

.
and Wi(t) ≥ 0 are penalty multipliers such that

W1(t)v(t) = 0
W2(t)(1− v(t)) = 0

}
at v∗(t)
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Although the Hamiltonians are slightly different, both objective functionals will have
the same control characterizations. Using Kamien and Schwartz[6] in conjunction
with Pontryagin’s Maximum Principle, we obtain the adjoint differential equations
and the terminal conditions. To find the representation for v(t), we analyze the
necessary condition for optimality ∂L

∂v
= 0,

∂L
∂v

=
∂Hi

∂v
−W1 +W2 = 0.

To determine an explicit expression for v, we consider three cases:

1. Consider the set {t| 0 < v(t) < 1}. Then, W1(t) = W2(t) = 0. Therefore,

vi(t) =
−λ5

ε
.

2. Consider the set {t| v(t) = 1}. Then, W1(t) = 0. Then W2 ≥ 0. In other words,

v(t) +
W2

ε
= −λ5

ε
> 1.

3. Consider the set {t| v(t) = 0}. Then, W2(t) = 0. Thus W1 ≥ 0. Consequently,

v(t)− Wi

ε
= −λ5

ε
< 0.

Combining these cases, we can characterize the optimal control for v∗(t) as

v∗ = min

(
max

(
0,
−λ5

ε

)
, 1

)
. (20)

4 Numerical Simulations for Quadratic Control

A variation of the control strategy is given below.
We did a series of four different types of tests using Matlab’s built in delay differ-

ential equation solver where we manually implemented the chemotherapy drugs for
four days over a thirty day treatment cycle. The test types are as follows:

1. 4 days on the drug followed by 26 days off

2. 26 days off the drug followed by four days on

3. 13 days off, then 4 days on, ending with 13 days off

4. 4 days on, 22 days off, followed by 4 days on
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The graphs for each type of test essentially behaved the same way. We have included
above a graph of the fourth type of treatment describing the total tumor cell behavior.
It is obvious that the overall treatment is not the most ideal case since the tumor cells
are still growing at a high level, but there is some success in that the total tumor count
was less with the drug than without the drug which is represented by the dashed line.
The interesting part of the graph occurs in the beginning where there is an increase
of overall tumor cells despite the fact that is when the chemotherapy drug is being
given. We believe this behavior is possibly due to the delay in the model.

5 Conclusion

In conclusion, the successes of this paper include proving the existence and uniqueness
of a solution, the existence of an optimal control, and a better understanding how to
achieve better numerical results. After many trials and tribulations, we can safely say
that more time and programming power is needed in order to effectively deal with the
delay in this model. The numerical behavior included in this model match with the
behavior of Lu et. al [9] which ensures us that future numerical work will be provide
further insight.

6 Acknowledgements

We would like to acknowledge the Murray State University BioMaps program and
the grant DMS-0531865 for support. We would also like to acknowledge Murray
State University Undergraduate Research and Scholarly Activity for the funds and
undergraduate support.

7 Appendix

In this section, we will give precise statements of the theorems used for proving the
existence of a solution and existence of the optimal control.

Theorem 7.1 (R. D. Driver Continuity Condition [4]). The Continuity Condition is
satisfied if F (t, xt, y, z, I, u, v) is continuous with to t in [0, tf ) for each given contin-
uous function χ : [−τ, tf ) → R.

optimal quadratic controls.

Theorem 7.2 (Das and Sharma Theorem [3]). Formulation of an optimal control
problem. Let [0, tf ] be a fixed interval and S a domain on Rn. Let β =(tε[0, tf ]BV ([α, t], S)).
We shall denote by V the set of all right continuous functions v of bounded variation
on [0, tf ] into a nonempty compact subset of Q of Rn.

Consider a control process governed by the measure delay-differential equation
Dx = f(t, xt, y, z, I, u, v(t)) fort > 0

satisfying the following assumptions:
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A1: The functional f with range in Rn is defined for all t ε [0, tf ], for all x ε B
and all vεV .

A2: f(t, xt, y, z, I, u, v(t)) is continuous in t, xt, y, z, I, u, and v.
A3: There exists a Lebesgue integrable real function r(t) for t ε [0, tf ] such that

|(f(t, xt, y, z, I, u, v(t)| ≤ r(t) uniformly with respect to xεB and vεV
We are given the control problem with the following data:
Dx = f(t, xt, y, z, I, u, v(t)) t ε [0, tf ]
with

1. f satisfying the assumptions A1 to A3.

2. The fixed initial function φε([α, 0], S).

3. A target set T of nonempty compact sets Tt ⊂ Rn defined on [0, tf ] and upper
semicontinuous with respect to inclusion;

4. The set V of admissable controls v(t) defined on subintervals [0, tf ] contained in
[0, tf ] with the same left endpoint (and perhaps different right endpoints t1 > t0)
which transfer φ to T , which is such that for all vεV

|(∆v)| 5 ∆h

on each subinterval of [t0, t1], where h is a given nondecreasing right continuous
function defined on [0, tf ]; (the symbol ∆h on the interval, say, [t0, t1] denotes
(h(t1)− h(t0));

5. The cost functional

J(v) =
∫ tf

0
f 0(t, x(t), y(t), z(t), v(t))dt

where f 0 is a continuous real function defined on [0, tf ]× S ×Q.

Then if V is nonempty, there exists an optimal control in V.
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