Trigonometric Functions

6.8 Graphs of Sine and Cosine Functions

November 3, 2010

Periodic Functions

A function f is called a **periodic function** if there is a positive number p such that

such that
$$f(x+p)=f(x) \qquad \text{for all } x \text{ in the domain of } f.$$

If p is the smallest such number for which this equation holds, then p is called the **fundamental period**.

The table below gives the values of the sine function at some of the special angles.

X	$f(x) = \sin x$	(x,y)
0	$\sin 0 = 0$	(0, 0)
$\frac{\pi}{4}$	$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$	$\left(\frac{\pi}{4},\frac{\sqrt{2}}{2}\right)$
$\frac{\pi}{2}$	$\sin rac{\pi}{2} = 1$	$\left(\frac{\pi}{2},1\right)$
$\frac{\pi}{2}$ $\frac{3\pi}{4}$	$\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$	$\left(\frac{3\pi}{4},\frac{\sqrt{2}}{2}\right)$
π	$\sin \pi = 0$	$(\pi,0)$
$\frac{5\pi}{4}$	$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$	$\left(\frac{5\pi}{4}, -\frac{\sqrt{2}}{2}\right)$
$\frac{3\pi}{2}$	$\sin \frac{3\pi}{2} = -1$	$\left(\frac{3\pi}{2},-1\right)$
$\frac{7\pi}{4}$	$\sin \frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$	$\left(\frac{7\pi}{4}, -\frac{\sqrt{2}}{2}\right)$

 $\sin 2\pi = 0$

Plot the above coordinates (x, y) to get the graph of one **period** or **cycle** of the graph of $y = \sin x$.

We can extend the graph horizontally in both directions since the domain of the sine function is the set of all real numbers.

Sine Function $f(x) = \sin x$

▶ Domain:
$$(-\infty, \infty)$$
 or $-\infty < x < \infty$

▶ Range:
$$[-1,1]$$
 or $-1 < y < 1$

- ► The sine function is an odd function:
- symmetric about the origin
- f(-x) = -f(x)
 The sine function is a periodic function with fundamental period 2π.
- The x-intercepts, $0, \pm \pi, \pm 2\pi, ...$, are of the form $n\pi$, where n is an integer.
- The maximum (1) and minimum (-1) values of the sine function corresponds to x-values of the form $\frac{(2n+1)\pi}{2}$ such as

corresponds to x-value
$$\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$$

The table below gives the values of the cosine function at some of the special angles.

х	$f(x) = \cos x$	(x, y)
0	$\cos 0 = 1$	(0, 1)
$\frac{\pi}{4}$	$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$	$\left(\frac{\pi}{4},\frac{\sqrt{2}}{2}\right)$
$\frac{\pi}{2}$	$\cos \frac{\pi}{2} = 0$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$	$\left(\frac{3\pi}{4}, -\frac{\sqrt{2}}{2}\right)$
π	$\cos \pi = -1$	$(\pi,-1)$
$\frac{5\pi}{4}$	$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$	$\left(\frac{5\pi}{4}, -\frac{\sqrt{2}}{2}\right)$
$\frac{3\pi}{2}$	$\cos \frac{3\pi}{2} = 0$	$\left(\frac{3\pi}{2},0\right)$
$\frac{7\pi}{4}$	$\cos \frac{7\pi}{4} = \frac{\sqrt{2}}{2}$	$\left(\frac{7\pi}{4},\frac{\sqrt{2}}{2}\right)$
2π	$\sin 2\pi = 1$	$(2\pi, 1)$

Plot the above coordinates (x, y) to get the graph of one **period** or **cycle** of the graph of $y = \cos x$.

Cosine Function $f(x) = \cos x$

▶ Domain:
$$(-\infty, \infty)$$
 or $-\infty \le x \le \infty$

- ▶ Range: [-1, 1] or $-1 \le y \le 1$
- ▶ The cosine function is an even function:
 - symmetric about the y-axis
- f(-x) = f(x)
 The sine function is a periodic function with fundamental period 2π.
- ► The x-intercepts, $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$, ... are odd integer multiples of $\frac{\pi}{2}$ that have the form $\frac{(2n+1)\pi}{2}$, where n is an integer .
- ▶ The maximum (1) and minimum (-1) values of the cosine function corresponds to x-values of the form $n\pi$ such as $0, \pm \pi, \pm 2\pi, ...,$

Plot the functions $y=2\sin x$ and $y=\frac{1}{2}\sin x$ on the same graph with $y=\sin x$ on the interval $0\leq x\leq 2\pi$.

Make a table with the coordinate values of the graphs.

π	27	$\frac{3\pi}{2}$	π	$\frac{\pi}{2}$	0	Х
						sin x
						2 sin <i>x</i>
						$\frac{1}{2}\sin x$
						-

Х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	
sin x	0 1 0		0	-1	0	
2 sin <i>x</i>						
$\frac{1}{2}\sin x$						

Х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin x	0	1	0	-1	0
2 sin x	0	2	0	-2	0
$\frac{1}{2}\sin x$					

x	0	$\frac{\pi}{2}$	π	3π	2π
_ ^		1 1	/ / /	1 2	<i>~</i> /\

Amplitude of Sinusoidal Functions

For sinusoidal functions of the form $y = A \sin Bx$ and $y = A \cos Bx$, the **amplitude** is |A|. When |A| < 1, the graph is compressed in the vertical direction, and when |A| > 1, the graph is stretched in the vertical direction.

Example

State the amplitude of

(a)
$$y = \frac{2}{3} \sin 4x$$

(b) $y = -\cos 7x$

(b)
$$y = -\cos tx$$

(c) $y = 4\cos\left(\frac{\pi}{4}x\right)$

Plot the functions $y=\cos 2x$ and $y=\cos \left(\frac{1}{2}x\right)$ on the same graph with $y=\cos x$ on the interval $0\leq x\leq 2\pi$.

Make a table with the coordinate values of the graphs.

Х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
cos x									
cos 2x									
$\cos(\frac{1}{2}x)$									

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
cos x	1		0		-1		0		1
cos 2x									
$\cos(\frac{1}{2}x)$									

Х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
cos x	1		0		-1		0		1
cos 2x	1	0	-1	0	1	0	-1	0	1
$\cos(\frac{1}{2}x)$									

V	n	π	π	3π	π	5π	3π	7π	2π
X	l U	_	_		1 71				271

Plot the above coordinates (x, y) to get the graphs.

Period of Sinusoidal Functions

For sinusoidal functions of the form $y = A \sin Bx$ and $y = A \cos Bx$, the **period** is $\frac{2\pi}{B}$. When 0 < B < 1, the graph is stretched in the horizontal direction, and when B > 1, the graph is compressed in the horizontal direction.

Example

State the period of

$$(a) y = \frac{2}{3}\sin 4x$$

(b)
$$y = -\cos 7x$$

(c) $y = 4\cos(\frac{\pi}{4}x)$

Strategy for Sketching Graphs of Sinusoidal Functions

To graph $y = A \sin Bx$ or $y = A \cos Bx$ with B > 0:

- **Step 1:** Find the amplitude |A| and the period $\frac{2\pi}{R}$
- ▶ **Step 2:** Divide the period into four subintervals of equal lengths.
- ▶ **Step 3:** Make a table and evaluate the functions for x-values from
- Step 2 starting at x = 0.
- **Step 4:** Draw the xy-plane (label the y-axis from -|A| to |A|) and plot the points found in Step 3. ▶ **Step 5:** Connect the points with a sinusoidal curve (with amplitude
- |A|).
- ▶ **Step 6:** Extends the graph over one or two additional periods in both directions (left and right).

Example

Use the strategy for graphing a sinusoidal function to graph $y = -2\sin\left(\frac{1}{4}x\right)$.

Example

Find an equation for the graph.

Consider the shifted sinusoidal functions

$$y = A\sin(Bx + C) + D$$

and

$$y = A\cos(Bx + C) + D$$

where $A \neq 0$, $B \neq 0$, C and D are real numbers. We can write the functions in **standard form** to get

$$y = A \sin \left[B \left(x + \frac{C}{B} \right) \right] + D$$

and

$$y = A \cos \left[B \left(x + \frac{C}{B} \right) \right] + D.$$

The **phase shift** is the quantity $\left(-\frac{C}{B}\right)$.

Example

State the amplitude, period, and phase shift (including direction) of

(a)
$$y = 4\cos(x + \pi)$$

(b) $y = -7\sin(4x - 3)$

(c) $y = \frac{1}{2} \sin(\frac{1}{3}x + \pi)$