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What is R?

I R is an open-source statistical programming environment that is
available for free.

I The Rcmdr package, written by John Fox, provides a GUI for R.

I R is similar to S, a statistical programming language developed at
Bell Labs.

I I will assume that you have gone through ‘An Introduction to the R
Commander’-this was covered in the Spring 2011 section of
BIO/MAT 460.



Introduction to Linear Regression
As our example for simple and multiple linear regression, we will utilize a
dataset called UScereal that is built into the MASS package in R. This
dataset has various information on 65 popular breakfast cereals, including
nutritional information, manufacturer, and what shelf the cereal is
typically displayed on at the grocery store.

Open the R Commander by either typing library(Rcmdr) into the R
console or by going to Packages → Load package...→ Rcmdr.

Then go to Data→Data in packages→Read data set from an attached
package...



Graphs
Suppose we would like to look at boxplots or error bar plots of the sugar
content of the cereals, broken down by shelf.

shelf is numbered 1,2,3 for bottom, middle, top. To tell the R
Commander that shelf should be considered as a factor, go to
Data→Manage variables in active data set→Convert numeric variables to
factors...

We can give the factors descriptive names rather than numeric labels if
we like.



Boxplots and Error Bar Plots
Under the Graphs menu are many different plots. For instance, I could
plot sugar content by shelf with either a boxplot or an error bar plot. I
have done so, chosing my error bars in the latter plot to be ±1 standard
error.
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Boxplots and Error Bar Plots
Under the Graphs menu are many different plots. For instance, I could
plot sugar content by shelf with either a boxplot or an error bar plot. I
have done so, chosing my error bars in the latter plot to be ±1 standard
error.

Plot of Means
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Scatterplot
Before fitting a simple linear regression model, we should look at a
scatterplot. Let us consider the model (in R notation, with calories as the
response Y and sugars as the predictor X )

calories ∼ sugars
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Simple Linear Regression
To fit a linear model such as a linear regression or ANOVA go to
Statistics→Fit Models→Linear model...



Regression Output

A summary of your regression model and the script created appears in
the Output window.

ˆCalories = 96.164 + 5.298Sugars

> summary(LinearModel.1)

Call: lm(formula = calories sugars, data = UScereal)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.164 13.579 7.082 1.44e-09 ***

sugars 5.298 1.171 4.525 2.73e-05 ***

Residual standard error: 54.65 on 63 degrees of freedom

Multiple R-squared: 0.2453, Adjusted R-squared: 0.2333

F-statistic: 20.48 on 1 and 63 DF, p-value: 2.733e-05



Multiple Linear Regression
It is not hard to fit a multiple linear regression model, such as:

calories ∼ carbo + fat + protein



The ANOVA table

To obtain an ANOVA table with sums of squares and partial F tests, go
to Models → Hypothesis tests → ANOVA table...

Choose Type II sum of squares unless the sequential order of entry of
predictors into the model is important; in that case, choose Type I.

Anova Table (Type II tests)

Response: calories

Sum Sq Df F value Pr(>F)

carbo 62259 1 106.073 5.704e-15 ***

fat 31599 1 53.836 6.090e-10 ***

protein 7115 1 12.122 0.000927 ***

Residuals 35804 61



More Regression Stuff

Other regression tools available in R Commander:

I Confidence Intervals

I Akaike Information Criterion and Bayesian Information Criteria
(more later)

I Stepwise model selection

I Susbset model selection

I Comparison of two models (via partial F test or Wald test; extra
work required to tease out a likelihood ratio test)

I Regression Diagnostics



Influence Plot
My favorite type of diagnostic plot, sometimes called a ‘bubble’ plot, has
studentized residuals on the y -axis, hat-values (leverage) on the x-axis,
and bubbles that are proportional to Cook’s Distance. The influential
point in the cereal data set is “Grape-Nuts”.
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One Way ANOVA
R can also be used to fit classical ANOVA models, using the aov
command in R console or the appropriate menu choice in the R
Commander. Let us first consider a simple one-way ANOVA model,
looking to see if there is a significant difference in mean sugar content
per serving of cereal for cereals found on the bottom, middle, or top
shelf. Earlier, we looked at both the boxplot and error bar plot, and
visually there seems to be significantly less sugar in bottom shelf cereals,
with the middle shelf being the highest.

Plot of Means
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Fit ANOVA model

Go to Statistics→Means→One-Way ANOVA...

Check the Pairwise Comparisons box to obtain the Tukey HSD post hoc
test.



One Way ANOVA Output

> summary(AnovaModel.1)

Df Sum Sq Mean Sq F value Pr(>F)

shelf 2 381.33 190.667 6.5752 0.002572 **

Residuals 62 1797.87 28.998

mean sd n

Bottom 6.295493 5.477309 18

Middle 12.507670 3.735734 18

Top 10.856821 6.125487 29



Post Hoc Tests

The results of Tukey’s HSD test for pairwise comparisons.

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = sugars∼shelf, data = UScereal)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

Middle - Bottom == 0 6.212 1.795 3.461 0.00272 **

Top - Bottom == 0 4.561 1.616 2.823 0.01736 *

Top - Middle == 0 -1.651 1.616 -1.022 0.56527

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

1

(Adjusted p values reported -- single-step method)



Tukey Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = sugars∼shelf, data = UScereal)

Quantile = 2.3995

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Middle - Bottom == 0 6.2122 1.9050 10.5193

Top - Bottom == 0 4.5613 0.6841 8.4386

Top - Middle == 0 -1.6508 -5.5281 2.2264



Two Way ANOVA

The following problem will consider the growth of orange trees (increase
of diameter in cm over 2 years), considering both the pH of the soil
(4.0,5.0,6.0,7.0) and the amount of Calcium added (100,200,300 lb/acre)
as factors, with 3 replications per cell.

The data is availabe as a space-delimited text file at:
http://campus.murraystate.edu/academic/faculty/

christopher.mecklin/MAT565/OrangeTreeGrowth.txt

and as an EXCEL file at:

http://campus.murraystate.edu/academic/faculty/

christopher.mecklin/MAT565/OrangeTreeGrowth.xls

http://campus.murraystate.edu/academic/faculty/christopher.mecklin/MAT565/OrangeTreeGrowth.txt
http://campus.murraystate.edu/academic/faculty/christopher.mecklin/MAT565/OrangeTreeGrowth.txt
http://campus.murraystate.edu/academic/faculty/christopher.mecklin/MAT565/OrangeTreeGrowth.xls
http://campus.murraystate.edu/academic/faculty/christopher.mecklin/MAT565/OrangeTreeGrowth.xls


Import Orange Tree Growth data set

You can either download one of these files to your computer and import
into the R Commander via Data→Import Data, choosing the appropriate
format, or by directly typing in the URL for the .txt data file.



Create Factors

R Commander will treat pH and Ca as numeric variables, so we will
convert to factors as we did earlier. This time, instead of supplying factor
names, I will use the numbers as the factor levels.



Fit Two-Way ANOVA model

Now we will fit the factorial ANOVA model, including interaction. The R
notation for this model is:

growth∼pH+Ca+pH:Ca

where pH:Ca denotes the interaction term. A shorter and equivalent form
is:

growth∼pH*Ca

Note the R syntax differs from SAS syntax.



Fit Two-Way ANOVA model
In R Commander, go to Statistics → Means → Multi-Way ANOVA OR
Statistics → Fit models → Linear model...



ANOVA table

Go to Models → Hypothesis tests → ANOVA table. With both main
effects and the interaction all statistically significant, we will need to
interpret the interaction first. The interaction plot will be useful.

Anova Table (Type II tests)

Response: growth

Sum Sq Df F value Pr(>F)

Ca 1.4672 2 10.8238 0.0004462 ***

pH 4.4608 3 21.9385 4.635e-07 ***

Ca:pH 3.2550 6 8.0041 8.186e-05 ***

Residuals 1.6267 24

---



Interaction Plot
Go to Graphs→Plot of Means. Choose both factors and no error bars.

Plot of Means

Orange$pH

m
ea

n 
of

 O
ra

ng
e$

gr
ow

th

6.
0

6.
5

7.
0

7.
5

4 5 6 7

Orange$Ca

100
200
300



ANCOVA Models

Once can also fit analysis of covariance, or ANCOVA, models in both R
and the R Commander. The right hand side of the model will contain
both categorical factors and numeric covariates.

An example of when ANCOVA would be an appropriate model to fit
came from a BioMAPS project involving Dr. Derting, Callie Wilson, and
Erin Keeney. In their situation, the response was the dry mass of a
mouse’s immune organs, the factor was group (either
control/cell-mediated/cell-mediated & humoral), with the body mass of
the mouse as the covariate.

The model, in R notation, would look something like this.

model1<-aov(immdry∼group+bodymass) OR
model1<-lm(immdry∼group+bodymass)

possibly using a Tukey’s or other post hoc procedure on the factor if it
was found to be significant.



Information Theory

I Kullback-Liebler Information

I Definition of Akaike Information Criterion (AIC)

I Computation of AIC

I Use of AIC

I Akaike weights

I Model selection with AIC



Kullback-Liebler Information

Let f (y) represent the “true” probabilty density function for the response
vector y in a statistical model (i.e. a linear model, generalized linear
model, etc.). Of course, it is unlikely that we actually have the “true”
model, but we might have several statistical models under consideration.

Kullback-Liebler information is a measure of “distance” between two
models, where the second model is used to approximate the first. K − L
information, I (f , g) can be thought of as the amount of information that
is “lost” when model g(y) is used to approximate the reality, or true
model, f (y).

I (f , g) =

∫
f (y) ln(

f (y)

g(y|θ)
)dy

(Burnham & Anderson, 2001; Fox, 2008)



Akaike’s Contribution

Akaike (1973,1974) linked K − L information and maximum likelihood, a
heavily used method for parameter estimation. His contribution was to
show that an estimate of expected K − L information was based on the
maximized log-likelihood function. This yielded the well-known Akaike’s
Information Criterion, or AIC :

AIC = −2 ln(L(θ̂|data)) + 2K

where the first term is minus two times the maximum of the
log-likelihood funrction (aka the deviance) and K in the second term is
the number of parameters in the model. The latter term is often thought
of as a “penalty” term.



AIC in least squares

In the special case of least squares estimation (i.e. a linear model such as
a t-test, linear regression, ANOVA), AIC will simplify to either of the
following forms:

AIC = n[ln(
2πSSE

n
) + 1] + 2K

or

AIC = n ln(
SSE

n
) + 2K

The two forms are equivalent up to a constant and the two different
formulas are widely used in the literature and in R. The AIC function uses
the first formula for basic linear models, while the extractAIC function
uses the second.

The choice is arbitrary, as the difference between the AIC values of
different models is all that is important, and this difference will be
identical using either formula.



Variations of AIC

There are many variation of the AIC statistics. Burnham and Anderson
strongly lobby for the corrected AIC, or AICc, especially when sample
sizes are less than 40.

AICc = AIC +
2K (K + 1)

N − K − 1

Schwarz’s Bayesian Information Criterion is also popular. It is more
conservative and will “penalize” models with more parameters more
heavily than AIC.

BIC = −2 ln(L(θ̂|data)) + ln(N)K



Example of AIC: The t-test

Let us consider the computation of AIC in the simplest possible setting,
an independent samples t-test. In the following example, we have the
exam scores of n1 = 20 students who took the UBW 101 exam at 8 AM
and n2 = 15 students who took the same exam at 12 PM.

exam<-c(74,72,65,96,45,62,82,67,63,93,29,68,47,80,87,100,

86,87,89,75,88,81,71,87,97,83,81,49,71,63,53,77,71,86,78)

group<-c(rep(0,15),rep(1,20))

t.test(exam∼group,var.equal=TRUE)



Example of AIC: The t-test, continued

Ho<-lm(exam∼1) null hypothesis

Ha<-lm(exam∼group) alternative hypothesis

summary(Ho)

anova(Ho)

extractAIC(Ho)

AIC(Ho) available in R Commander

AICc(Ho)

BIC(Ho)

summary(Ha)

anova(Ha)

extractAIC(Ha)

AIC(Ha)

AICc(Ha)

BIC(Ha)



R Output

> t.test(exam∼group,var.equal=TRUE)
Two Sample t-test

data: exam by group

t = -1.8824, df = 33, p-value = 0.06862

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

-20.7733369 0.8066702

sample estimates:

mean in group 0 mean in group 1

68.66667 78.65000



R Output

> Ha<-lm(exam∼group) alternative hypothesis

> anova(Ho)

Analysis of Variance Table

Response: exam

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 34 8810.2 259.12

> extractAIC(Ho)

[1] 1.000 195.491

> anova(Ha)

Analysis of Variance Table

Response: exam

Df Sum Sq Mean Sq F value Pr(>F)

group 1 854.3 854.29 3.5435 0.06862 .

Residuals 33 7955.9 241.09

> extractAIC(Ha)

[1] 2.0000 193.9212



Computation of AIC

We can see that for our ‘null’ model, that

AIC0 = 35 ln(
8810.2

35
) + 2(1) = 195.491

while for the alternative model

AIC1 = 35 ln(
7955.9

35
) + 2(2) = 193.921

. Hence,
∆i = AICi −min(AIC )

∆0 = 195.491− 193.921 = 1.57



Rule of Thumb for AIC

The information criterion people don’t like hypothesis testing or p-values
much, since a p-value is P(data|model), which they argue is backward
from the desired probability, which is P(model |data).

A general ‘rule of thumb’ (Burnham & Anderson 2001; Bolker, 2008) is:

I ∆i < 2: models are basically equivalent

I 4 < ∆i < 7: models are clearly distinguished

I ∆i > 10: models are definitely different



Akaike Weights

As previously mentioned, fans of information theory do not like p-values
computed from standard hypothesis tests since they feel computing the
conditional probability of the data occuring GIVEN a model is
“backwards”. (Shouldn’t we condition on what IS known?)

For our t-test example, we will compute relative likelihoods and Akaike
weights wi :

L(null |data) = exp(−1

2
∆0) = e−0.5(1.57) = 0.4561

L(alternative|data) = exp(−1

2
∆1) = e−0.5(0) = 1

In general, the Akaike weight wi is:

wi = P(modeli |data) =
L(modeli |data)∑
all i L(modeli |data)



So, the Akaike weights for the t-test are:

w0 = P(null |data) =
.4561

.4561 + 1
= .3132

w1 = P(alternative|data) =
1

.4561 + 1
= .6868

With just two models and corresponding Akaike weights, we often
compute the evidence ratio, ER and conclude the models are essentially
equivalent if ER < e. The evidence ratio for the alternative is:

ER =
w1

w0
=
.6868

.3132
= 2.1928

With multiple models, we generally discount models with wi < 0.1.
Sometimes estimation and/or inference is based on ‘model averaging’,
using all reasonable models weighted by their wi .



Model Selection with AIC

One can consider all possible regression models using AIC, rather than
R2, adjusted R2, or Mallow’s Cp as the criterion. We might seek to
minimize AIC, but we will not choose a model with more parameters
unless its AIC is at least 2 lower than the simpler model’s AIC, due to the
principle of parsimony.

Stepwise regression methods also exist using AIC, with the usual caveats
always present with the use of stepwise methodology. (Mecklin doesn’t
like stepwise).



The Cereal data

We will use R’s built-in cereal dataset again. First, all possible
regressions to predict calories based on a subset of the 3 predictors fat,
carbo, and protein.

There are 23 = 8 possible multiple regression models (not considering
polynomial or interaction terms). Here, we also use Ben Bolker’s bbmle

package to create nice tables of the statistics.



The Cereal data

library(MASS)
library(bbmle)
attach(UScereal)
m1<-lm(calories∼1)
m2<-lm(calories∼carbo)
m3<-lm(calories∼fat)
m4<-lm(calories∼protein)
m5<-lm(calories∼carbo+fat)
m6<-lm(calories∼carbo+protein)
m7<-lm(calories∼fat+protein)
m8<-lm(calories∼carbo+fat+protein)
AICtab(m1,m2,m3,m4,m5,m6,m7,m8,base=TRUE,weights=TRUE,delta=TRUE,sort=TRUE)
AICctab(m1,m2,m3,m4,m5,m6,m7,m8,base=TRUE,weights=TRUE,delta=TRUE,sort=TRUE,
nobs=nrow(UScereal))
BICtab(m1,m2,m3,m4,m5,m6,m7,m8,base=TRUE,weights=TRUE,delta=TRUE,sort=TRUE,
nobs=nrow(UScereal))



AIC table for cereal regressions

> AICtab(m1,m2,m3,m4,m5,m6,m7,m8,base=TRUE,weights=TRUE,

delta=TRUE,sort=TRUE)

AIC df dAIC weight

m8 604.7 5 0.0 0.99254

m5 614.5 4 9.8 0.00746

m6 643.8 4 39.1 < 0.001

m2 663.6 3 58.9 < 0.001

m7 668.2 4 63.5 < 0.001

m4 682.0 3 77.3 < 0.001

m3 699.0 3 94.3 < 0.001

m1 724.8 2 120.1 < 0.001



Stepwise Regression with AIC

I Load ‘UScereal’ dataset into R Commander by going to:
Data→Data in packages→Read data set from an attached package

I Fit the ‘full’ model: calories∼fat+carbo+protein by going to:
Statistics→Fit Models→Linear Model...

I Use AIC for stepwise regression by going to:
Models→Stepwise model selection...
I usually choose ‘Forward-Backward’ to start with the null model
and add predictors.
‘Backward-Forward’ will start with the full model and will take out
predictiors.



In Tom Anderson’s master’s thesis, he considered nine regression models
chosen on the basis of biological principles rather than data dredging. He
computed the AICc, dAICc or ∆i for each model, and the Akaike weight
wi for each model.

I feel this is superior science to looking at all possible regression models
for a large number of predictors and/or resorting to stepwise
methodology, and would suggest others emulate this approach to model
selection.



Tom’s AICc Table

Table 1: Models used in analysis of competition between A. maculatum
and A. talpoideum. All models also included two random effects, Pond
and Year, where Pond was the individual pond I.D. and Year was the
sample year.

Model Biological Principle Covariates
1 Interspecific density & size Interspecific density, size, & interaction
2 Intraspecific density Intraspecific density
3 Interspecific density Interspecific density
4 Interspecific Size Interspecific Size
5 Predator Density Newt density
6 Competitor Ratio* maculatum:talpoideum density ratio
7 Global Biotic All biotic variables
8 Abiotic Canopy cover and pond size
9 Overall Global Abiotic + Global Biotic



Tom’s AICc Table

Table 2: Response is Maculatum Size. Differences in AICc scores (dAIC),
Akaike weights for all potential models. Bold-faced AIC weights represent
supported models that had an wi > 0.1, following Van Buskirk (2005).
All models include two random effects, Pond and Year. Number of
observations = 19 ponds.

Model K dAICc wi

4 3 0.0 0.535
2 3 0.7 0.368
3 3 3.6 0.090
5 3 9.9 0.004
1 5 11.5 0.002
6 3 11.8 0.001
8 4 21.2 < 0.001
7 7 39.5 < 0.001
9 9 69.9 < 0.001



Repeated Measures ANOVA

It is quite common in research to take repeated measurements on
experimental units. An example would be taking measurements over
several different time periods to measure the growth of a plant. It is
inappropriate to treat the different measurments for each individual as
independent replications, as the errors will NOT be independent.

Incorrectly treating the repeated measurements as independent
observations leads to pseudoreplication. Hence, the analysis would inflate
the degrees of freedom present, possibly leading to incorrect inference
(i.e. Type I errors).

For instance, if we have 2 treatments, 6 plants per treatment, and
measure each plant 5 times, although we have taken 2× 6× 5 = 60
measurements, we do not have 60− 1=59 degrees of freedom.



Crawley’s Plant Growth data

In this problem, we will abandon R Commander, as it doesn’t yet have a
plugin available for repeated measures ANOVA and mixed models.

Our response variable is the biomass of the root of a plant. Fertilizer is a
factor with 2 levels (added or control). There are 6 plants randomly
assigned to each treatment. Each plant’s root biomass is measured 5
times: at week 2,4,6,8,10. Fertilizer is a between-subjects variable, while
week is a within-subjects variable.

The data is available in ‘long’ format at:
http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/

fertilizer.txt

http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/fertilizer.txt
http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/fertilizer.txt


Read in & graph data

plantgrowth<-read.table("http://www.bio.ic.ac.uk/research/

mjcraw/therbook/data/fertilizer.txt",header=T)

attach(plantgrowth)

names(plantgrowth)

library(nlme)

library(lattice)

plantgrowth<-groupedData(root week|plant,

outer=∼fertilizer,plantgrowth)
plot(plantgrowth,outer=T)



Lattice plot
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Wrong ANOVA

This analysis is incorrect due to pseudoreplication!

> week<-ordered(week)

> fertilizer<-factor(fertilizer)

> wrong.anova<-aov(root∼fertilizer*week)
> summary(wrong.anova)

Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 1 25.65 25.650 93.5803 4.85e-13 ***

week 4 423.73 105.932 386.4776 < 2.2e-16 ***

fertilizer:week 4 3.54 0.884 3.2269 0.01968 *

Residuals 50 13.70 0.274



Correct Repeated Measures ANOVA

The correct analyses specifies the proper error terms to be used in the
construction of the F test statistics.

> week<-ordered(week)

> rm.anova<-aov(root∼fertilizer*week+Error(plant/week)+fertilizer)

> summary(rm.anova)

Error: plant

Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 1 25.6499 25.6499 33.063 0.0001852 ***

Residuals 10 7.7578 0.7758

Error: plant:week Df Sum Sq Mean Sq F value Pr(>F)

week 4 423.73 105.932 712.512 < 2.2e-16 ***

fertilizer:week 4 3.54 0.884 5.949 0.0007459 ***

Residuals 40 5.95 0.149



Interaction Graph

> interaction.plot(week,fertilizer,root,type="b",col=1:2)
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MANOVA approach

Our analysis of the repeated measures data with a classical ANOVA
model assumes that sphericity holds. In other words, the variance of all
differences between measures is equal. This ia analogous to the
assumption of equal variances in one-way ANOVA.

This assumption can be tested, and if not met, the df and p-values can
be adjusted. This requires working with the data in ‘wide’ format and
fitting a MANOVA model, where the response is no longer a scalar, but a
vector. In this case, the response vector would be an individual’s
measurements across all time periods.

We will not pursue this approach further today. I can’t teach all of MAT
565 today :)



Mixed Models approach

A more model approach to repeated measures and other mixed models is
to fit a linear mixed model (LMM), using restricted maximum likelihood
(REML) rather than least squares for estimation.

Advantages to this approach include:

I Unbalanced designs (i.e. not all individuals measured at the same
time intervals) can be handled.

I Generalized linear mixed models (GLMM) can be fit if assuming
normal errors is untenable. This can be useful with binary responses
or counts.

Mixed modeling can be quite complex and will not be elaborated upon
today!



What can’t R Commander do?

There are many statistical procedures that are not built in to the R
Commander. We’ve seen one example. If you have the need for others,
options include:

1. Writing R scripts (i.e. programs) and using the R console, with
either the base packages or a package you downloaded. vegan is an
example of a package not part of the base R distribution that I use
frequently, mainly for computing biodiversity statistics.

2. People are starting to create Plug-Ins to add more features to the
GUI. An example is RcmdrPlugin.survival, which adds standard
survival analysis methods like logrank tests and Cox regression.

3. I hope someone creates a Plug-In for repeated measures and mixed
models!

4. You are always able to write your own programs in case no packages
or plug-ins exist or you just prefer to!

5. Thank you!
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