# Functions and their Graphs

3.1 Functions

September 14, 2010

#### Definition: Relation

A **relation** is a correspondence between two sets where each element in the first set, called the **domain**, corresponds to *at least* one element in the second set, called the **range**.

A relation is a set of ordered pairs. For example

| PERSON  | BLOOD TYPE | ORDERED PAIR |
|---------|------------|--------------|
| Michael | A          | (Michael, A) |
| Tania   | A          | (Tania, A)   |
| Dylan   | AB         | (Dylan, AB)  |
| Trevor  | 0          | (Trevor, O)  |
| Megan   | 0          | (Megan, O)   |

The domain is { Michael, Tania, Dylan, Trevor, Megan}.

The range is  $\{A, AB, O\}$ .

# Definition (Function)

A **function** is a correspondence between two sets where each element in the first set, called the domain, corresponds to *exactly* one element in the second set, called the **range**.

The blood-type example given is both a relation and a function.

Note: All functions are relations but not all relations are functions.

Consider the start times for some competitions on a given Saturday, at a University. The relation is not a function.

| Time of Day | Competition |
|-------------|-------------|
| 1:00 P.M.   | Football    |
| 2:00 P.M.   | Volleyball  |
| 7:00 P.M.   | Soccer      |
| 7:00 P.M.   | Basketball  |

Determine whether the following relations are functions:

- (a)  $\{(-3,4),(2,4),(3,5),(6,4)\}$
- No x-value is repeated. Therefore, each x-value corresponds to exactly one y-value. This relation is a function.
- (b) {(-3,4), (2,4), (3,5), (2,2)}
  ► The value x = 2 corresponds to both y = 2 and y = 4. This relation is not a function.
- (c) Domain = Set of all items for sale in a grocery store; Range = Price
- ► Each item in the grocery store corresponds to exactly one price. This relation is a function.

Consider the equation

$$y = x^2 - 3x$$

where x can be any real number. The equation assigns to each x-value exactly one corresponding y-value. This equation represents a function.

- ► The variable *y* depends on what value of *x* is selected, so *y* is called the **dependent variable**.
- ► The variable *x* can be any number in the domain so it is called the **independent variable**.

Some equations that represent functions of x:

$$y = x^2 \qquad y = |x| \qquad y = x^3$$

Some equations that do not represent functions of x:

$$x = y^2$$
  $x^2 + y^2 = 1$   $x = |y|$ 

### Graphs of the three functions of x



Graphs of the three functions not representing functions



# Definition (Vertical Line Test)

Given the graph of an equation, if any vertical line that can be drawn intersects the graph at no more than one point, the equation defines a function of x. This test is called the **vertical line test**.

## Example 2

Use the vertical line test to determine whether the graphs of equations define functions of  $\boldsymbol{x}$ .



#### Consider the equation

$$y = 2x + 5$$

which is a function because its graph is a nonvertical line (passes the vertical line test!) If we give the function a name, say, "f", then the function notation is:

$$f(x)=2x+5.$$

- ▶ The symbol f(x) is read "f evaluated at x" or "f of x".
- ightharpoonup f(x) does no mean f times x.

Given the function  $f(x) = 2x^3 - 3x^2 + 6$ , find f(-1).

► Consider the independent variable *x* to be a placeholder.

$$f(\square) = 2(\square)^3 - 3(\square)^2 + 6$$

▶ To find f(-1), substitute x = -1 into the function.

$$f(-1) = 2(-1)^3 - 3(-1)^2 + 6$$

Evaluate the right side

$$f(-1) = -2 - 3 + 6$$

Simplify.

$$f(-1) = 1$$

The graph of f is given below.



- (a) Find f(0). (b) Find f(1). (c) Find f(2).
- (d) Find 4f(3). (e) Find x such that f(x) = 10.
- (f) Find x such that f(x) = 2.

For the given function  $f(x) = x^2 - 3x$ , evaluate f(x + 1).

Note that the function is defined with argument  $\square$  and

$$f(\square) = (\square)^2 - 3(\square)$$

## Example 6

For the given function  $H(x) = x^2 + 2x$ , evaluate

- (a) H(x+1)
- (b) H(x) + H(1)

Sometimes the domain of a function is stated *explicitly*. For example,

$$f(x) = |x| \qquad x < 0.$$

The **explicit domain** is the set of all negative real numbers i.e.  $(-\infty,0)$ .

If the expression that defines the function is given but the domain is not stated explicitly, then the domain is implied. The **implicit domain** is the largest set of real numbers for which the function is defined and the output value f(x) is a real number.

State the domain of the given functions.

(a) 
$$F(x) = \frac{3}{x^2 - 25}$$
  $(-\infty, -5) \cup (-5, 5) \cup (5, \infty)$ 

$$x^2 - 25$$

$$x^2-25$$

(c)  $G(x) = \sqrt[3]{x-1}$   $(-\infty, \infty)$ 

(b) 
$$H(x) = \sqrt[4]{9 - 2x}$$
  $(-\infty)^{\frac{9}{2}}$ 

$$(-\infty,-5)\cup(-5,5)\cup($$