Trigonometric Functions

6.2 Definition 1 of Trigonometric Functions: Right Triangle Ratios

October 26, 2010

Definition 1: Trigonometric Functions

Let $\boldsymbol{\theta}$ be an acute angle in a right triangle,

$$\sin \theta = \frac{b}{c}$$
 $\cos \theta = \frac{a}{c}$ $\tan \theta = \frac{b}{a}$

$$\csc \theta = \frac{c}{b}$$
 $\sec \theta = \frac{c}{a}$ $\cot \theta = \frac{a}{b}$

Definition 1: Trigonometric Functions (Alternate Form)

$$\begin{array}{c} L \\ \text{Hypotenuse} \\ \\ \theta \\ \text{Adjacent} \end{array} \qquad \begin{array}{c} L \\ \text{Opposite} \\ \end{array}$$

 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$

 $\tan \theta = \frac{opposite}{adjacent}$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{hypotenuse}{opposite}$$
 $\sec \theta = \frac{1}{\cos \theta} = \frac{hypotenuse}{adjacent}$ $\cot \theta = \frac{1}{\tan \theta} = \frac{adjacent}{opposite}$

 $\sin \theta = \frac{opposite}{hypotenuse}$

For the given triangle,

calculate

- $ightharpoonup \sin \theta$
- ightharpoonup tan θ
- ightharpoonup csc θ

For the given triangle,

calculate

- ightharpoonup $\cos \theta$
- $\blacktriangleright \ \tan \theta$
- $\blacktriangleright \ \sec \theta$

Cofunction Theorem

A trigonometric function of an angle is always equal to the cofunction of the complement of the angle. If $\alpha + \beta = 90^{\circ}$, then

Cofunction Identities

$$\sin \theta = \cos(90^{\circ} - \theta) \quad \cos \theta = \sin(90^{\circ} - \theta)$$

$$an heta=\cot(90^\circ- heta) \quad \cot heta=\tan(90^\circ- heta)$$

$$an heta = \cot(90^\circ - heta) \quad \cot heta = \tan(90^\circ - heta)$$
 $\sec heta = \csc(90^\circ - heta) \quad \csc heta = \sec(90^\circ - heta)$

Write each function value in terms of its cofunction.

- (a) sin 30°(b) tan x
- (b) tan x(c) csc 40°

Evaluate the six trigonometric functions for an angle that measures $30^{\circ}.$

Example

Evaluate the six trigonometric functions for an angle that measures 45°.

Example

Use a calculator to find the values of

- (a) sin 75°
- (b) tan 67°
- (c) sec 52°
- (d) $\cos 30^{\circ}$

Round your answers to four decimal places.