Functions and their Graphs

3.2 Graphs of Functions; Piecewise-Defined Functions; Increasing and Decreasing Functions; Average Rate of Change

September 16, 2010

Linear Function: f(x) = mx + b, m and b are real numbers

Figure: $m \neq 0$

The domain is the set of all real numbers \mathbb{R} . $(-\infty, \infty)$

The range is the set of all real numbers \mathbb{R} . $(-\infty, \infty)$

The graph has slope m and y-intercept b.

Constant Function: f(x) = b b is any real number

Domain is the set of all real numbers \mathbb{R} . $(-\infty, \infty)$

The range is a single value b.

Identity Function: f(x) = x

Both the domain and range are the set of all real numbers \mathbb{R} . $(-\infty, \infty)$ It passes through the origin.

Square Function: $f(x) = x^2$

The domain is the set of all real numbers \mathbb{R} . $(-\infty, \infty)$

The range is the set of all nonnegative numbers. $[0, \infty)$

Cube Function: $f(x) = x^3$

The domain is the set of all real numbers \mathbb{R} . $(-\infty, \infty)$

The range is the set of all real numbers. \mathbb{R} . $(-\infty, \infty)$

Square Root Function: $f(x) = \sqrt{x}$ or $f(x) = x^{\frac{1}{2}}$

Domain: $[0, \infty)$ Range: $[0, \infty)$

Cube Root Function: $f(x) = \sqrt[3]{x}$ or $f(x) = x^{\frac{1}{3}}$

Doman: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Absolute Value Function: f(x) = |x|

Doman: $(-\infty, \infty)$ Range: $[0, \infty)$

Reciprocal Function: $f(x) = \frac{1}{x}$ $x \neq 0$

 $\text{Doman: } (-\infty,0) \cup (0,\infty) \qquad \text{Range: } (-\infty,0) \cup (0,\infty)$

Even and Odd Functions

Function	Symmetric with Respect to	On Replacing x with $-x$
Even	y-axis or vertical axis	f(-x) = f(x)
Odd	origin	f(-x) = -f(x)

Example 1

Determine whether the functions are even, odd or neither.

- (a) $f(x) = x^2 3$
- (b) $g(x) = x^5 + x^3$
- (c) $h(x) = x^2 x$
- (d) G(t) = |t+2|
- (e) $F(x) = \sqrt{x^2 + 2}$

Increasing, Decreasing and Constant Functions

- 1. A function f is **increasing** on an open interval I if for any x_1 and x_2 in I, where $x_1 < x_2$, then $f(x_1) < f(x_2)$.
- 2. A function f is **decreasing** on an open interval I if for any x_1 and x_2 in I, where $x_1 < x_2$, then $f(x_1) > f(x_2)$.
- 3. A function f is **constant** on an open interval I if for any x_1 and x_2 in I, then $f(x_1) = f(x_2)$.

Example 2: Given the graph of the function

- ▶ State the domain and range of the function.
- ► Find the intervals when the function is increasing, decreasing or constant.

Average Rate of Change

Let $(x_1, f(x_1))$ and $(x_2, f(x_2))$ be two distinct points, $(x_1 \neq x_2)$, on the graph of the function f. The **average rate of change** of f between x_1 and x_2 is given by

Average Rate of Change =
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
.

Example 3

Find the average rate of change of $f(x) = x^4$ from

- (a) x = -1 to x = 0
- (b) x = 0 to x = 1
- (c) x = 1 to x = 2

Example 5

Graph the piecewise-defined function and state the domain, range, and intervals when the function is increasing, decreasing or constant.

$$G(x) = \begin{cases} x^2 & x < -1 \\ 1 & -1 \le x \le 1 \\ x & x > 1 \end{cases}$$

G(x) is the last graph