Graphs

2.2 Graphing Equations

September 7, 2010

The graph of an equation in two variables, x and y, consists of all the points in the xy-plane whose coordinates (x,y) satisfy the equation.

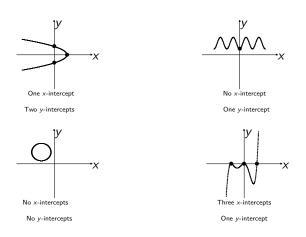
Procedure for plotting the graphs of equations.

- ▶ **Step 1:** In a table, list several pairs of coordinates that make the equations true.
- ▶ **Step 2:** Plot these points on a graph and connect the points with a smooth curve. Use arrows to indicate that the graph continues.

Graph the equation y = 2x - 1.

X	y = 2x - 1	(x, y)
-2		
-1		
0		
1		
2		

Graph the equation $y = x^2 - 5$.


X	$y = x^2 - 5$	(x, y)
-3		
-2		
-1		
0		
1		
2		
3		

Graph the equation $y = x^3$.

X	$y = x^3$	(x, y)
-2		
-1		
0		
1		
2		

An **x-intercept** of a graph is a point where the graph intersects the x-axis.

An **y-intercept** of a graph is a point where the graph intersects the y-axis.

Given the equation $y = x^2 + 4$, find the indicated intercepts of its graph, if any.

- x-intercept(s)
- y-intercepts(s)

Example

Find the x-intercept(s) and y-intercept(s) (if any) of the graphs of the equations

$$y = 4x^2 - 1$$

$$y = \sqrt{x - 4}$$

▶
$$y = \frac{1}{x^2 + 4}$$