Name:

## TO RECEIVE FULL CREDIT YOU MUST SHOW ALL YOUR WORK.

1. Evaluate the indefinite integral:

(a) 
$$\int (t^5 + 3t + 2)dt$$

(b) 
$$\int t^{9/5} dt$$

(c) 
$$\int \frac{1}{x^{3/2}} dx$$

(d) 
$$\int (\cos x - e^x) dx$$

2. • Use the graph in Figure 1 to estimate  $L_6$ .



Figure 1:

Calculus 1

3. Compute  $R_6$ ,  $L_6$  and  $M_3$  to estimate the distance traveled over [0,3] if the velocity at half-second intervals is as follows:

| t(s)     | 0 | 0.5 | 1  | 1.5 | 2  | 2.5 | 3  |
|----------|---|-----|----|-----|----|-----|----|
| v (ft/s) | 0 | 12  | 18 | 25  | 20 | 14  | 20 |

4. Evaluate the following sums:

(a) 
$$\sum_{k=1}^{40} 10$$

(b) 
$$\sum_{i=0}^{40} 10$$

(c) 
$$\sum_{j=20}^{50} j(j-1)$$

5. Find a formula for  $R_N$  for the function  $f(x) = x^2 + x$  over [0, 1]. Then compute the area under the graph as a limit.

6. Suppose the graph of f(t) is as shown in Figure 2.



Figure 2:

Use the graph to compute

$$\bullet \int_0^3 g(t) \ dt$$

$$\bullet \int_3^5 g(t) \ dt$$

7. Assuming that

Calculus 1

$$\int_0^1 f(x) \ dx = 1, \qquad \int_0^2 f(x) \ dx = 4, \qquad \int_1^4 f(x) \ dx = 7,$$

calculate the following integrals:

(a) 
$$\int_0^4 f(x) \ dx$$

(b) 
$$\int_4^1 f(x) \ dx$$

8. Evaluate the integral using the FTC I.

(a) 
$$\int_{1}^{4} (4-5u^4) du$$

(b) 
$$\int_{1}^{4} \left( x + \frac{1}{x} \right) dx$$

(c) 
$$\int_{1}^{27} \frac{t+1}{\sqrt{t}} dt$$

(d) 
$$\int_0^{\pi/4} \sec \theta \tan \theta \ d\theta$$