COLLEGE ALGEBRA - MAT 140

FALL 2008 - EXAM 4

Name :
TO RECEIVE FULL CREDIT YOU MUST SHOW YOUR WORK. No notes or books are allowed
No. 1. (10 points) State whether each statement is True or False as stated. Provide a clear reason for your answer.
i) The domain of the composite function $(f \circ g)(x)$ is the same as the domain of $g(x)$.
ii) If f and g are inverse functions, then their graphs are symmetric with respect to the line $y=x$.
iii) The range of the exponential function $f(x) = a^x$, $a > 0, a \neq 1$, is the set of all real numbers.
iv) If $y = \log_a x$, then $y = a^x$.
v) The graph of $f(x) = \log_a x$, $a > 0, a \neq 1$, has an x-intercept equal to 1 an no y-intercept.
No. 2. (10 points) Between 9:00 pm and 10:00 pm cars arrive at Burger King's drive-thru at the rate of 12 cars per hour (0.2 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 9:00 pm. $F(t) = 1 - e^{-0.2t}$
a) Determine the probability that a car will arrive within 5 minutes of 9 pm (that is before 9:05
pm).

c) What value does F approach as t becomes unbounded in the positive direction?

b) Determine the probability that a car will arrive within 30 minutes of 9 pm (before 9:30 pm).

No. 3. (12 Points) Evaluate each expression using the values given in the table

X	-3	-2	-1	0	1	2	3
f(x)	11	9	7	5	3	1	-1
$\mathbf{g}(\mathbf{x})$	-8	-3	0	1	0	-3	-8

a)
$$(f \circ g)(2) =$$

b)
$$(g \circ f)(2) =$$

c)
$$(g \circ g)(2) =$$

d)
$$(f \circ f)(2) =$$

No. 4. (7 points) Find the domain of the composite function $f \circ g$ given that $f(x) = \frac{x}{x+3}$ and $g(x) = \frac{2}{x}$.

No. 5. (6 points) Given that f(x) = x + 1 and $g(x) = x^2 + 4$, find

$$i) (f \circ g)(x)$$

ii)
$$(g \circ f)(x)$$

No. 6. (6 Points) Find the domain of

$$g(x) = \ln(x - 1).$$

No. 7. (7 points) The graph of a one-to-one function f is given (Figure 1). Draw the graph of the inverse function f^{-1} on the same figure.

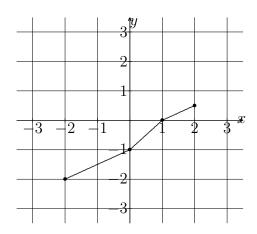
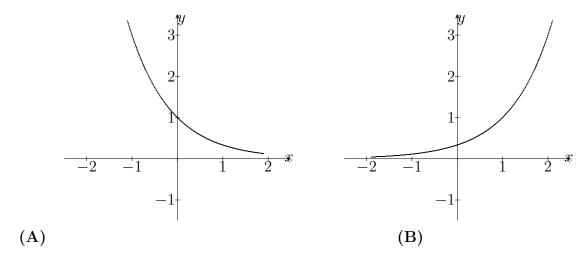



Figure 1:

- No. 8. (10 points) Given that the function $f(x) = \frac{4}{x+2}$ is one-to-one.
 - a) Find the inverse of f.

- b) What is the domain of f.
- c) What is the range of f.

No. 9. (12 points) The graphs given in Figure 2 represent exponential functions. Match each graph to one of the functions and note that a > 1.

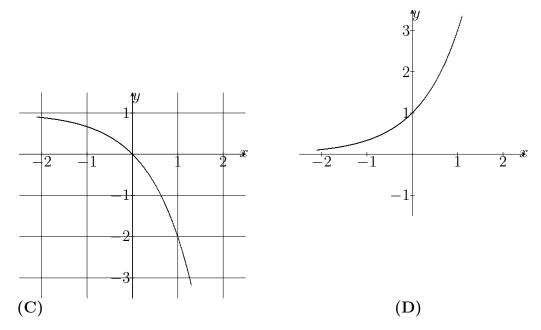


Figure 2:

$$y = 1 - a^x$$
 $--- y = a^x$ $--- y = a^{x-1}$ $--- y = a^{-x}$ $----$

No. 10. (10 points) Verify that the functions f and g are inverses of each other, where

$$f(x) = 4x - 8$$
 and $g(x) = \frac{x}{4} + 2$.

No. 11. (10 points) Solve the equations

i)
$$4^{x^2} = 2^x$$

ii)
$$\log_3(3x - 2) = 2$$