
28Accessing Databases with

JDBC

It is a capital mistake to
theorize before one has data.
—Arthur Conan Doyle

Now go, write it before them in
a table, and note it in a book,
that it may be for the time to
come for ever and ever.
—The Holy Bible, Isaiah 30:8

Get your facts first, and then
you can distort them as much as
you please.
—Mark Twain

I like two kinds of men:
domestic and foreign.
—Mae West

O b j e c t i v e s
In this chapter you’ll learn:

■ Relational database concepts.

■ To use Structured Query
Language (SQL) to retrieve
data from and manipulate
data in a database.

■ To use the JDBC™ API to
access databases.

■ To use the RowSet interface
from package javax.sql to
manipulate databases.

■ To use JDBC 4’s automatic
JDBC driver discovery.

■ To create precompiled SQL
statements with parameters
via PreparedStatements.

■ How transaction processing
makes database applications
more robust.

1172 Chapter 28 Accessing Databases with JDBC

28.1 Introduction1

A database is an organized collection of data. There are many different strategies for orga-
nizing data to facilitate easy access and manipulation. A database management system
(DBMS) provides mechanisms for storing, organizing, retrieving and modifying data for
many users. Database management systems allow for the access and storage of data with-
out concern for the internal representation of data.

Today’s most popular database systems are relational databases (Section 28.2). A lan-
guage called SQL—pronounced “sequel,” or as its individual letters—is the international
standard language used almost universally with relational databases to perform queries
(i.e., to request information that satisfies given criteria) and to manipulate data. [Note: As
you learn about SQL, you’ll see some authors writing “a SQL statement” (which assumes
the pronunciation “sequel”) and others writing “an SQL statement” (which assumes that
the individual letters are pronounced). In this book we pronounce SQL as “sequel.”]

Some popular relational database management systems (RDBMSs) are Microsoft
SQL Server, Oracle, Sybase, IBM DB2, Informix, PostgreSQL and MySQL. The JDK
now comes with a pure-Java RDBMS called Java DB—Oracles’s version of Apache Derby.
In this chapter, we present examples using MySQL and Java DB.

Java programs communicate with databases and manipulate their data using the Java
Database Connectivity (JDBC™) API. A JDBC driver enables Java applications to con-
nect to a database in a particular DBMS and allows you to manipulate that database using
the JDBC API.

28.1 Introduction

28.2 Relational Databases

28.3 Relational Database Overview:
The books Database

28.4 SQL
28.4.1 Basic SELECT Query
28.4.2 WHERE Clause
28.4.3 ORDER BY Clause
28.4.4 Merging Data from Multiple

Tables: INNER JOIN
28.4.5 INSERT Statement
28.4.6 UPDATE Statement
28.4.7 DELETE Statement

28.5 Instructions for Installing MySQL
and MySQL Connector/J

28.6 Instructions for Setting Up a MySQL
User Account

28.7 Creating Database books in MySQL

28.8 Manipulating Databases with JDBC
28.8.1 Connecting to and Querying a Database
28.8.2 Querying the books Database

28.9 RowSet Interface

28.10 Java DB/Apache Derby

28.11 PreparedStatements

28.12 Stored Procedures

28.13 Transaction Processing

28.14 Wrap-Up

28.15 Web Resources

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

1. Before using this chapter, please review the Before You Begin section of the book.

Software Engineering Observation 28.1
Using the JDBC API enables developers to change the underlying DBMS (for example,
from Java DB to MySQL) without modifying the Java code that accesses the database.

28.2 Relational Databases 1173

Most popular database management systems now provide JDBC drivers. There are
also many third-party JDBC drivers available. In this chapter, we introduce JDBC and use
it to manipulate MySQL and Java DB databases. The techniques demonstrated here can
also be used to manipulate other databases that have JDBC drivers. Check your DBMS’s
documentation to determine whether your DBMS comes with a JDBC driver. If not,
third-party vendors provide JDBC drivers for many DBMSs.

For more information on JDBC, visit

which contains JDBC information including the JDBC specification, FAQs, a learning re-
source center and software downloads.

28.2 Relational Databases
A relational database is a logical representation of data that allows the data to be accessed
without consideration of its physical structure. A relational database stores data in tables.
Figure 28.1 illustrates a sample table that might be used in a personnel system. The table
name is Employee, and its primary purpose is to store the attributes of employees. Tables
are composed of rows, and rows are composed of columns in which values are stored. This
table consists of six rows. The Number column of each row is the table’s primary key—a
column (or group of columns) with a unique value that cannot be duplicated in other rows.
This guarantees that each row can be identified by its primary key. Good examples of pri-
mary-key columns are a social security number, an employee ID number and a part num-
ber in an inventory system, as values in each of these columns are guaranteed to be unique.
The rows in Fig. 28.1 are displayed in order by primary key. In this case, the rows are listed
in increasing order, but we could also use decreasing order.

Rows in tables are not guaranteed to be stored in any particular order. As we’ll dem-
onstrate in an upcoming example, programs can specify ordering criteria when requesting
data from a database.

Software Engineering Observation 28.2
Most major database vendors provide their own JDBC database drivers, and many third-
party vendors provide JDBC drivers as well.

www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

Fig. 28.1 | Employee table sample data.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

Number

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

1174 Chapter 28 Accessing Databases with JDBC

Each column represents a different data attribute. Rows are normally unique (by pri-
mary key) within a table, but particular column values may be duplicated between rows.
For example, three different rows in the Employee table’s Department column contain
number 413.

Different users of a database are often interested in different data and different rela-
tionships among the data. Most users require only subsets of the rows and columns. Que-
ries specify which subsets of the data to select from a table. You use SQL to define queries.
For example, you might select data from the Employee table to create a result that shows
where each department is located, presenting the data sorted in increasing order by depart-
ment number. This result is shown in Fig. 28.2. SQL is discussed in Section 28.4.

28.3 Relational Database Overview: The books
Database
We now overview relational databases in the context of a sample books database we created
for this chapter. Before we discuss SQL, we discuss the tables of the books database. We
use this database to introduce various database concepts, including how to use SQL to ob-
tain information from the database and to manipulate the data. We provide a script to cre-
ate the database. You can find the script in the examples directory for this chapter.
Section 28.7 explains how to use this script. The database consists of three tables: Authors,
AuthorISBN and Titles.

Authors Table
The Authors table (described in Fig. 28.3) consists of three columns that maintain each
author’s unique ID number, first name and last name. Figure 28.4 contains sample data
from the Authors table of the books database.

Fig. 28.2 | Result of selecting distinct Department and Location data from table

Employee.

Column Description

AuthorID Author’s ID number in the database. In the books database, this integer col-
umn is defined as autoincremented—for each row inserted in this table, the
AuthorID value is increased by 1 automatically to ensure that each row has a
unique AuthorID. This column represents the table’s primary key.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 28.3 | Authors table from the books database.

413

611

642

New Jersey

Orlando

Los Angeles

Department Location

28.3 Relational Database Overview: The books Database 1175

AuthorISBN Table
The AuthorISBN table (described in Fig. 28.5) consists of two columns that maintain each
ISBN and the corresponding author’s ID number. This table associates authors with their
books. Both columns are foreign keys that represent the relationship between the tables
Authors and Titles—one row in table Authors may be associated with many rows in ta-
ble Titles, and vice versa. The combined columns of the AuthorISBN table represent the
table’s primary key—thus, each row in this table must be a unique combination of an Au-

thorID and an ISBN. Figure 28.6 contains sample data from the AuthorISBN table of the
books database. [Note: To save space, we have split the contents of this table into two col-
umns, each containing the AuthorID and ISBN columns.] The AuthorID column is a for-
eign key—a column in this table that matches the primary-key column in another table
(i.e., AuthorID in the Authors table). Foreign keys are specified when creating a table. The
foreign key helps maintain the Rule of Referential Integrity—every foreign-key value
must appear as another table’s primary-key value. This enables the DBMS to determine
whether the AuthorID value for a particular book is valid. Foreign keys also allow related
data in multiple tables to be selected from those tables for analytic purposes—this is
known as joining the data.

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 28.4 | Sample data from the Authors table.

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 28.5 | AuthorISBN table from the books database.

AuthorID ISBN AuthorID ISBN

1 0132152134 2 0132575663

2 0132152134 1 0132662361

1 0132151421 2 0132662361

2 0132151421 1 0132404168

1 0132575663 2 0132404168

Fig. 28.6 | Sample data from the AuthorISBN table of books. (Part 1 of 2.)

1176 Chapter 28 Accessing Databases with JDBC

Titles Table
The Titles table described in Fig. 28.7 consists of four columns that stand for the ISBN,
the title, the edition number and the copyright year. The table is in Fig. 28.8.

Entity-Relationship (ER) Diagram
There’s a one-to-many relationship between a primary key and a corresponding foreign
key (e.g., one author can write many books). A foreign key can appear many times in its
own table, but only once (as the primary key) in another table. Figure 28.9 is an entity-

1 013705842X 1 0132121360

2 013705842X 2 0132121360

3 013705842X 3 0132121360

4 013705842X 4 0132121360

5 013705842X

Column Description

ISBN ISBN of the book (a string). The table’s primary key. ISBN is an abbre-
viation for “International Standard Book Number”—a numbering
scheme that publishers use to give every book a unique identification
number.

Title Title of the book (a string).

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (a string).

Fig. 28.7 | Titles table from the books database.

ISBN Title EditionNumber Copyright

0132152134 Visual Basic 2010 How to Program 5 2011

0132151421 Visual C# 2010 How to Program 4 2011

0132575663 Java How to Program 9 2012

0132662361 C++ How to Program 8 2012

0132404168 C How to Program 6 2010

013705842X iPhone for Programmers: An App-
Driven Approach

1 2010

0132121360 Android for Programmers: An App-
Driven Approach

1 2012

Fig. 28.8 | Sample data from the Titles table of the books database .

AuthorID ISBN AuthorID ISBN

Fig. 28.6 | Sample data from the AuthorISBN table of books. (Part 2 of 2.)

28.4 SQL 1177

relationship (ER) diagram for the books database. This diagram shows the database tables
and the relationships among them. The first compartment in each box contains the table’s
name and the remaining compartments contain the table’s columns. The names in italic
are primary keys. A table’s primary key uniquely identifies each row in the table. Every row
must have a primary-key value, and that value must be unique in the table. This is known
as the Rule of Entity Integrity. Again, for the AuthorISBN table, the primary key is the
combination of both columns.

The lines connecting the tables (Fig. 28.9) represent the relationships between the
tables. Consider the line between the AuthorISBN and Authors tables. On the Authors end
of the line is a 1, and on the AuthorISBN end is an infinity symbol (∞), indicating a one-
to-many relationship in which every author in the Authors table can have an arbitrary
number of books in the AuthorISBN table. The relationship line links the AuthorID

column in Authors (i.e., its primary key) to the AuthorID column in AuthorISBN (i.e., its
foreign key). The AuthorID column in the AuthorISBN table is a foreign key.

The line between Titles and AuthorISBN illustrates another one-to-many relationship;
a title can be written by any number of authors. In fact, the sole purpose of the AuthorISBN
table is to provide a many-to-many relationship between Authors and Titles—an author
can write many books and a book can have many authors.

28.4 SQL
We now overview SQL in the context of our books database. You’ll be able to use the SQL
discussed here in the examples later in the chapter and in examples in Chapters 30–31.

The next several subsections discuss the SQL keywords listed in Fig. 28.10 in the con-
text of SQL queries and statements. Other SQL keywords are beyond this text’s scope. To

Fig. 28.9 | Table relationships in the books database.

Common Programming Error 28.1
Not providing a value for every column in a primary key breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error.

Common Programming Error 28.2
Providing the same primary-key value in multiple rows causes the DBMS to report an error.

Common Programming Error 28.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error.

1 1
Titles

Copyright

EditionNumber

Title

ISBN

AuthorISBN

ISBN

AuthorID

Authors

LastName

FirstName

AuthorID

1178 Chapter 28 Accessing Databases with JDBC

learn other keywords, refer to the SQL reference guide supplied by the vendor of the
RDBMS you’re using.

28.4.1 Basic SELECT Query

Let us consider several SQL queries that extract information from database books. A SQL
query “selects” rows and columns from one or more tables in a database. Such selections
are performed by queries with the SELECT keyword. The basic form of a SELECT query is

in which the asterisk (*) wildcard character indicates that all columns from the tableName
table should be retrieved. For example, to retrieve all the data in the Authors table, use

Most programs do not require all the data in a table. To retrieve only specific columns,
replace the * with a comma-separated list of column names. For example, to retrieve only
the columns AuthorID and LastName for all rows in the Authors table, use the query

This query returns the data listed in Fig. 28.11.

SQL keyword Description

SELECT Retrieves data from one or more tables.

FROM Tables involved in the query. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved,
deleted or updated. Optional in a SQL query or a SQL statement.

GROUP BY Criteria for grouping rows. Optional in a SELECT query.

ORDER BY Criteria for ordering rows. Optional in a SELECT query.

INNER JOIN Merge rows from multiple tables.

INSERT Insert rows into a specified table.

UPDATE Update rows in a specified table.

DELETE Delete rows from a specified table.

Fig. 28.10 | SQL query keywords.

SELECT * FROM tableName

SELECT * FROM Authors

SELECT AuthorID, LastName FROM Authors

AuthorID LastName

1 Deitel

2 Deitel

3 Deitel

4 Morgano

5 Kern

Fig. 28.11 | Sample AuthorID and

LastName data from the Authors table.

28.4 SQL 1179

28.4.2 WHERE Clause

In most cases, it’s necessary to locate rows in a database that satisfy certain selection crite-
ria. Only rows that satisfy the selection criteria (formally called predicates) are selected.
SQL uses the optional WHERE clause in a query to specify the selection criteria for the query.
The basic form of a query with selection criteria is

For example, to select the Title, EditionNumber and Copyright columns from table
Titles for which the Copyright date is greater than 2010, use the query

Strings in SQL are delimited by single (') rather than double (") quotes.Figure 28.12
shows the result of the preceding query.

Pattern Matching: Zero or More Characters
The WHERE clause criteria can contain the operators <, >, <=, >=, =, <> and LIKE. Operator
LIKE is used for pattern matching with wildcard characters percent (%) and underscore
(_). Pattern matching allows SQL to search for strings that match a given pattern.

Software Engineering Observation 28.3
In general, you process results by knowing in advance the order of the columns in the
result—for example, selecting AuthorID and LastName from table Authors ensures that
the columns will appear in the result with AuthorID as the first column and LastName as
the second column. Programs typically process result columns by specifying the column
number in the result (starting from number 1 for the first column). Selecting columns by
name avoids returning unneeded columns and protects against changes in the actual order
of the columns in the table(s) by returning the columns in the exact order specified.

Common Programming Error 28.4
If you assume that the columns are always returned in the same order from a query that
uses the asterisk (*), the program may process the results incorrectly. If the column order
in the table(s) changes or if additional columns are added at a later time, the order of the
columns in the result will change accordingly.

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

SELECT Title, EditionNumber, Copyright

FROM Titles

WHERE Copyright > '2010'

Title EditionNumber Copyright

Visual Basic 2010 How to Program 5 2011

Visual C# 2010 How to Program 4 2011

Java How to Program 9 2012

C++ How to Program 8 2012

Android for Programmers: An App-
Driven Approach

1 2012

Fig. 28.12 | Sampling of titles with copyrights after 2005 from table Titles.

1180 Chapter 28 Accessing Databases with JDBC

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the next
query locates the rows of all the authors whose last name starts with the letter D:

This query selects the two rows shown in Fig. 28.13—three of the five authors have a last
name starting with the letter D (followed by zero or more characters). The % symbol in the
WHERE clause’s LIKE pattern indicates that any number of characters can appear after the
letter D in the LastName. The pattern string is surrounded by single-quote characters.

Pattern Matching: Any Character
An underscore (_) in the pattern string indicates a single wildcard character at that posi-
tion in the pattern. For example, the following query locates the rows of all the authors
whose last names start with any character (specified by _), followed by the letter o, followed
by any number of additional characters (specified by %):

The preceding query produces the row shown in Fig. 28.14, because only one author in
our database has a last name that contains the letter o as its second letter.

SELECT AuthorID, FirstName, LastName

FROM Authors

WHERE LastName LIKE 'D%'

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 28.13 | Authors whose last name starts with D from the Authors table.

Portability Tip 28.1
See the documentation for your database system to determine whether SQL is case sensitive
on your system and to determine the syntax for SQL keywords.

Portability Tip 28.2
Read your database system’s documentation carefully to determine whether it supports the
LIKE operator as discussed here.

SELECT AuthorID, FirstName, LastName

FROM Authors

WHERE LastName LIKE '_o%'

AuthorID FirstName LastName

4 Michael Morgano

Fig. 28.14 | The only author from the Authors table

whose last name contains o as the second letter.

28.4 SQL 1181

28.4.3 ORDER BY Clause

The rows in the result of a query can be sorted into ascending or descending order by using
the optional ORDER BY clause. The basic form of a query with an ORDER BY clause is

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and column specifies the column on which the sort is based. For exam-
ple, to obtain the list of authors in ascending order by last name (Fig. 28.15), use the query

Sorting in Descending Order
The default sorting order is ascending, so ASC is optional. To obtain the same list of au-
thors in descending order by last name (Fig. 28.16), use the query

Sorting By Multiple Columns
Multiple columns can be used for sorting with an ORDER BY clause of the form

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC
SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

SELECT AuthorID, FirstName, LastName

FROM Authors

ORDER BY LastName ASC

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

5 Eric Kern

4 Michael Morgano

Fig. 28.15 | Sample data from table Authors in ascending order by LastName.

SELECT AuthorID, FirstName, LastName

FROM Authors

ORDER BY LastName DESC

AuthorID FirstName LastName

4 Michael Morgano

5 Eric Kern

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 28.16 | Sample data from table Authors in descending order by LastName.

ORDER BY column1 sortingOrder, column2 sortingOrder, …

1182 Chapter 28 Accessing Databases with JDBC

where sortingOrder is either ASC or DESC. The sortingOrder does not have to be identical for
each column. The query

sorts all the rows in ascending order by last name, then by first name. If any rows have the
same last-name value, they’re returned sorted by first name (Fig. 28.17).

Combining the WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses can be combined in one query, as in

which returns the ISBN, Title, EditionNumber and Copyright of each book in the Titles
table that has a Title ending with "How to Program" and sorts them in ascending order
by Title. The query results are shown in Fig. 28.18.

28.4.4 Merging Data from Multiple Tables: INNER JOIN

Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, in the books database, we use an AuthorISBN ta-
ble to store the relationship data between authors and their corresponding titles. If we did

SELECT AuthorID, FirstName, LastName

FROM Authors

ORDER BY LastName, FirstName

AuthorID FirstName LastName

3 Abbey Deitel

2 Harvey Deitel

1 Paul Deitel

5 Eric Kern

4 Michael Morgano

Fig. 28.17 | Sample data from Authors in ascending order by LastName and FirstName.

SELECT ISBN, Title, EditionNumber, Copyright

FROM Titles

WHERE Title LIKE '%How to Program'

ORDER BY Title ASC

ISBN Title

Edition-

Number

Copy-

right

0132404168 C How to Program 6 2010

0132662361 C++ How to Program 8 2012

0132575663 Java How to Program 9 2012

0132152134 Visual Basic 2005 How to Program 5 2011

0132151421 Visual C# 2005 How to Program 4 2011

Fig. 28.18 | Sampling of books from table Titles whose titles end with How to Program in

ascending order by Title.

28.4 SQL 1183

not separate this information into individual tables, we’d need to include author informa-
tion with each entry in the Titles table. This would result in the database’s storing dupli-
cate author information for authors who wrote multiple books. Often, it’s necessary to
merge data from multiple tables into a single result. Referred to as joining the tables, this
is specified by an INNER JOIN operator, which merges rows from two tables by matching
values in columns that are common to the tables. The basic form of an INNER JOIN is:

The ON clause of the INNER JOIN specifies the columns from each table that are com-
pared to determine which rows are merged. For example, the following query produces a
list of authors accompanied by the ISBNs for books written by each author:

The query merges the FirstName and LastName columns from table Authors with the
ISBN column from table AuthorISBN, sorting the result in ascending order by LastName

and FirstName. Note the use of the syntax tableName.columnName in the ON clause. This
syntax, called a qualified name, specifies the columns from each table that should be com-
pared to join the tables. The “tableName.” syntax is required if the columns have the same
name in both tables. The same syntax can be used in any SQL statement to distinguish
columns in different tables that have the same name. In some systems, table names quali-
fied with the database name can be used to perform cross-database queries. As always, the
query can contain an ORDER BY clause. Figure 28.19 shows the results of the preceding
query, ordered by LastName and FirstName. [Note: To save space, we split the result of the
query into two columns, each containing the FirstName, LastName and ISBN columns.]

SELECT columnName1, columnName2, …

FROM table1
INNER JOIN table2

ON table1.columnName = table2.columnName

SELECT FirstName, LastName, ISBN

FROM Authors

INNER JOIN AuthorISBN

ON Authors.AuthorID = AuthorISBN.AuthorID

ORDER BY LastName, FirstName

FirstName LastName ISBN FirstName LastName ISBN

Abbey Deitel 013705842X Paul Deitel 0132151421

Abbey Deitel 0132121360 Paul Deitel 0132575663

Harvey Deitel 0132152134 Paul Deitel 0132662361

Harvey Deitel 0132151421 Paul Deitel 0132404168

Harvey Deitel 0132575663 Paul Deitel 013705842X

Harvey Deitel 0132662361 Paul Deitel 0132121360

Harvey Deitel 0132404168 Eric Kern 013705842X

Harvey Deitel 013705842X Michael Morgano 013705842X

Harvey Deitel 0132121360 Michael Morgano 0132121360

Paul Deitel 0132152134

Fig. 28.19 | Sampling of authors and ISBNs for the books they have written in ascending

order by LastName and FirstName.

1184 Chapter 28 Accessing Databases with JDBC

28.4.5 INSERT Statement

The INSERT statement inserts a row into a table. The basic form of this statement is

where tableName is the table in which to insert the row. The tableName is followed by a
comma-separated list of column names in parentheses (this list is not required if the IN-

SERT operation specifies a value for every column of the table in the correct order). The list
of column names is followed by the SQL keyword VALUES and a comma-separated list of
values in parentheses. The values specified here must match the columns specified after the
table name in both order and type (e.g., if columnName1 is supposed to be the FirstName
column, then value1 should be a string in single quotes representing the first name). Al-
ways explicitly list the columns when inserting rows. If the table’s column order changes
or a new column is added, using only VALUES may cause an error. The INSERT statement

inserts a row into the Authors table. The statement indicates that values are provided for
the FirstName and LastName columns. The corresponding values are 'Sue' and 'Smith'.
We do not specify an AuthorID in this example because AuthorID is an autoincremented
column in the Authors table. For every row added to this table, the DBMS assigns a
unique AuthorID value that is the next value in the autoincremented sequence (i.e., 1, 2,
3 and so on). In this case, Sue Red would be assigned AuthorID number 6. Figure 28.20
shows the Authors table after the INSERT operation. [Note: Not every database manage-
ment system supports autoincremented columns. Check the documentation for your
DBMS for alternatives to autoincremented columns.]

Software Engineering Observation 28.4
If a SQL statement includes columns with the same name from multiple tables, the
statement must precede those column names with their table names and a dot (e.g.,
Authors.AuthorID).

Common Programming Error 28.5
Failure to qualify names for columns that have the same name in two or more tables is an
error.

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)

VALUES (value1, value2, …, valueN)

INSERT INTO Authors (FirstName, LastName)

VALUES ('Sue', 'Red')

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

6 Sue Red

Fig. 28.20 | Sample data from table Authors after an INSERT operation.

28.4 SQL 1185

28.4.6 UPDATE Statement

An UPDATE statement modifies data in a table. Its basic form is

where tableName is the table to update. The tableName is followed by keyword SET and a
comma-separated list of column name/value pairs in the format columnName = value. The
optional WHERE clause provides criteria that determine which rows to update. Though not
required, the WHERE clause is typically used, unless a change is to be made to every row.
The UPDATE statement

updates a row in the Authors table. The statement indicates that LastName will be assigned
the value Black for the row in which LastName is equal to Red and FirstName is equal to
Sue. [Note: If there are multiple rows with the first name “Sue” and the last name “Red,”
this statement will modify all such rows to have the last name “Black.”] If we know the
AuthorID in advance of the UPDATE operation (possibly because we searched for it previ-
ously), the WHERE clause can be simplified as follows:

Figure 28.21 shows the Authors table after the UPDATE operation has taken place.

Common Programming Error 28.6
It’s normally an error to specify a value for an autoincrement column.

Common Programming Error 28.7
SQL delimits strings with single quotes ('). A string containing a single quote (e.g.,
O’Malley) must have two single quotes in the position where the single quote appears (e.g.,
'O''Malley'). The first acts as an escape character for the second. Not escaping single-
quote characters in a string that’s part of a SQL statement is a SQL syntax error.

UPDATE tableName
SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
WHERE criteria

UPDATE Authors

SET LastName = 'Black'

WHERE LastName = 'Red' AND FirstName = 'Sue'

WHERE AuthorID = 6

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

6 Sue Black

Fig. 28.21 | Sample data from table Authors after an UPDATE operation.

1186 Chapter 28 Accessing Databases with JDBC

28.4.7 DELETE Statement

A SQL DELETE statement removes rows from a table. Its basic form is

where tableName is the table from which to delete. The optional WHERE clause specifies the
criteria used to determine which rows to delete. If this clause is omitted, all the table’s rows
are deleted. The DELETE statement

deletes the row for Sue Black in the Authors table. If we know the AuthorID in advance
of the DELETE operation, the WHERE clause can be simplified as follows:

Figure 28.22 shows the Authors table after the DELETE operation has taken place.

28.5 Instructions for Installing MySQL and MySQL
Connector/J
MySQL Community Edition is an open-source database management system that exe-
cutes on many platforms, including Windows, Linux, and Mac OS X. Complete informa-
tion about MySQL is available from www.mysql.com. The examples in Sections 28.8–28.9
manipulate MySQL databases using MySQL 5.5.8—the latest release at the time of this
writing.

Installing MySQL
To install MySQL Community Edition on Windows, Linux or Mac OS X, see the instal-
lation overview for your platform at:

• Windows: dev.mysql.com/doc/refman/5.5/en/windows-installation.html

• Linux: dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html

• Mac OS X: dev.mysql.com/doc/refman/5.5/en/macosx-installation.html

Carefully follow the instructions for downloading and installing the software on your plat-
form. The downloads are available from:

DELETE FROM tableName WHERE criteria

DELETE FROM Authors

WHERE LastName = 'Black' AND FirstName = 'Sue'

WHERE AuthorID = 5

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 28.22 | Sample data from table Authors after a DELETE operation.

dev.mysql.com/downloads/mysql/

28.6 Instructions for Setting Up a MySQL User Account 1187

For the following steps, we assume that you’re installing MySQL on Windows. When
you execute the installer, the MySQL Server 5.5 Setup Wizard window will appear. Perform
the following steps:

1. Click the Next button.

2. Read the license agreement, then check the I accept the terms in the License

Agreement checkbox and click the Next button. [Note: If you do not accept the
license terms, you will not be able to install MySQL.]

3. Click the Typical button in the Choose Setup Type screen then click Install.

4. When the installation completes, click Next > twice.

5. In the Completed the MySQL Server 5.5 Setup Wizard screen, ensure that the
Launch the MySQL Instance Configuration Wizard checkbox is checked, then click
Finish to begin configuring the server.

The MySQL Instance Configuration Wizard window appears. To configure the server:

1. Click Next >, then select Standard Configuration and click Next > again.

2. You have the option of installing MySQL as a Windows service, which enables
the MySQL server to begin executing automatically each time your system starts.
For our examples, this is unnecessary, so you can uncheck Install as a Windows

Service if you wish. Check Include Bin Directory in Windows PATH. This will en-
able you to use the MySQL commands in the Windows Command Prompt.
Click Next >, then click Execute to perform the server configuration.

3. Click Finish to close the wizard.

You’ve now completed the MySQL installation.

Installing MySQL Connector/J
To use MySQL with JDBC, you also need to install MySQL Connector/J (the J stands
for Java)—a JDBC driver that allows programs to use JDBC to interact with MySQL.
MySQL Connector/J can be downloaded from

The documentation for Connector/J is located at

At the time of this writing, the current generally available release of MySQL Connector/J
is 5.1.14. To install MySQL Connector/J, carefully follow the installation instructions at:

We do not recommend modifying your system’s CLASSPATH environment variable, which
is discussed in the installation instructions. Instead, we’ll show you how use MySQL Con-
nector/J by specifying it as a command-line option when you execute your applications.

28.6 Instructions for Setting Up a MySQL User Account
For the MySQL examples to execute correctly, you need to set up a user account that al-
lows users to create, delete and modify a database. After MySQL is installed, follow the

dev.mysql.com/downloads/connector/j/

dev.mysql.com/doc/refman/5.5/en/connector-j.html

dev.mysql.com/doc/refman/5.5/en/connector-j-installing.html

1188 Chapter 28 Accessing Databases with JDBC

steps below to set up a user account (these steps assume MySQL is installed in its default
installation directory):

1. Open a Command Prompt and start the database server by executing the com-
mand mysqld.exe. This command has no output—it simply starts the MySQL
server. Do not close this window—doing so terminates the server.

1. Next, you’ll start the MySQL monitor so you can set up a user account, open an-
other Command Prompt and execute the command

The -h option indicates the host (i.e., computer) on which the MySQL server is
running—in this case your local computer (localhost). The -u option indicates
the user account that will be used to log in to the server—root is the default user
account that is created during installation to allow you to configure the server.
Once you’ve logged in, you’ll see a mysql> prompt at which you can type com-
mands to interact with the MySQL server.

1. At the mysql> prompt, type

and press Enter to select the built-in database named mysql, which stores server
information, such as user accounts and their privileges for interacting with the
server. Each command must end with a semicolon. To confirm the command,
MySQL issues the message “Database changed.”

1. Next, you’ll add the deitel user account to the mysql built-in database. The
mysql database contains a table called user with columns that represent the user’s
name, password and various privileges. To create the deitel user account with
the password deitel, execute the following commands from the mysql> prompt:

This creates the deitel user with the privileges needed to create the databases
used in this chapter and manipulate them.

1. Type the command

to terminate the MySQL monitor.

28.7 Creating Database books in MySQL
For each MySQL database we discuss, we provide a SQL script in a .sql file that sets up
the database and its tables. You can execute these scripts in the MySQL monitor. In this
chapter’s examples directory, you’ll find the script books.sql to create the books database.
For the following steps, we assume that the MySQL server (mysqld.exe) is still running.
To execute the books.sql script:

1. Open a Command Prompt and use the cd command to change directories to the
location that contains the books.sql script.

mysql -h localhost -u root

USE mysql;

create user 'deitel'@'localhost' identified by 'deitel';

grant select, insert, update, delete, create, drop, references,

execute on *.* to 'deitel'@'localhost';

exit;

28.8 Manipulating Databases with JDBC 1189

2. Start the MySQL monitor by typing

The -p option prompts you for the password for the deitel user account. When
prompted, enter the password deitel.

3. Execute the script by typing

This creates a new directory named books in the server’s data directory—located
by default on Windows at C:\ProgramData\MySQL\MySQL Server 5.5\data.
This new directory contains the books database.

4. Type the command

to terminate the MySQL monitor. You’re now ready to proceed to the first JDBC
example.

28.8 Manipulating Databases with JDBC
This section presents two examples. The first introduces how to connect to a database and
query it. The second demonstrates how to display the result of the query in a JTable.

28.8.1 Connecting to and Querying a Database

The example of Fig. 28.23 performs a simple query on the books database that retrieves
the entire Authors table and displays the data. The program illustrates connecting to the
database, querying the database and processing the result. The discussion that follows pres-
ents the key JDBC aspects of the program. [Note: Sections 28.5–28.7 demonstrate how to
start the MySQL server, configure a user account and create the books database. These
steps must be performed before executing the program of Fig. 28.23.]

mysql -h localhost -u deitel -p

source books.sql;

exit;

1 // Fig. 28.23: DisplayAuthors.java

2 // Displaying the contents of the Authors table.

3 import java.sql.Connection;

4 import java.sql.Statement;

5 import java.sql.DriverManager;

6 import java.sql.ResultSet;

7 import java.sql.ResultSetMetaData;

8 import java.sql.SQLException;

9

10 public class DisplayAuthors

11 {

12

13

14

15 // launch the application

16 public static void main(String args[])

17 {

Fig. 28.23 | Displaying the contents of the Authors table. (Part 1 of 3.)

// database URL

static final String DATABASE_URL = "jdbc:mysql://localhost/books";

1190 Chapter 28 Accessing Databases with JDBC

18 Connection connection = null; // manages connection

19 Statement statement = null; // query statement

20 ResultSet resultSet = null; // manages results

21

22 // connect to database books and query database

23 try

24 {

25

26

27

28

29

30

31

32

33

34

35

36 // process query results

37

38

39 System.out.println("Authors Table of Books Database:\n");

40

41 for (int i = 1; i <= numberOfColumns; i++)

42 System.out.printf("%-8s\t",);

43 System.out.println();

44

45 while ()

46 {

47 for (int i = 1; i <= numberOfColumns; i++)

48 System.out.printf("%-8s\t",);

49 System.out.println();

50 } // end while

51 } // end try

52 catch ()

53 {

54 sqlException.printStackTrace();

55 } // end catch

56

57

58

59

60

61

62

63

64

65

66

67

68

69 } // end main

70 } // end class DisplayAuthors

Fig. 28.23 | Displaying the contents of the Authors table. (Part 2 of 3.)

// establish connection to database

connection = DriverManager.getConnection(

DATABASE_URL, "deitel", "deitel");

// create Statement for querying database

statement = connection.createStatement();

// query database

resultSet = statement.executeQuery(

"SELECT AuthorID, FirstName, LastName FROM Authors");

ResultSetMetaData metaData = resultSet.getMetaData();

int numberOfColumns = metaData.getColumnCount();

metaData.getColumnName(i)

resultSet.next()

resultSet.getObject(i)

SQLException sqlException

finally // ensure resultSet, statement and connection are closed

{

try

{

resultSet.close();

statement.close();

connection.close();

} // end try

catch (Exception exception)

{

exception.printStackTrace();

} // end catch

} // end finally

28.8 Manipulating Databases with JDBC 1191

Lines 3–8 import the JDBC interfaces and classes from package java.sql used in this
program. Line 13 declares a string constant for the database URL. This identifies the name
of the database to connect to, as well as information about the protocol used by the JDBC
driver (discussed shortly). Method main (lines 16–69) connects to the books database,
queries the database, displays the result of the query and closes the database connection.

In past versions of Java, programs were required to load an appropriate database driver
before connecting to a database. JDBC 4.0 and higher support automatic driver dis-
covery—you’re no longer required to load the database driver in advance. To ensure that
the program can locate the database driver class, you must include the class’s location in
the program’s classpath when you execute the program. For MySQL, you include the file
mysql-connector-java-5.1.14-bin.jar (in the C:\mysql-connector-java-5.1.14

directory) in your program’s classpath, as in:

If the period (.) at the beginning of the classpath information is missing, the JVM will not
look for classes in the current directory and thus will not find the DisplayAuthors class file.
You may also copy the mysql-connector-java-5.1.14-bin.jar file to your JDK’s
\jre\lib\ext folder. After doing so, you can run the application simply using the command

Connecting to the Database
Lines 26–27 of Fig. 28.23 create a Connection object (package java.sql) referenced by
connection. An object that implements interface Connection manages the connection be-
tween the Java program and the database. Connection objects enable programs to create
SQL statements that manipulate databases. The program initializes connection with the
result of a call to static method getConnection of class DriverManager (package ja-

va.sql), which attempts to connect to the database specified by its URL. Method get-

Connection takes three arguments—a String that specifies the database URL, a String

that specifies the username and a String that specifies the password. The username and
password are set in Section 28.6. If you used a different username and password, you need
to replace the username (second argument) and password (third argument) passed to
method getConnection in line 27. The URL locates the database (possibly on a network
or in the local file system of the computer). The URL jdbc:mysql://localhost/books

specifies the protocol for communication (jdbc), the subprotocol for communication
(mysql) and the location of the database (//localhost/books, where localhost is the
host running the MySQL server and books is the database name). The subprotocol mysql

Authors Table of Books Database:

AuthorID FirstName LastName
1 Harvey Deitel
2 Paul Deitel
3 Andrew Goldberg
4 David Choffnes

java -classpath .;c:\mysql-connector-java-5.1.14\mysql-connector-

java-5.1.14-bin.jar DisplayAuthors

java DisplayAuthors

Fig. 28.23 | Displaying the contents of the Authors table. (Part 3 of 3.)

1192 Chapter 28 Accessing Databases with JDBC

indicates that the program uses a MySQL-specific subprotocol to connect to the MySQL
database. If the DriverManager cannot connect to the database, method getConnection

throws a SQLException (package java.sql). Figure 28.24 lists the JDBC driver names
and database URL formats of several popular RDBMSs.

Creating a Statement for Executing Queries
Line 30 invokes Connection method createStatement to obtain an object that imple-
ments interface Statement (package java.sql). The program uses the Statement object
to submit SQL statements to the database.

Executing a Query
Lines 33–34 use the Statement object’s executeQuery method to submit a query that se-
lects all the author information from table Authors. This method returns an object that
implements interface ResultSet and contains the query results. The ResultSet methods
enable the program to manipulate the query result.

Processing a Query’s ResultSet
Lines 37–50 process the ResultSet. Line 37 obtains the metadata for the ResultSet as a
ResultSetMetaData (package java.sql) object. The metadata describes the ResultSet’s
contents. Programs can use metadata programmatically to obtain information about the
ResultSet’s column names and types. Line 38 uses ResultSetMetaData method getCol-

umnCount to retrieve the number of columns in the ResultSet. Lines 41–42 display the
column names.

RDBMS Database URL format

MySQL jdbc:mysql://hostname:portNumber/databaseName

ORACLE jdbc:oracle:thin:@hostname:portNumber:databaseName

DB2 jdbc:db2:hostname:portNumber/databaseName

PostgreSQL jdbc:postgresql://hostname:portNumber/databaseName

Java DB/Apache
Derby

jdbc:derby:dataBaseName (embedded)
jdbc:derby://hostname:portNumber/databaseName (network)

Microsoft SQL
Server

jdbc:sqlserver://hostname:portNumber;databaseName=dataBaseName

Sybase jdbc:sybase:Tds:hostname:portNumber/databaseName

Fig. 28.24 | Popular JDBC database URL formats.

Software Engineering Observation 28.5
Most database management systems require the user to log in before accessing the database
contents. DriverManager method getConnection is overloaded with versions that enable
the program to supply the user name and password to gain access.

Software Engineering Observation 28.6
Metadata enables programs to process ResultSet contents dynamically when detailed
information about the ResultSet is not known in advance.

28.8 Manipulating Databases with JDBC 1193

Lines 45–50 display the data in each ResultSet row. First, the program positions the
ResultSet cursor (which points to the row being processed) to the first row in the
ResultSet with method next (line 45). Method next returns boolean value true if it’s
able to position to the next row; otherwise, the method returns false.

If there are rows in the ResultSet, lines 47–48 extract and display the contents of
each column in the current row. When a ResultSet is processed, each column can be
extracted as a specific Java type. In fact, ResultSetMetaData method getColumnType

returns a constant integer from class Types (package java.sql) indicating the type of a
specified column. Programs can use these values in a switch statement to invoke
ResultSet methods that return the column values as appropriate Java types. If the type of
a column is Types.INTEGER, ResultSet method getInt returns the column value as an
int. ResultSet get methods typically receive as an argument either a column number (as
an int) or a column name (as a String) indicating which column’s value to obtain. Visit

for detailed mappings of SQL data types to Java types and to determine the appropriate
ResultSet method to call for each SQL data type.

For simplicity, this example treats each value as an Object. We retrieve each column
value with ResultSet method getObject (line 48) then print the Object’s String repre-
sentation. Unlike array indices, ResultSet column numbers start at 1. The finally block
(lines 56–68) closes the ResultSet, the Statement and the database Connection. [Note:
Lines 60–62 will throw NullPointerExceptions if the ResultSet, Statement or Connec-
tion objects were not created properly. For code used in industry, you should check the
variables that refer to these objects to see if they’re null before you call close.]

Common Programming Error 28.8
Initially, a ResultSet cursor is positioned before the first row. A SQLException occurs if
you attempt to access a ResultSet’s contents before positioning the ResultSet cursor to
the first row with method next.

java.sun.com/javase/6/docs/technotes/guides/jdbc/getstart/

GettingStartedTOC.fm.html

Performance Tip 28.1
If a query specifies the exact columns to select from the database, the ResultSet contains
the columns in the specified order. In this case, using the column number to obtain the
column’s value is more efficient than using the column name. The column number pro-
vides direct access to the specified column. Using the column name requires a search of the
column names to locate the appropriate column.

Error-Prevention Tip 28.1
Using column names to obtain values from a ResultSet produces code that is less error
prone than obtaining values by column number—you don’t need to remember the col-
umn order. Also, if the column order changes, your code does not have to change.

Common Programming Error 28.9
Specifying column 0 when obtaining values from a ResultSet causes a SQLException.

1194 Chapter 28 Accessing Databases with JDBC

Java SE 7: Automatically Closing Connections, Statements and ResultSets
As of Java SE 7, the interfaces Connection, Statement and ResultSet each extend the
AutoCloseable interface, so you can use objects that implement these interfaces with the
new try-with-resources statement, which was introduced in Section 11.13. In the folder
for the example of Fig. 28.23, the subfolder JavaSE7Version contains a version of the ex-
ample that uses the try-with-resources statement to allocate the Connection, Statement
and ResultSet objects. These objects are automatically closed at the end of the try block
or if an exception occurs while executing the code in the try block.

28.8.2 Querying the books Database

The next example (Fig. 28.25 and Fig. 28.28) allows the user to enter any query into the
program. The example displays the result of a query in a JTable, using a TableModel ob-
ject to provide the ResultSet data to the JTable. A JTable is a swing GUI component
that can be bound to a database to display the results of a query. Class ResultSetTable-
Model (Fig. 28.25) performs the connection to the database via a TableModel and main-
tains the ResultSet. Class DisplayQueryResults (Fig. 28.28) creates the GUI and
specifies an instance of class ResultSetTableModel to provide data for the JTable.

ResultSetTableModel Class
Class ResultSetTableModel (Fig. 28.25) extends class AbstractTableModel (package
javax.swing.table), which implements interface TableModel. ResultSetTableModel

overrides TableModel methods getColumnClass, getColumnCount, getColumnName, get-
RowCount and getValueAt. The default implementations of TableModel methods is-

CellEditable and setValueAt (provided by AbstractTableModel) are not overridden,
because this example does not support editing the JTable cells. The default implementa-
tions of TableModel methods addTableModelListener and removeTableModelListener

(provided by AbstractTableModel) are not overridden, because the implementations of
these methods in AbstractTableModel properly add and remove event listeners.

Common Programming Error 28.10
A SQLException occurs if you attempt to manipulate a ResultSet after closing the
Statement that created it. The ResultSet is discarded when the Statement is closed.

Software Engineering Observation 28.7
Each Statement object can open only one ResultSet object at a time. When a Statement
returns a new ResultSet, the Statement closes the prior ResultSet. To use multiple
ResultSets in parallel, separate Statement objects must return the ResultSets.

1 // Fig. 28.25: ResultSetTableModel.java

2 // A TableModel that supplies ResultSet data to a JTable.

3 import java.sql.Connection;

4 import java.sql.Statement;

5 import java.sql.DriverManager;

6 import java.sql.ResultSet;

7 import java.sql.ResultSetMetaData;

Fig. 28.25 | A TableModel that supplies ResultSet data to a JTable. (Part 1 of 5.)

28.8 Manipulating Databases with JDBC 1195

8 import java.sql.SQLException;

9 import javax.swing.table.AbstractTableModel;

10

11 // ResultSet rows and columns are counted from 1 and JTable

12 // rows and columns are counted from 0. When processing

13 // ResultSet rows or columns for use in a JTable, it is

14 // necessary to add 1 to the row or column number to manipulate

15 // the appropriate ResultSet column (i.e., JTable column 0 is

16 // ResultSet column 1 and JTable row 0 is ResultSet row 1).

17

18 {

19 private Connection connection;

20 private Statement statement;

21 private ResultSet resultSet;

22 private ResultSetMetaData metaData;

23 private int numberOfRows;

24

25

26

27

28 // constructor initializes resultSet and obtains its meta data object;

29 // determines number of rows

30 public ResultSetTableModel(String url, String username,

31 String password, String query) throws SQLException

32 {

33 // connect to database

34 connection = DriverManager.getConnection(url, username, password);

35

36

37

38

39

40

41

42

43

44 // set query and execute it

45 setQuery(query);

46 } // end constructor ResultSetTableModel

47

48 // get class that represents column type

49 throws IllegalStateException

50 {

51

52

53

54

55 // determine Java class of column

56 try

57 {

58

59

Fig. 28.25 | A TableModel that supplies ResultSet data to a JTable. (Part 2 of 5.)

public class ResultSetTableModel extends AbstractTableModel

// keep track of database connection status

private boolean connectedToDatabase = false;

// create Statement to query database

statement = connection.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

// update database connection status

connectedToDatabase = true;

public Class getColumnClass(int column)

// ensure database connection is available

if (!connectedToDatabase)

throw new IllegalStateException("Not Connected to Database");

String className = metaData.getColumnClassName(column + 1);

1196 Chapter 28 Accessing Databases with JDBC

60

61

62 } // end try

63 catch (Exception exception)

64 {

65 exception.printStackTrace();

66 } // end catch

67

68 return Object.class; // if problems occur above, assume type Object

69 } // end method getColumnClass

70

71 // get number of columns in ResultSet

72 throws IllegalStateException

73 {

74 // ensure database connection is available

75 if (!connectedToDatabase)

76 throw new IllegalStateException("Not Connected to Database");

77

78 // determine number of columns

79 try

80 {

81 return metaData.getColumnCount();

82 } // end try

83 catch (SQLException sqlException)

84 {

85 sqlException.printStackTrace();

86 } // end catch

87

88 return 0; // if problems occur above, return 0 for number of columns

89 } // end method getColumnCount

90

91 // get name of a particular column in ResultSet

92 throws IllegalStateException

93 {

94 // ensure database connection is available

95 if (!connectedToDatabase)

96 throw new IllegalStateException("Not Connected to Database");

97

98 // determine column name

99 try

100 {

101 return metaData.getColumnName(column + 1);

102 } // end try

103 catch (SQLException sqlException)

104 {

105 sqlException.printStackTrace();

106 } // end catch

107

108 return ""; // if problems, return empty string for column name

109 } // end method getColumnName

110

Fig. 28.25 | A TableModel that supplies ResultSet data to a JTable. (Part 3 of 5.)

// return Class object that represents className

return Class.forName(className);

public int getColumnCount()

public String getColumnName(int column)

28.8 Manipulating Databases with JDBC 1197

111 // return number of rows in ResultSet

112 throws IllegalStateException

113 {

114 // ensure database connection is available

115 if (!connectedToDatabase)

116 throw new IllegalStateException("Not Connected to Database");

117

118 return numberOfRows;

119 } // end method getRowCount

120

121 // obtain value in particular row and column

122

123 throws IllegalStateException

124 {

125 // ensure database connection is available

126 if (!connectedToDatabase)

127 throw new IllegalStateException("Not Connected to Database");

128

129 // obtain a value at specified ResultSet row and column

130 try

131 {

132

133

134 } // end try

135 catch (SQLException sqlException)

136 {

137 sqlException.printStackTrace();

138 } // end catch

139

140 return ""; // if problems, return empty string object

141 } // end method getValueAt

142

143 // set new database query string

144 public void setQuery(String query)

145 throws SQLException, IllegalStateException

146 {

147 // ensure database connection is available

148 if (!connectedToDatabase)

149 throw new IllegalStateException("Not Connected to Database");

150

151 // specify query and execute it

152 resultSet = statement.executeQuery(query);

153

154 // obtain meta data for ResultSet

155 metaData = resultSet.getMetaData();

156

157 // determine number of rows in ResultSet

158 resultSet.last(); // move to last row

159 numberOfRows = resultSet.getRow(); // get row number

160

161

162

163 } // end method setQuery

Fig. 28.25 | A TableModel that supplies ResultSet data to a JTable. (Part 4 of 5.)

public int getRowCount()

public Object getValueAt(int row, int column)

resultSet.absolute(row + 1);

return resultSet.getObject(column + 1);

// notify JTable that model has changed

fireTableStructureChanged();

1198 Chapter 28 Accessing Databases with JDBC

ResultSetTableModel Constructor
The ResultSetTableModel constructor (lines 30–46) accepts four String arguments—
the URL of the database, the username, the password and the default query to perform.
The constructor throws any exceptions that occur in its body back to the application that
created the ResultSetTableModel object, so that the application can determine how to
handle the exception (e.g., report an error and terminate the application). Line 34 estab-
lishes a connection to the database. Lines 37–39 invoke Connectionmethod createState-

ment to create a Statement object. This example uses a version of method
createStatement that takes two arguments—the result set type and the result set concur-
rency. The result set type (Fig. 28.26) specifies whether the ResultSet’s cursor is able to
scroll in both directions or forward only and whether the ResultSet is sensitive to changes
made to the underlying data.

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187 } // end class ResultSetTableModel

ResultSet constant Description

TYPE_FORWARD_ONLY Specifies that a ResultSet’s cursor can move only in the forward
direction (i.e., from the first to the last row in the ResultSet).

TYPE_SCROLL_INSENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the underlying data during
ResultSet processing are not reflected in the ResultSet unless
the program queries the database again.

Fig. 28.26 | ResultSet constants for specifying ResultSet type. (Part 1 of 2.)

Fig. 28.25 | A TableModel that supplies ResultSet data to a JTable. (Part 5 of 5.)

// close Statement and Connection

public void disconnectFromDatabase()

{

if (connectedToDatabase)

{

// close Statement and Connection

try

{

resultSet.close();

statement.close();

connection.close();

} // end try

catch (SQLException sqlException)

{

sqlException.printStackTrace();

} // end catch

finally // update database connection status

{

connectedToDatabase = false;

} // end finally

} // end if

} // end method disconnectFromDatabase

28.8 Manipulating Databases with JDBC 1199

ResultSets that are sensitive to changes reflect those changes immediately after they’re
made with methods of interface ResultSet. If a ResultSet is insensitive to changes, the
query that produced the ResultSet must be executed again to reflect any changes made.
The result set concurrency (Fig. 28.27) specifies whether the ResultSet can be updated
with ResultSet’s update methods.

This example uses a ResultSet that is scrollable, insensitive to changes and read only.
Line 45 invokes our method setQuery (lines 144–163) to perform the default query.

TYPE_SCROLL_SENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the underlying data during Result-

Set processing are reflected immediately in the ResultSet.

Portability Tip 28.3
Some JDBC drivers do not support scrollable ResultSets. In such cases, the driver typi-
cally returns a ResultSet in which the cursor can move only forward. For more informa-
tion, see your database driver documentation.

Common Programming Error 28.11
Attempting to move the cursor backward through a ResultSet when the database driver
does not support backward scrolling causes a SQLFeatureNotSupportedException.

ResultSet static

concurrency constant Description

CONCUR_READ_ONLY Specifies that a ResultSet cannot be updated (i.e., changes to
the ResultSet contents cannot be reflected in the database with
ResultSet’s update methods).

CONCUR_UPDATABLE Specifies that a ResultSet can be updated (i.e., changes to its
contents can be reflected in the database with ResultSet’s
update methods).

Fig. 28.27 | ResultSet constants for specifying result properties.

Portability Tip 28.4
Some JDBC drivers do not support updatable ResultSets. In such cases, the driver typi-
cally returns a read-only ResultSet. For more information, see your database driver doc-
umentation.

Common Programming Error 28.12
Attempting to update a ResultSet when the database driver does not support updatable
ResultSets causes SQLFeatureNotSupportedExceptions.

ResultSet constant Description

Fig. 28.26 | ResultSet constants for specifying ResultSet type. (Part 2 of 2.)

1200 Chapter 28 Accessing Databases with JDBC

ResultSetTableModel Method getColumnClass

Method getColumnClass (lines 49–69) returns a Class object that represents the superclass
of all objects in a particular column. The JTable uses this information to configure the de-
fault cell renderer and cell editor for that column in the JTable. Line 58 uses ResultSet-
MetaData method getColumnClassName to obtain the fully qualified class name for the
specified column. Line 61 loads the class and returns the corresponding Class object. If an
exception occurs, the catch in lines 63–66 prints a stack trace and line 68 returns Ob-

ject.class—the Class instance that represents class Object—as the default type. [Note:
Line 58 uses the argument column + 1. Like arrays, JTable row and column numbers are
counted from 0. However, ResultSet row and column numbers are counted from 1. Thus,
when processing ResultSet rows or columns for use in a JTable, it’s necessary to add 1 to
the row or column number to manipulate the appropriate ResultSet row or column.]

ResultSetTableModel Method getColumnCount

Method getColumnCount (lines 72–89) returns the number of columns in the model’s un-
derlying ResultSet. Line 81 uses ResultSetMetaData method getColumnCount to obtain
the number of columns in the ResultSet. If an exception occurs, the catch in lines 83–
86 prints a stack trace and line 88 returns 0 as the default number of columns.

ResultSetTableModel Method getColumnName

Method getColumnName (lines 92–109) returns the name of the column in the model’s un-
derlying ResultSet. Line 101 uses ResultSetMetaData method getColumnName to obtain
the column name from the ResultSet. If an exception occurs, the catch in lines 103–106
prints a stack trace and line 108 returns the empty string as the default column name.

ResultSetTableModel Method getRowCount

Method getRowCount (lines 112–119) returns the number of rows in the model’s under-
lying ResultSet. When method setQuery (lines 144–163) performs a query, it stores the
number of rows in variable numberOfRows.

ResultSetTableModel Method getValueAt

Method getValueAt (lines 122–141) returns the Object in a particular row and column of
the model’s underlying ResultSet. Line 132 uses ResultSet method absolute to position
the ResultSet cursor at a specific row. Line 133 uses ResultSet method getObject to ob-
tain the Object in a specific column of the current row. If an exception occurs, the catch in
lines 135–138 prints a stack trace and line 140 returns an empty string as the default value.

ResultSetTableModel Method setQuery

Method setQuery (lines 144–163) executes the query it receives as an argument to obtain
a new ResultSet (line 152). Line 155 gets the ResultSetMetaData for the new Result-

Set. Line 158 uses ResultSet method last to position the ResultSet cursor at the last
row in the ResultSet. [Note: This can be slow if the table contains many rows.] Line 159
uses ResultSet method getRow to obtain the row number for the current row in the Re-

sultSet. Line 162 invokes method fireTableStructureChanged (inherited from class
AbstractTableModel) to notify any JTable using this ResultSetTableModel object as its
model that the structure of the model has changed. This causes the JTable to repopulate
its rows and columns with the new ResultSet data. Method setQuery throws any excep-
tions that occur in its body back to the application that invoked setQuery.

28.8 Manipulating Databases with JDBC 1201

ResultSetTableModel Method disconnectFromDatabase

Method disconnectFromDatabase (lines 166–186) implements an appropriate termina-
tion method for class ResultSetTableModel. A class designer should provide a public

method that clients of the class must invoke explicitly to free resources that an object has
used. In this case, method disconnectFromDatabase closes the ResultSet, Statement
and Connection (lines 173–175), which are considered limited resources. Clients of the
ResultSetTableModel class should always invoke this method when the instance of this
class is no longer needed. Before releasing resources, line 168 verifies whether the connec-
tion is already terminated. If not, the method proceeds. The other methods in class Re-
sultSetTableModel each throw an IllegalStateException if connectedToDatabase is
false. Method disconnectFromDatabase sets connectedToDatabase to false (line 183)
to ensure that clients do not use an instance of ResultSetTableModel after that instance
has already been terminated. IllegalStateException is an exception from the Java librar-
ies that is appropriate for indicating this error condition.

DisplayQueryResults Class
Class DisplayQueryResults (Fig. 28.28) implements the application’s GUI and interacts
with the ResultSetTableModel via a JTable object. This application also demonstrates
the JTable sorting and filtering capabilities.

1 // Fig. 28.28: DisplayQueryResults.java

2 // Display the contents of the Authors table in the books database.

3 import java.awt.BorderLayout;

4 import java.awt.event.ActionListener;

5 import java.awt.event.ActionEvent;

6 import java.awt.event.WindowAdapter;

7 import java.awt.event.WindowEvent;

8 import java.sql.SQLException;

9 import java.util.regex.PatternSyntaxException;

10 import javax.swing.JFrame;

11 import javax.swing.JTextArea;

12 import javax.swing.JScrollPane;

13 import javax.swing.ScrollPaneConstants;

14

15 import javax.swing.JOptionPane;

16 import javax.swing.JButton;

17 import javax.swing.Box;

18 import javax.swing.JLabel;

19 import javax.swing.JTextField;

20

21

22

23

24 public class DisplayQueryResults extends JFrame

25 {

26 // database URL, username and password

27 static final String DATABASE_URL = "jdbc:mysql://localhost/books";

28 static final String USERNAME = "deitel";

29 static final String PASSWORD = "deitel";

Fig. 28.28 | Displays contents of the database books. (Part 1 of 5.)

import javax.swing.JTable;

import javax.swing.RowFilter;

import javax.swing.table.TableRowSorter;

import javax.swing.table.TableModel;

1202 Chapter 28 Accessing Databases with JDBC

30

31 // default query retrieves all data from Authors table

32 static final String DEFAULT_QUERY = "SELECT * FROM Authors";

33

34

35 private JTextArea queryArea;

36

37 // create ResultSetTableModel and GUI

38 public DisplayQueryResults()

39 {

40 super("Displaying Query Results");

41

42 // create ResultSetTableModel and display database table

43 try

44 {

45

46

47

48

49 // set up JTextArea in which user types queries

50 queryArea = new JTextArea(DEFAULT_QUERY, 3, 100);

51 queryArea.setWrapStyleWord(true);

52 queryArea.setLineWrap(true);

53

54 JScrollPane scrollPane = new JScrollPane(queryArea,

55 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,

56 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

57

58 // set up JButton for submitting queries

59 JButton submitButton = new JButton("Submit Query");

60

61 // create Box to manage placement of queryArea and

62 // submitButton in GUI

63 Box boxNorth = Box.createHorizontalBox();

64 boxNorth.add(scrollPane);

65 boxNorth.add(submitButton);

66

67

68

69

70 JLabel filterLabel = new JLabel("Filter:");

71 final JTextField filterText = new JTextField();

72 JButton filterButton = new JButton("Apply Filter");

73 Box boxSouth = Box.createHorizontalBox();

74

75 boxSouth.add(filterLabel);

76 boxSouth.add(filterText);

77 boxSouth.add(filterButton);

78

79 // place GUI components on content pane

80 add(boxNorth, BorderLayout.NORTH);

81 add(new JScrollPane(resultTable), BorderLayout.CENTER);

82 add(boxSouth, BorderLayout.SOUTH);

Fig. 28.28 | Displays contents of the database books. (Part 2 of 5.)

private ResultSetTableModel tableModel;

// create TableModel for results of query SELECT * FROM Authors

tableModel = new ResultSetTableModel(DATABASE_URL,

USERNAME, PASSWORD, DEFAULT_QUERY);

// create JTable based on the tableModel

JTable resultTable = new JTable(tableModel);

28.8 Manipulating Databases with JDBC 1203

83

84 // create event listener for submitButton

85 submitButton.addActionListener(

86

87 new ActionListener()

88 {

89 // pass query to table model

90 public void actionPerformed(ActionEvent event)

91 {

92 // perform a new query

93 try

94 {

95

96 } // end try

97 catch (SQLException sqlException)

98 {

99 JOptionPane.showMessageDialog(null,

100 sqlException.getMessage(), "Database error",

101 JOptionPane.ERROR_MESSAGE);

102

103 // try to recover from invalid user query

104 // by executing default query

105 try

106 {

107

108 queryArea.setText(DEFAULT_QUERY);

109 } // end try

110 catch (SQLException sqlException2)

111 {

112 JOptionPane.showMessageDialog(null,

113 sqlException2.getMessage(), "Database error",

114 JOptionPane.ERROR_MESSAGE);

115

116

117

118

119 System.exit(1); // terminate application

120 } // end inner catch

121 } // end outer catch

122 } // end actionPerformed

123 } // end ActionListener inner class

124); // end call to addActionListener

125

126

127

128

129 setSize(500, 250); // set window size

130 setVisible(true); // display window

131

132 // create listener for filterButton

133 filterButton.addActionListener(

134 new ActionListener()

135 {

Fig. 28.28 | Displays contents of the database books. (Part 3 of 5.)

tableModel.setQuery(queryArea.getText());

tableModel.setQuery(DEFAULT_QUERY);

// ensure database connection is closed

tableModel.disconnectFromDatabase();

final TableRowSorter< TableModel > sorter =

new TableRowSorter< TableModel >(tableModel);

resultTable.setRowSorter(sorter);

1204 Chapter 28 Accessing Databases with JDBC

136 // pass filter text to listener

137 public void actionPerformed(ActionEvent e)

138 {

139 String text = filterText.getText();

140

141 if (text.length() == 0)

142

143 else

144 {

145 try

146 {

147

148

149 } // end try

150 catch (PatternSyntaxException pse)

151 {

152 JOptionPane.showMessageDialog(null,

153 "Bad regex pattern", "Bad regex pattern",

154 JOptionPane.ERROR_MESSAGE);

155 } // end catch

156 } // end else

157 } // end method actionPerfomed

158 } // end annonymous inner class

159); // end call to addActionLister

160 } // end try

161 catch (SQLException sqlException)

162 {

163 JOptionPane.showMessageDialog(null, sqlException.getMessage(),

164 "Database error", JOptionPane.ERROR_MESSAGE);

165

166

167

168

169 System.exit(1); // terminate application

170 } // end catch

171

172 // dispose of window when user quits application (this overrides

173 // the default of HIDE_ON_CLOSE)

174 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

175

176 // ensure database connection is closed when user quits application

177 addWindowListener(

178

179 new WindowAdapter()

180 {

181

182

183

184

185

186

187 } // end WindowAdapter inner class

Fig. 28.28 | Displays contents of the database books. (Part 4 of 5.)

sorter.setRowFilter(null);

sorter.setRowFilter(

RowFilter.regexFilter(text));

// ensure database connection is closed

tableModel.disconnectFromDatabase();

// disconnect from database and exit when window has closed

public void windowClosed(WindowEvent event)

{

tableModel.disconnectFromDatabase();

System.exit(0);

} // end method windowClosed

28.8 Manipulating Databases with JDBC 1205

Lines 27–29 and 32 declare the URL, username, password and default query that are
passed to the ResultSetTableModel constructor to make the initial connection to the

188); // end call to addWindowListener

189 } // end DisplayQueryResults constructor

190

191 // execute application

192 public static void main(String args[])

193 {

194 new DisplayQueryResults();

195 } // end main

196 } // end class DisplayQueryResults

Fig. 28.28 | Displays contents of the database books. (Part 5 of 5.)

a) Displaying all authors from
the Authors table

b) Displaying the the authors’
first and last names joined with
the titles and edition numbers
of the books they’ve authored

c) Filtering the results of the
previous query to show only the

books with Java in the title

1206 Chapter 28 Accessing Databases with JDBC

database and perform the default query. The DisplayQueryResults constructor (lines 38–
189) creates a ResultSetTableModel object and the GUI for the application. Line 68 cre-
ates the JTable object and passes a ResultSetTableModel object to the JTable con-
structor, which then registers the JTable as a listener for TableModelEvents generated by
the ResultSetTableModel.

The local variables filterText (line 71) and sorter (lines 126–127) are declared
final. These are both used from an event handler that is implemented as an anonymous
inner class (lines 134–158). Any local variable that will be used in an anonymous inner
class must be declared final; otherwise, a compilation error occurs.

Lines 85–124 register an event handler for the submitButton that the user clicks to
submit a query to the database. When the user clicks the button, method actionPer-

formed (lines 90–122) invokes method setQuery from the class ResultSetTableModel to
execute the new query (line 95). If the user’s query fails (e.g., because of a syntax error in
the user’s input), lines 107–108 execute the default query. If the default query also fails,
there could be a more serious error, so line 117 ensures that the database connection is
closed and line 119 exits the program. The screen captures in Fig. 28.28 show the results
of two queries. The first screen capture shows the default query that retrieves all the data
from table Authors of database books. The second screen capture shows a query that
selects each author’s first name and last name from the Authors table and combines that
information with the title and edition number from the Titles table. Try entering your
own queries in the text area and clicking the Submit Query button to execute the query.

Lines 177–188 register a WindowListener for the windowClosed event, which occurs
when the user closes the window. Since WindowListeners can handle several window
events, we extend class WindowAdapter and override only the windowClosed event handler.

Sorting Rows in a JTable

JTables allow users to sort rows by the data in a specific column. Lines 126–127 use the
TableRowSorter class (from package javax.swing.table) to create an object that uses our
ResultSetTableModel to sort rows in the JTable that displays query results. When the
user clicks the title of a particular JTable column, the TableRowSorter interacts with the
underlying TableModel to reorder the rows based on the data in that column. Line 128
uses JTable method setRowSorter to specify the TableRowSorter for resultTable.

Filtering Rows in a JTable

JTables can now show subsets of the data from the underlying TableModel. This is known
as filtering the data. Lines 133–159 register an event handler for the filterButton that
the user clicks to filter the data. In method actionPerformed (lines 137–157), line 139
obtains the filter text. If the user did not specify filter text, line 142 uses JTable method
setRowFilter to remove any prior filter by setting the filter to null. Otherwise, lines 147–
148 use setRowFilter to specify a RowFilter (from package javax.swing) based on the
user’s input. Class RowFilter provides several methods for creating filters. The static

method regexFilter receives a String containing a regular expression pattern as its argu-
ment and an optional set of indices that specify which columns to filter. If no indices are
specified, then all the columns are searched. In this example, the regular expression pattern
is the text the user typed. Once the filter is set, the data displayed in the JTable is updated
based on the filtered TableModel.

28.9 RowSet Interface 1207

28.9 RowSet Interface
In the preceding examples, you learned how to query a database by explicitly establishing
a Connection to the database, preparing a Statement for querying the database and exe-
cuting the query. In this section, we demonstrate the RowSet interface, which configures
the database connection and prepares query statements automatically. The interface Row-
Set provides several setmethods that allow you to specify the properties needed to establish
a connection (such as the database URL, user name and password of the database) and cre-
ate a Statement (such as a query). RowSet also provides several get methods that return
these properties.

Connected and Disconnected RowSets
There are two types of RowSet objects—connected and disconnected. A connected RowSet

object connects to the database once and remains connected while the object is in use. A
disconnected RowSet object connects to the database, executes a query to retrieve the data
from the database and then closes the connection. A program may change the data in a
disconnected RowSet while it’s disconnected. Modified data can be updated in the data-
base after a disconnected RowSet reestablishes the connection with the database.

Package javax.sql.rowset contains two subinterfaces of RowSet—JdbcRowSet and
CachedRowSet. JdbcRowSet, a connected RowSet, acts as a wrapper around a ResultSet

object and allows you to scroll through and update the rows in the ResultSet. Recall that
by default, a ResultSet object is nonscrollable and read only—you must explicitly set the
result set type constant to TYPE_SCROLL_INSENSITIVE and set the result set concurrency
constant to CONCUR_UPDATABLE to make a ResultSet object scrollable and updatable. A
JdbcRowSet object is scrollable and updatable by default. CachedRowSet, a disconnected
RowSet, caches the data of a ResultSet in memory and disconnects from the database.
Like JdbcRowSet, a CachedRowSet object is scrollable and updatable by default. A Cached-

RowSet object is also serializable, so it can be passed between Java applications through a
network, such as the Internet. However, CachedRowSet has a limitation—the amount of
data that can be stored in memory is limited. Package javax.sql.rowset contains three
other subinterfaces of RowSet.

Using a RowSet

Figure 28.29 reimplements the example of Fig. 28.23 using a RowSet. Rather than estab-
lish the connection and create a Statement explicitly, Fig. 28.29 uses a JdbcRowSet object
to create a Connection and a Statement automatically.

Portability Tip 28.5
A RowSet can provide scrolling capability for drivers that do not support scrollable Re-
sultSets.

1 // Fig. 28.29: JdbcRowSetTest.java

2 // Displaying the contents of the Authors table using JdbcRowSet.

3 import java.sql.ResultSetMetaData;

4 import java.sql.SQLException;

Fig. 28.29 | Displaying the Authors table using JdbcRowSet. (Part 1 of 3.)

1208 Chapter 28 Accessing Databases with JDBC

5

6

7

8 public class JdbcRowSetTest

9 {

10 // JDBC driver name and database URL

11 static final String DATABASE_URL = "jdbc:mysql://localhost/books";

12 static final String USERNAME = "deitel";

13 static final String PASSWORD = "deitel";

14

15 // constructor connects to database, queries database, processes

16 // results and displays results in window

17 public JdbcRowSetTest()

18 {

19 // connect to database books and query database

20 try

21 {

22

23

24

25

26

27

28

29

30 // process query results

31

32 int numberOfColumns = metaData.getColumnCount();

33 System.out.println("Authors Table of Books Database:\n");

34

35 // display rowset header

36 for (int i = 1; i <= numberOfColumns; i++)

37 System.out.printf("%-8s\t", metaData.getColumnName(i));

38 System.out.println();

39

40 // display each row

41 while ()

42 {

43 for (int i = 1; i <= numberOfColumns; i++)

44 System.out.printf("%-8s\t",);

45 System.out.println();

46 } // end while

47

48

49

50 } // end try

51 catch (SQLException sqlException)

52 {

53 sqlException.printStackTrace();

54 System.exit(1);

55 } // end catch

56 } // end DisplayAuthors constructor

57

Fig. 28.29 | Displaying the Authors table using JdbcRowSet. (Part 2 of 3.)

import javax.sql.rowset.JdbcRowSet;

import com.sun.rowset.JdbcRowSetImpl; // Sun's JdbcRowSet implementation

// specify properties of JdbcRowSet

JdbcRowSet rowSet = new JdbcRowSetImpl();

rowSet.setUrl(DATABASE_URL); // set database URL

rowSet.setUsername(USERNAME); // set username

rowSet.setPassword(PASSWORD); // set password

rowSet.setCommand("SELECT * FROM Authors"); // set query

rowSet.execute(); // execute query

ResultSetMetaData metaData = rowSet.getMetaData();

rowSet.next()

rowSet.getObject(i)

// close the underlying ResultSet, Statement and Connection

rowSet.close();

28.10 Java DB/Apache Derby 1209

The package com.sun.rowset provides Oracle’s reference implementations of the
interfaces in package javax.sql.rowset. Line 23 uses Sun’s reference implementation of
the JdbcRowSet interface—JdbcRowSetImpl—to create a JdbcRowSet object. We used
class JdbcRowSetImpl here to demonstrate the capability of the JdbcRowSet interface.
Other databases may provide their own RowSet implementations.

Lines 24–26 set the RowSet properties that the DriverManager uses to establish a data-
base connection. Line 24 invokes JdbcRowSet method setUrl to specify the database
URL. Line 25 invokes JdbcRowSet method setUsername to specify the username. Line 26
invokes JdbcRowSet method setPassword to specify the password. Line 27 invokes Jdbc-
RowSet method setCommand to specify the SQL query that will be used to populate the
RowSet. Line 28 invokes JdbcRowSet method execute to execute the SQL query. Method
execute performs four actions—it establishes a Connection to the database, prepares the
query Statement, executes the query and stores the ResultSet returned by query. The
Connection, Statement and ResultSet are encapsulated in the JdbcRowSet object.

The remaining code is almost identical to Fig. 28.23, except that line 31 obtains a
ResultSetMetaData object from the JdbcRowSet, line 41 uses the JdbcRowSet’s next

method to get the next row of the result and line 44 uses the JdbcRowSet’s getObject

method to obtain a column’s value. Line 49 invokes JdbcRowSet method close, which
closes the RowSet’s encapsulated ResultSet, Statement and Connection. In a Cached-

RowSet, invoking close also releases the resources held by that RowSet. The output of this
application is the same as that of Fig. 28.23.

28.10 Java DB/Apache Derby
In this section and Section 28.11, we use Oracle’s pure Java database Java DB. Please refer
to the Before You Begin section after the Preface for information on installing Java DB.
Section 28.11 uses the embedded version of Java DB. There’s also a network version that
executes similarly to the MySQL DBMS introduced earlier in the chapter.

Before you can execute the application in Section 28.11, you must set up the
AddressBook database in Java DB. For the purpose of the following steps, we assume

58 // launch the application

59 public static void main(String args[])

60 {

61 JdbcRowSetTest application = new JdbcRowSetTest();

62 } // end main

63 } // end class JdbcRowSetTest

Authors Table of Books Database:

AuthorID FirstName LastName
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Michael Morgano
5 Eric Kern

Fig. 28.29 | Displaying the Authors table using JdbcRowSet. (Part 3 of 3.)

1210 Chapter 28 Accessing Databases with JDBC

you’re running Microsoft Windows with Java installed in its default location. Mac OS X
and Linux will need to perform similar steps.

1. Java DB comes with several batch files to configure and run it. Before executing
these batch files from a command prompt, you must set the environment variable
JAVA_HOME to refer to the JDK’s installation directory—for example, C:\Program
Files\Java\jdk1.6.0_23. Be sure to use the exact installation directory of the
JDK on your computer.

2. Open the batch file setEmbeddedCP.bat (typically located in C:\Program Files\

Sun\JavaDB\bin) in a text editor such as Notepad. Locate the line

and change it to

Save your changes and close this file. [Note: You might need to run Notepad as
an Administrator to edit this file. To do so, open the Start menu and type Note-
pad in the Search programs and files field. Then, right click Notepad at the top of
the menu and select Run as administrator.]

3. Open a Command Prompt as an administrator (as you did for Notepad in the
previous step) and change directories to

Then, type setEmbeddedCP.bat and press Enter to set the environment variables
required by Java DB.

4. An embedded Java DB database must reside in the same location as the applica-
tion that manipulates the database. For this reason, change to the directory that
contains the code for Figs. 28.30–28.32. This directory contains a SQL script
address.sql that builds the AddressBook database.

5. Execute the command

to start the command-line tool for interacting with Java DB. The double quotes
are necessary because the path contains a space. This will display the ij> prompt.

6. At the ij> prompt type

and press Enter to create the AddressBook database in the current directory and
to create the user deitel with the password deitel for accessing the database.

7. To create the database table and insert sample data in it, we’ve provided the file
address.sql in this example’s directory. To execute this SQL script, type

8. To terminate the Java DB command-line tool, type

@rem set DERBY_INSTALL=

@set DERBY_INSTALL=C:\Program Files\Sun\JavaDB

C:\Program Files\Sun\JavaDB\bin

"C:\Program Files\Sun\JavaDB\bin\ij"

connect 'jdbc:derby:AddressBook;create=true;user=deitel;

password=deitel';

run 'address.sql';

exit;

28.11 PreparedStatements 1211

You’re now ready to execute the AddressBook application in Section 28.11. MySQL or
any other database that supports JDBC PreparedStatements could also be used.

28.11 PreparedStatements
A PreparedStatement enables you to create compiled SQL statements that execute more
efficiently than Statements. PreparedStatements can also specify parameters, making
them more flexible than Statements—you can execute the same query repeatedly with dif-
ferent parameter values. For example, in the books database, you might want to locate all
book titles for an author with a specific last and first name, and you might want to execute
that query for several authors. With a PreparedStatement, that query is defined as follows:

The two question marks (?) in the the preceding SQL statement’s last line are placeholders
for values that will be passed as part of the query to the database. Before executing a Pre-
paredStatement, the program must specify the parameter values by using the Prepared-

Statement interface’s set methods.
For the preceding query, both parameters are strings that can be set with Prepared-

Statement method setString as follows:

Method setString’s first argument represents the parameter number being set, and the
second argument is that parameter’s value. Parameter numbers are counted from 1, starting
with the first question mark (?). When the program executes the preceding Prepared-

Statement with the parameter values set above, the SQL passed to the database is

Method setString automatically escapes String parameter values as necessary. For exam-
ple, if the last name is O’Brien, the statement

escapes the ' character in O’Brien by replacing it with two single-quote characters, so that
the ' appears correctly in the database.

PreparedStatement authorBooks = connection.prepareStatement(

"SELECT LastName, FirstName, Title " +

"FROM Authors INNER JOIN AuthorISBN " +

"ON Authors.AuthorID=AuthorISBN.AuthorID " +

"INNER JOIN Titles " +

"ON AuthorISBN.ISBN=Titles.ISBN " +

"WHERE LastName = ? AND FirstName = ?");

authorBooks.setString(1, "Deitel");

authorBooks.setString(2, "Paul");

SELECT LastName, FirstName, Title

FROM Authors INNER JOIN AuthorISBN

ON Authors.AuthorID=AuthorISBN.AuthorID

INNER JOIN Titles

ON AuthorISBN.ISBN=Titles.ISBN

WHERE LastName = 'Deitel' AND FirstName = 'Paul'

authorBooks.setString(1, "O'Brien");

Performance Tip 28.2
PreparedStatements are more efficient than Statements when executing SQL statements
multiple times and with different parameter values.

1212 Chapter 28 Accessing Databases with JDBC

Interface PreparedStatement provides setmethods for each supported SQL type. It’s
important to use the set method that is appropriate for the parameter’s SQL type in the
database—SQLExceptions occur when a program attempts to convert a parameter value to
an incorrect type.

Address Book Application that Uses PreparedStatements
We now present an address book application that enables you to browse existing entries,
add new entries and search for entries with a specific last name. Our AddressBook Java DB
database contains an Addresses table with the columns addressID, FirstName, LastName,
Email and PhoneNumber. The column addressID is a so-called identity column. This is the
SQL standard way to represent an autoincremented column. The SQL script we provide for
this database uses the SQL IDENTITY keyword to mark the addressID column as an iden-
tity column. For more information on using the IDENTITY keyword and creating
databases, see the Java DB Developer’s Guide at download.oracle.com/javadb/

10.6.1.0/devguide/devguide-single.html.

Class Person
Our address book application consists of three classes—Person (Fig. 28.30), PersonQue-
ries (Fig. 28.31) and AddressBookDisplay (Fig. 28.32). Class Person is a simple class
that represents one person in the address book. The class contains fields for the address
ID, first name, last name, email address and phone number, as well as set and getmethods
for manipulating these fields.

Error-Prevention Tip 28.2
Use PreparedStatements with parameters for queries that receive String values as ar-
guments to ensure that the Strings are quoted properly in the SQL statement.

1 // Fig. 28.30: Person.java

2 // Person class that represents an entry in an address book.

3 public class Person

4 {

5 private int addressID;

6 private String firstName;

7 private String lastName;

8 private String email;

9 private String phoneNumber;

10

11 // no-argument constructor

12 public Person()

13 {

14 } // end no-argument Person constructor

15

16 // constructor

17 public Person(int id, String first, String last,

18 String emailAddress, String phone)

19 {

20 setAddressID(id);

21 setFirstName(first);

Fig. 28.30 | Person class that represents an entry in an AddressBook. (Part 1 of 3.)

28.11 PreparedStatements 1213

22 setLastName(last);

23 setEmail(emailAddress);

24 setPhoneNumber(phone);

25 } // end five-argument Person constructor

26

27 // sets the addressID

28 public void setAddressID(int id)

29 {

30 addressID = id;

31 } // end method setAddressID

32

33 // returns the addressID

34 public int getAddressID()

35 {

36 return addressID;

37 } // end method getAddressID

38

39 // sets the firstName

40 public void setFirstName(String first)

41 {

42 firstName = first;

43 } // end method setFirstName

44

45 // returns the first name

46 public String getFirstName()

47 {

48 return firstName;

49 } // end method getFirstName

50

51 // sets the lastName

52 public void setLastName(String last)

53 {

54 lastName = last;

55 } // end method setLastName

56

57 // returns the last name

58 public String getLastName()

59 {

60 return lastName;

61 } // end method getLastName

62

63 // sets the email address

64 public void setEmail(String emailAddress)

65 {

66 email = emailAddress;

67 } // end method setEmail

68

69 // returns the email address

70 public String getEmail()

71 {

72 return email;

73 } // end method getEmail

74

Fig. 28.30 | Person class that represents an entry in an AddressBook. (Part 2 of 3.)

1214 Chapter 28 Accessing Databases with JDBC

Class PersonQueries
Class PersonQueries (Fig. 28.31) manages the address book application’s database con-
nection and creates the PreparedStatements that the application uses to interact with the
database. Lines 18–20 declare three PreparedStatement variables. The constructor (lines
23–49) connects to the database at lines 27–28.

75 // sets the phone number

76 public void setPhoneNumber(String phone)

77 {

78 phoneNumber = phone;

79 } // end method setPhoneNumber

80

81 // returns the phone number

82 public String getPhoneNumber()

83 {

84 return phoneNumber;

85 } // end method getPhoneNumber

86 } // end class Person

1 // Fig. 28.31: PersonQueries.java

2 // PreparedStatements used by the Address Book application.

3 import java.sql.Connection;

4 import java.sql.DriverManager;

5

6 import java.sql.ResultSet;

7 import java.sql.SQLException;

8 import java.util.List;

9 import java.util.ArrayList;

10

11 public class PersonQueries

12 {

13 private static final String URL = "jdbc:derby:AddressBook";

14 private static final String USERNAME = "deitel";

15 private static final String PASSWORD = "deitel";

16

17 private Connection connection = null; // manages connection

18

19

20

21

22 // constructor

23 public PersonQueries()

24 {

25 try

26 {

27 connection =

28 DriverManager.getConnection(URL, USERNAME, PASSWORD);

29

Fig. 28.31 | PreparedStatements used by the Address Book application. (Part 1 of 4.)

Fig. 28.30 | Person class that represents an entry in an AddressBook. (Part 3 of 3.)

import java.sql.PreparedStatement;

private PreparedStatement selectAllPeople = null;

private PreparedStatement selectPeopleByLastName = null;

private PreparedStatement insertNewPerson = null;

28.11 PreparedStatements 1215

30

31

32

33

34

35

36

37

38

39

40

41

42

43 } // end try

44 catch (SQLException sqlException)

45 {

46 sqlException.printStackTrace();

47 System.exit(1);

48 } // end catch

49 } // end PersonQueries constructor

50

51 // select all of the addresses in the database

52 public List< Person > getAllPeople()

53 {

54 List< Person > results = null;

55 ResultSet resultSet = null;

56

57 try

58 {

59

60

61 results = new ArrayList< Person >();

62

63 while (resultSet.next())

64 {

65 results.add(new Person(

66 resultSet.getInt("addressID"),

67 resultSet.getString("FirstName"),

68 resultSet.getString("LastName"),

69 resultSet.getString("Email"),

70 resultSet.getString("PhoneNumber")));

71 } // end while

72 } // end try

73 catch (SQLException sqlException)

74 {

75 sqlException.printStackTrace();

76 } // end catch

77 finally

78 {

79 try

80 {

81 resultSet.close();

82 } // end try

Fig. 28.31 | PreparedStatements used by the Address Book application. (Part 2 of 4.)

// create query that selects all entries in the AddressBook

selectAllPeople =

connection.prepareStatement("SELECT * FROM Addresses");

// create query that selects entries with a specific last name

selectPeopleByLastName = connection.prepareStatement(

"SELECT * FROM Addresses WHERE LastName = ?");

// create insert that adds a new entry into the database

insertNewPerson = connection.prepareStatement(

"INSERT INTO Addresses " +

"(FirstName, LastName, Email, PhoneNumber) " +

"VALUES (?, ?, ?, ?)");

// executeQuery returns ResultSet containing matching entries

resultSet = selectAllPeople.executeQuery();

1216 Chapter 28 Accessing Databases with JDBC

83 catch (SQLException sqlException)

84 {

85 sqlException.printStackTrace();

86 close();

87 } // end catch

88 } // end finally

89

90 return results;

91 } // end method getAllPeople

92

93 // select person by last name

94 public List< Person > getPeopleByLastName(String name)

95 {

96 List< Person > results = null;

97 ResultSet resultSet = null;

98

99 try

100 {

101

102

103

104

105

106 results = new ArrayList< Person >();

107

108 while (resultSet.next())

109 {

110 results.add(new Person(resultSet.getInt("addressID"),

111 resultSet.getString("FirstName"),

112 resultSet.getString("LastName"),

113 resultSet.getString("Email"),

114 resultSet.getString("PhoneNumber")));

115 } // end while

116 } // end try

117 catch (SQLException sqlException)

118 {

119 sqlException.printStackTrace();

120 } // end catch

121 finally

122 {

123 try

124 {

125 resultSet.close();

126 } // end try

127 catch (SQLException sqlException)

128 {

129 sqlException.printStackTrace();

130 close();

131 } // end catch

132 } // end finally

133

134 return results;

135 } // end method getPeopleByName

Fig. 28.31 | PreparedStatements used by the Address Book application. (Part 3 of 4.)

selectPeopleByLastName.setString(1, name); // specify last name

// executeQuery returns ResultSet containing matching entries

resultSet = selectPeopleByLastName.executeQuery();

28.11 PreparedStatements 1217

Creating PreparedStatements
Lines 31–32 invoke Connection method prepareStatement to create the Prepared-

Statement named selectAllPeople that selects all the rows in the Addresses table. Lines
35–36 create the PreparedStatement named selectPeopleByLastName with a parameter.
This statement selects all the rows in the Addresses table that match a particular last
name. Notice the ? character that’s used to specify the last-name parameter. Lines 39–42
create the PreparedStatement named insertNewPerson with four parameters that repre-
sent the first name, last name, email address and phone number for a new entry. Again,
notice the ? characters used to represent these parameters.

136

137 // add an entry

138 public int addPerson(

139 String fname, String lname, String email, String num)

140 {

141 int result = 0;

142

143 // set parameters, then execute insertNewPerson

144 try

145 {

146

147

148

149

150

151

152

153 } // end try

154 catch (SQLException sqlException)

155 {

156 sqlException.printStackTrace();

157 close();

158 } // end catch

159

160 return result;

161 } // end method addPerson

162

163 // close the database connection

164 public void close()

165 {

166 try

167 {

168 connection.close();

169 } // end try

170 catch (SQLException sqlException)

171 {

172 sqlException.printStackTrace();

173 } // end catch

174 } // end method close

175 } // end class PersonQueries

Fig. 28.31 | PreparedStatements used by the Address Book application. (Part 4 of 4.)

insertNewPerson.setString(1, fname);

insertNewPerson.setString(2, lname);

insertNewPerson.setString(3, email);

insertNewPerson.setString(4, num);

// insert the new entry; returns # of rows updated

result = insertNewPerson.executeUpdate();

1218 Chapter 28 Accessing Databases with JDBC

PersonQueries Method getAllPeople

Method getAllPeople (lines 52–91) executes PreparedStatement selectAllPeople

(line 60) by calling method executeQuery, which returns a ResultSet containing the rows
that match the query (in this case, all the rows in the Addresses table). Lines 61–71 place
the query results in an ArrayList of Person objects, which is returned to the caller at line
90. Method getPeopleByLastName (lines 94–135) uses PreparedStatement method set-

String to set the parameter to selectPeopleByLastName (line 101). Then, line 104 exe-
cutes the query and lines 106–115 place the query results in an ArrayList of Person

objects. Line 134 returns the ArrayList to the caller.

PersonQueries Methods addPerson and Close

Method addPerson (lines 138–161) uses PreparedStatement method setString (lines
146–149) to set the parameters for the insertNewPerson PreparedStatement. Line 152
uses PreparedStatement method executeUpdate to insert the new record. This method
returns an integer indicating the number of rows that were updated (or inserted) in the
database. Method close (lines 164–174) simply closes the database connection.

Class AddressBookDisplay
The AddressBookDisplay (Fig. 28.32) application uses a PersonQueries object to inter-
act with the database. Line 59 creates the PersonQueries object. When the user presses
the Browse All Entries JButton, the browseButtonActionPerformed handler (lines 309–
335) is called. Line 313 calls the method getAllPeople on the PersonQueries object to
obtain all the entries in the database. The user can then scroll through the entries using the
Previous and Next JButtons. When the user presses the Find JButton, the queryButtonAc-
tionPerformed handler (lines 265–287) is called. Lines 267–268 call method getPeo-

pleByLastName on the PersonQueries object to obtain the entries in the database that
match the specified last name. If there are several such entries, the user can then scroll
through them using the Previous and Next JButtons.

1 // Fig. 28.32: AddressBookDisplay.java

2 // A simple address book

3 import java.awt.event.ActionEvent;

4 import java.awt.event.ActionListener;

5 import java.awt.event.WindowAdapter;

6 import java.awt.event.WindowEvent;

7 import java.awt.FlowLayout;

8 import java.awt.GridLayout;

9 import java.util.List;

10 import javax.swing.JButton;

11 import javax.swing.Box;

12 import javax.swing.JFrame;

13 import javax.swing.JLabel;

14 import javax.swing.JPanel;

15 import javax.swing.JTextField;

16 import javax.swing.WindowConstants;

17 import javax.swing.BoxLayout;

18 import javax.swing.BorderFactory;

19 import javax.swing.JOptionPane;

Fig. 28.32 | A simple address book. (Part 1 of 9.)

28.11 PreparedStatements 1219

20

21 public class AddressBookDisplay extends JFrame

22 {

23 private Person currentEntry;

24

25 private List< Person > results;

26 private int numberOfEntries = 0;

27 private int currentEntryIndex;

28

29 private JButton browseButton;

30 private JLabel emailLabel;

31 private JTextField emailTextField;

32 private JLabel firstNameLabel;

33 private JTextField firstNameTextField;

34 private JLabel idLabel;

35 private JTextField idTextField;

36 private JTextField indexTextField;

37 private JLabel lastNameLabel;

38 private JTextField lastNameTextField;

39 private JTextField maxTextField;

40 private JButton nextButton;

41 private JLabel ofLabel;

42 private JLabel phoneLabel;

43 private JTextField phoneTextField;

44 private JButton previousButton;

45 private JButton queryButton;

46 private JLabel queryLabel;

47 private JPanel queryPanel;

48 private JPanel navigatePanel;

49 private JPanel displayPanel;

50 private JTextField queryTextField;

51 private JButton insertButton;

52

53 // no-argument constructor

54 public AddressBookDisplay()

55 {

56 super("Address Book");

57

58

59

60

61 // create GUI

62 navigatePanel = new JPanel();

63 previousButton = new JButton();

64 indexTextField = new JTextField(2);

65 ofLabel = new JLabel();

66 maxTextField = new JTextField(2);

67 nextButton = new JButton();

68 displayPanel = new JPanel();

69 idLabel = new JLabel();

70 idTextField = new JTextField(10);

71 firstNameLabel = new JLabel();

72 firstNameTextField = new JTextField(10);

Fig. 28.32 | A simple address book. (Part 2 of 9.)

private PersonQueries personQueries;

// establish database connection and set up PreparedStatements

personQueries = new PersonQueries();

1220 Chapter 28 Accessing Databases with JDBC

73 lastNameLabel = new JLabel();

74 lastNameTextField = new JTextField(10);

75 emailLabel = new JLabel();

76 emailTextField = new JTextField(10);

77 phoneLabel = new JLabel();

78 phoneTextField = new JTextField(10);

79 queryPanel = new JPanel();

80 queryLabel = new JLabel();

81 queryTextField = new JTextField(10);

82 queryButton = new JButton();

83 browseButton = new JButton();

84 insertButton = new JButton();

85

86 setLayout(new FlowLayout(FlowLayout.CENTER, 10, 10));

87 setSize(400, 300);

88 setResizable(false);

89

90 navigatePanel.setLayout(

91 new BoxLayout(navigatePanel, BoxLayout.X_AXIS));

92

93 previousButton.setText("Previous");

94 previousButton.setEnabled(false);

95 previousButton.addActionListener(

96 new ActionListener()

97 {

98 public void actionPerformed(ActionEvent evt)

99 {

100 previousButtonActionPerformed(evt);

101 } // end method actionPerformed

102 } // end anonymous inner class

103); // end call to addActionListener

104

105 navigatePanel.add(previousButton);

106 navigatePanel.add(Box.createHorizontalStrut(10));

107

108 indexTextField.setHorizontalAlignment(

109 JTextField.CENTER);

110 indexTextField.addActionListener(

111 new ActionListener()

112 {

113 public void actionPerformed(ActionEvent evt)

114 {

115 indexTextFieldActionPerformed(evt);

116 } // end method actionPerformed

117 } // end anonymous inner class

118); // end call to addActionListener

119

120 navigatePanel.add(indexTextField);

121 navigatePanel.add(Box.createHorizontalStrut(10));

122

123 ofLabel.setText("of");

124 navigatePanel.add(ofLabel);

125 navigatePanel.add(Box.createHorizontalStrut(10));

Fig. 28.32 | A simple address book. (Part 3 of 9.)

28.11 PreparedStatements 1221

126

127 maxTextField.setHorizontalAlignment(

128 JTextField.CENTER);

129 maxTextField.setEditable(false);

130 navigatePanel.add(maxTextField);

131 navigatePanel.add(Box.createHorizontalStrut(10));

132

133 nextButton.setText("Next");

134 nextButton.setEnabled(false);

135 nextButton.addActionListener(

136 new ActionListener()

137 {

138 public void actionPerformed(ActionEvent evt)

139 {

140 nextButtonActionPerformed(evt);

141 } // end method actionPerformed

142 } // end anonymous inner class

143); // end call to addActionListener

144

145 navigatePanel.add(nextButton);

146 add(navigatePanel);

147

148 displayPanel.setLayout(new GridLayout(5, 2, 4, 4));

149

150 idLabel.setText("Address ID:");

151 displayPanel.add(idLabel);

152

153 idTextField.setEditable(false);

154 displayPanel.add(idTextField);

155

156 firstNameLabel.setText("First Name:");

157 displayPanel.add(firstNameLabel);

158 displayPanel.add(firstNameTextField);

159

160 lastNameLabel.setText("Last Name:");

161 displayPanel.add(lastNameLabel);

162 displayPanel.add(lastNameTextField);

163

164 emailLabel.setText("Email:");

165 displayPanel.add(emailLabel);

166 displayPanel.add(emailTextField);

167

168 phoneLabel.setText("Phone Number:");

169 displayPanel.add(phoneLabel);

170 displayPanel.add(phoneTextField);

171 add(displayPanel);

172

173 queryPanel.setLayout(

174 new BoxLayout(queryPanel, BoxLayout.X_AXIS));

175

176 queryPanel.setBorder(BorderFactory.createTitledBorder(

177 "Find an entry by last name"));

178 queryLabel.setText("Last Name:");

Fig. 28.32 | A simple address book. (Part 4 of 9.)

1222 Chapter 28 Accessing Databases with JDBC

179 queryPanel.add(Box.createHorizontalStrut(5));

180 queryPanel.add(queryLabel);

181 queryPanel.add(Box.createHorizontalStrut(10));

182 queryPanel.add(queryTextField);

183 queryPanel.add(Box.createHorizontalStrut(10));

184

185 queryButton.setText("Find");

186 queryButton.addActionListener(

187 new ActionListener()

188 {

189 public void actionPerformed(ActionEvent evt)

190 {

191 queryButtonActionPerformed(evt);

192 } // end method actionPerformed

193 } // end anonymous inner class

194); // end call to addActionListener

195

196 queryPanel.add(queryButton);

197 queryPanel.add(Box.createHorizontalStrut(5));

198 add(queryPanel);

199

200 browseButton.setText("Browse All Entries");

201 browseButton.addActionListener(

202 new ActionListener()

203 {

204 public void actionPerformed(ActionEvent evt)

205 {

206 browseButtonActionPerformed(evt);

207 } // end method actionPerformed

208 } // end anonymous inner class

209); // end call to addActionListener

210

211 add(browseButton);

212

213 insertButton.setText("Insert New Entry");

214 insertButton.addActionListener(

215 new ActionListener()

216 {

217 public void actionPerformed(ActionEvent evt)

218 {

219 insertButtonActionPerformed(evt);

220 } // end method actionPerformed

221 } // end anonymous inner class

222); // end call to addActionListener

223

224 add(insertButton);

225

226 addWindowListener(

227 new WindowAdapter()

228 {

229 public void windowClosing(WindowEvent evt)

230 {

231 personQueries.close(); // close database connection

Fig. 28.32 | A simple address book. (Part 5 of 9.)

28.11 PreparedStatements 1223

232 System.exit(0);

233 } // end method windowClosing

234 } // end anonymous inner class

235); // end call to addWindowListener

236

237 setVisible(true);

238 } // end no-argument constructor

239

240 // handles call when previousButton is clicked

241 private void previousButtonActionPerformed(ActionEvent evt)

242 {

243 currentEntryIndex--;

244

245 if (currentEntryIndex < 0)

246 currentEntryIndex = numberOfEntries - 1;

247

248 indexTextField.setText("" + (currentEntryIndex + 1));

249 indexTextFieldActionPerformed(evt);

250 } // end method previousButtonActionPerformed

251

252 // handles call when nextButton is clicked

253 private void nextButtonActionPerformed(ActionEvent evt)

254 {

255 currentEntryIndex++;

256

257 if (currentEntryIndex >= numberOfEntries)

258 currentEntryIndex = 0;

259

260 indexTextField.setText("" + (currentEntryIndex + 1));

261 indexTextFieldActionPerformed(evt);

262 } // end method nextButtonActionPerformed

263

264 // handles call when queryButton is clicked

265 private void queryButtonActionPerformed(ActionEvent evt)

266 {

267

268

269 numberOfEntries = results.size();

270

271 if (numberOfEntries != 0)

272 {

273 currentEntryIndex = 0;

274 currentEntry = results.get(currentEntryIndex);

275 idTextField.setText("" + currentEntry.getAddressID());

276 firstNameTextField.setText(currentEntry.getFirstName());

277 lastNameTextField.setText(currentEntry.getLastName());

278 emailTextField.setText(currentEntry.getEmail());

279 phoneTextField.setText(currentEntry.getPhoneNumber());

280 maxTextField.setText("" + numberOfEntries);

281 indexTextField.setText("" + (currentEntryIndex + 1));

282 nextButton.setEnabled(true);

283 previousButton.setEnabled(true);

284 } // end if

Fig. 28.32 | A simple address book. (Part 6 of 9.)

results =

personQueries.getPeopleByLastName(queryTextField.getText());

1224 Chapter 28 Accessing Databases with JDBC

285 else

286 browseButtonActionPerformed(evt);

287 } // end method queryButtonActionPerformed

288

289 // handles call when a new value is entered in indexTextField

290 private void indexTextFieldActionPerformed(ActionEvent evt)

291 {

292 currentEntryIndex =

293 (Integer.parseInt(indexTextField.getText()) - 1);

294

295 if (numberOfEntries != 0 && currentEntryIndex < numberOfEntries)

296 {

297 currentEntry = results.get(currentEntryIndex);

298 idTextField.setText("" + currentEntry.getAddressID());

299 firstNameTextField.setText(currentEntry.getFirstName());

300 lastNameTextField.setText(currentEntry.getLastName());

301 emailTextField.setText(currentEntry.getEmail());

302 phoneTextField.setText(currentEntry.getPhoneNumber());

303 maxTextField.setText("" + numberOfEntries);

304 indexTextField.setText("" + (currentEntryIndex + 1));

305 } // end if

306 } // end method indexTextFieldActionPerformed

307

308 // handles call when browseButton is clicked

309 private void browseButtonActionPerformed(ActionEvent evt)

310 {

311 try

312 {

313

314 numberOfEntries = results.size();

315

316 if (numberOfEntries != 0)

317 {

318 currentEntryIndex = 0;

319 currentEntry = results.get(currentEntryIndex);

320 idTextField.setText("" + currentEntry.getAddressID());

321 firstNameTextField.setText(currentEntry.getFirstName());

322 lastNameTextField.setText(currentEntry.getLastName());

323 emailTextField.setText(currentEntry.getEmail());

324 phoneTextField.setText(currentEntry.getPhoneNumber());

325 maxTextField.setText("" + numberOfEntries);

326 indexTextField.setText("" + (currentEntryIndex + 1));

327 nextButton.setEnabled(true);

328 previousButton.setEnabled(true);

329 } // end if

330 } // end try

331 catch (Exception e)

332 {

333 e.printStackTrace();

334 } // end catch

335 } // end method browseButtonActionPerformed

336

Fig. 28.32 | A simple address book. (Part 7 of 9.)

results = personQueries.getAllPeople();

28.11 PreparedStatements 1225

337 // handles call when insertButton is clicked

338 private void insertButtonActionPerformed(ActionEvent evt)

339 {

340

341

342

343

344 if (result == 1)

345 JOptionPane.showMessageDialog(this, "Person added!",

346 "Person added", JOptionPane.PLAIN_MESSAGE);

347 else

348 JOptionPane.showMessageDialog(this, "Person not added!",

349 "Error", JOptionPane.PLAIN_MESSAGE);

350

351 browseButtonActionPerformed(evt);

352 } // end method insertButtonActionPerformed

353

354 // main method

355 public static void main(String args[])

356 {

357 new AddressBookDisplay();

358 } // end method main

359 } // end class AddressBookDisplay

Fig. 28.32 | A simple address book. (Part 8 of 9.)

int result = personQueries.addPerson(firstNameTextField.getText(),

lastNameTextField.getText(), emailTextField.getText(),

phoneTextField.getText());

a) Initial Address Book screen. b) Results of clicking Browse All Entries.

c) Browsing to the next entry. d) Finding entries with the last name Green.

1226 Chapter 28 Accessing Databases with JDBC

To add a new entry into the AddressBook database, the user can enter the first name,
last name, email and phone number (the AddressID will autoincrement) in the JText-

Fields and press the Insert New Entry JButton. The insertButtonActionPerformed han-
dler (lines 338–352) is called. Lines 340–342 call the method addPerson on the
PersonQueries object to add a new entry to the database. Line 351 calls browseButtonAc-
tionPerformed to obtain the updated set of people in the address book and update the
GUI accordingly.

The user can then view different entries by pressing the Previous JButton or Next
JButton, which results in calls to methods previousButtonActionPerformed (lines 241–
250) or nextButtonActionPerformed (lines 253–262), respectively. Alternatively, the
user can enter a number in the indexTextField and press Enter to view a particular entry.
This results in a call to method indexTextFieldActionPerformed (lines 290–306) to dis-
play the specified record.

28.12 Stored Procedures
Many database management systems can store individual or sets of SQL statements in a
database, so that programs accessing that database can invoke them. Such named collec-
tions of SQL statements are called stored procedures. JDBC enables programs to invoke
stored procedures using objects that implement the interface CallableStatement.
CallableStatements can receive arguments specified with the methods inherited from in-
terface PreparedStatement. In addition, CallableStatements can specify output param-
eters in which a stored procedure can place return values. Interface CallableStatement

includes methods to specify which parameters in a stored procedure are output parameters.
The interface also includes methods to obtain the values of output parameters returned
from a stored procedure.

Portability Tip 28.6
Although the syntax for creating stored procedures differs across database management sys-
tems, the interface CallableStatement provides a uniform interface for specifying input
and output parameters for stored procedures and for invoking stored procedures.

Fig. 28.32 | A simple address book. (Part 9 of 9.)

e) After adding a new entry and browsing to it.

28.13 Transaction Processing 1227

28.13 Transaction Processing
Many database applications require guarantees that a series of database insertions, updates
and deletions executes properly before the application continues processing the next data-
base operation. For example, when you transfer money electronically between bank ac-
counts, several factors determine if the transaction is successful. You begin by specifying
the source account and the amount you wish to transfer from that account to a destination
account. Next, you specify the destination account. The bank checks the source account
to determine whether its funds are sufficient to complete the transfer. If so, the bank with-
draws the specified amount and, if all goes well, deposits it into the destination account to
complete the transfer. What happens if the transfer fails after the bank withdraws the mon-
ey from the source account? In a proper banking system, the bank redeposits the money
in the source account. How would you feel if the money was subtracted from your source
account and the bank did not deposit the money in the destination account?

Transaction processing enables a program that interacts with a database to treat a
database operation (or set of operations) as a single operation. Such an operation also is known
as an atomic operation or a transaction. At the end of a transaction, a decision can be
made either to commit the transaction or roll back the transaction. Committing the
transaction finalizes the database operation(s); all insertions, updates and deletions per-
formed as part of the transaction cannot be reversed without performing a new database
operation. Rolling back the transaction leaves the database in its state prior to the database
operation. This is useful when a portion of a transaction fails to complete properly. In our
bank-account-transfer discussion, the transaction would be rolled back if the deposit could
not be made into the destination account.

Java provides transaction processing via methods of interface Connection. Method
setAutoCommit specifies whether each SQL statement commits after it completes (a true
argument) or whether several SQL statements should be grouped as a transaction (a false
argument). If the argument to setAutoCommit is false, the program must follow the last
SQL statement in the transaction with a call to Connection method commit (to commit
the changes to the database) or Connection method rollback (to return the database to
its state prior to the transaction). Interface Connection also provides method getAuto-

Commit to determine the autocommit state for the Connection.

28.14 Wrap-Up
In this chapter, you learned basic database concepts, how to query and manipulate data in
a database using SQL and how to use JDBC to allow Java applications to interact with
MySQL and Java DB databases. You learned about the SQL commands SELECT, INSERT,
UPDATE and DELETE, as well as clauses such as WHERE, ORDER BY and INNER JOIN. You learned
the steps for obtaining a Connection to the database, creating a Statement to interact with
the database’s data, executing the statement and processing the results. Then you used a

Portability Tip 28.7
According to the Java API documentation for interface CallableStatement, for maxi-
mum portability between database systems, programs should process the update counts
(which indicate how many rows were updated) or ResultSets returned from a Call-

ableStatement before obtaining the values of any output parameters.

1228 Chapter 28 Accessing Databases with JDBC

RowSet to simplify the process of connecting to a database and creating statements. You
used PreparedStatements to create precompiled SQL statements. You also learned how
to create and configure databases in both MySQL and Java DB by using predefined SQL
scripts. We also provided overviews of CallableStatements and transaction processing.
In the next chapter, you’ll learn about web application development with JavaServer Faces.

28.15 Web Resources
www.oracle.com/technetwork/java/javadb/overview/index.html

Oracle Java DB home page.

db.apache.org/derby/papers/DerbyTut/index.html

Apache Derby tutorial. Includes Linux installation instructions.

download.oracle.com/javase/tutorial/jdbc/index.html

The Java Tutorial’s JDBC track.

www.sql.org

This SQL portal provides links to many resources, including SQL syntax, tips, tutorials, books,
magazines, discussion groups, companies with SQL services, SQL consultants and free software.

download.oracle.com/javase/6/docs/technotes/guides/jdbc/index.html

Oracle JDBC API documentation.

www.mysql.com

This site is the MySQL database home page. You can download the latest versions of MySQL and
MySQL Connector/J and access their online documentation.

dev.mysql.com/doc/refman/5.5/en/index.html

MySQL reference manual.

download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/rowsetImpl.html

Overviews the RowSet interface and its subinterfaces. This site also discusses the reference imple-
mentations of these interfaces from Sun and their usage.

Summary

Section 28.1 Introduction
• A database (p. 1172) is an integrated collection of data. A database management system (DBMS;
p. 1172) provides mechanisms for storing, organizing, retrieving and modifying data.

• Today’s most popular database management systems are relational database (p. 1173) systems.

• SQL (p. 1172) is the international standard language used to query (p. 1172) and manipulate
relational data.

• Programs connect to, and interact with, relational databases via an interface—software that fa-
cilitates communications between a database management system and a program.

• A JDBC driver (p. 1172) enables Java applications to connect to a database in a particular DBMS
and allows you to retrieve and manipulate database data.

Section 28.2 Relational Databases
• A relational database (p. 1173) stores data in tables (p. 1173). Tables are composed of rows
(p. 1173), and rows are composed of columns in which values are stored.

• A table’s primary key (p. 1173) provides a unique value that cannot be duplicated among rows.

• Each column (p. 1173) of a table represents a different attribute.

Summary 1229

• The primary key can be composed of more than one column.

• Every column in a primary key must have a value, and the value of the primary key must be
unique. This is known as the Rule of Entity Integrity (p. 1177).

• A one-to-many relationship (p. 1177) between tables indicates that a row in one table can have
many related rows in a separate table.

• A foreign key (p. 1175) is a column in a table that must match the primary-key column in an-
other table. This is known as the Rule of Referential Integrity (p. 1175).

• Foreign keys enable information from multiple tables to be joined together. There’s a one-to-
many relationship between a primary key and its corresponding foreign key.

Section 28.4.1 Basic SELECT Query
• The basic form of a query (p. 1172) is

* FROM tableName

where the asterisk (*; p. 1178) indicates that all columns from tableName should be selected,
and tableName specifies the table in the database from which rows will be retrieved.

• To retrieve specific columns, replace the * with a comma-separated list of column names.

Section 28.4.2 WHERE Clause
• The optional WHERE clause (p. 1179) in a query specifies the selection criteria for the query. The
basic form of a query with selection criteria (p. 1178) is

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

• The WHERE clause can contain operators <, >, <=, >=, =, <> and LIKE. LIKE (p. 1179) is used for
string pattern matching (p. 1179) with wildcard characters percent (%) and underscore (_).

• A percent character (%; p. 1179) in a pattern indicates that a string matching the pattern can
have zero or more characters at the percent character’s location in the pattern.

• An underscore (_ ; p. 1179) in the pattern string indicates a single character at that position in
the pattern.

Section 28.4.3 ORDER BY Clause
• A query’s result can be sorted with the ORDER BY clause (p. 1181). The simplest form of an ORDER

BY clause is

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC

SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

where ASC specifies ascending order, DESC specifies descending order and column specifies the col-
umn on which the sort is based. The default sorting order is ascending, so ASC is optional.

• Multiple columns can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY column1 sortingOrder, column2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query. If used, ORDER BY must be the
last clause in the query.

Section 28.4.4 Merging Data from Multiple Tables: INNER JOIN

• An INNER JOIN (p. 1183) merges rows from two tables by matching values in columns that are
common to the tables. The basic form for the INNER JOIN operator is:

SELECT columnName1, columnName2, …

FROM table1
INNER JOIN table2

ON table1.columnName = table2.columnName

1230 Chapter 28 Accessing Databases with JDBC

The ON clause (p. 1183) specifies the columns from each table that are compared to determine
which rows are joined. If a SQL statement uses columns with the same name from multiple ta-
bles, the column names must be fully qualified (p. 1183) by prefixing them with their table
names and a dot (.).

Section 28.4.5 INSERT Statement
• An INSERT statement (p. 1184) inserts a new row into a table. The basic form of this statement is

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)

VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the row. The tableName is followed by a comma-
separated list of column names in parentheses. The list of column names is followed by the SQL
keyword VALUES (p. 1184) and a comma-separated list of values in parentheses.

• SQL uses single quotes (') to delimit strings. To specify a string containing a single quote in
SQL, escape the single quote with another single quote (i.e., '').

Section 28.4.6 UPDATE Statement
• An UPDATE statement (p. 1185) modifies data in a table. The basic form of an UPDATE statement is

UPDATE tableName
SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
WHERE criteria

where tableName is the table to update. Keyword SET (p. 1185) is followed by a comma-separated
list of columnName = value pairs. The optional WHERE clause determines which rows to update.

Section 28.4.7 DELETE Statement
• A DELETE statement (p. 1186) removes rows from a table. The simplest form for a DELETE state-
ment is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a row (or rows). The optional WHERE criteria
determines which rows to delete. If this clause is omitted, all the table’s rows are deleted.

Section 28.8.1 Connecting to and Querying a Database
• Package java.sql contains classes and interfaces for accessing relational databases in Java.

• A Connection object (p. 1191) manages the connection between a Java program and a database.
Connection objects enable programs to create SQL statements that access data.

• DriverManager (p. 1191) method getConnection (p. 1191) attempts to connect to a database at
a URL that specifies the protocol for communication, the subprotocol (p. 1191) for communi-
cation and the database name.

• Connectionmethod createStatement (p. 1192) creates a Statement object (p. 1192), which can
be used to submit SQL statements to the database.

• Statement method executeQuery (p. 1192) executes a query and returns a ResultSet object
(p. 1192). ResultSet methods enable a program to manipulate query results.

• A ResultSetMetaData object (p. 1192) describes a ResultSet’s contents. Programs can use meta-
data programmatically to obtain information about the ResultSet column names and types.

• ResultSetMetaData method getColumnCount (p. 1192) retrieves the number of ResultSet col-
umns.

• ResultSet method next (p. 1193) positions the ResultSet cursor to the next row and returns
true if the row exists; otherwise, it returns false. This method must be called to begin processing
a ResultSet because the cursor is intially positioned before the first row.

Summary 1231

• It’s possible to extract each ResultSet column as a specific Java type. ResultSetMetaDatamethod
getColumnType (p. 1193) returns a Types (p. 1193) constant (package java.sql) indicating the
column’s type.

• ResultSet getmethods typically receive as an argument either a column number (as an int) or a
column name (as a String) indicating which column’s value to obtain.

• ResultSet row and column numbers start at 1.

• Each Statement object can open only one ResultSet at a time. When a Statement returns a new
ResultSet, the Statement closes the prior ResultSet.

• Connectionmethod createStatement has an overloaded version that receives the result type and
concurrency. The result type specifies whether the ResultSet’s cursor is able to scroll in both di-
rections or forward only and whether the ResultSet is sensitive to changes. The result concur-
rency (p. 1199) specifies whether the ResultSet can be updated.

• Some JDBC drivers (p. 1172) do not support scrollable or updatable ResultSets.

Section 28.8.2 Querying the books Database
• TableModel (p. 1194) method getColumnClass (p. 1194) returns a Class object that represents
the superclass of all objects in a particular column. A JTable (p. 1194) uses this information to
set up the default cell renderer and cell editor for that column in a JTable.

• ResultSetMetaData method getColumnClassName (p. 1200) obtains a column’s fully qualified
class name (p. 1183).

• TableModel method getColumnCount (p. 1194) returns the number of columns in the ResultSet.

• TableModel method getColumnName (p. 1194) returns the column name in the ResultSet.

• ResultSetMetaData method getColumnName (p. 1200) obtains a column’s name from the Re-

sultSet.

• TableModelmethod getRowCount (p. 1194) returns the number of rows in the model’s ResultSet.

• TableModel method getValueAt (p. 1194) returns the Object at a particular row and column of
the model’s underlying ResultSet.

• ResultSet method absolute (p. 1200) positions the ResultSet cursor at a specific row.

• AbstractTableModel (p. 1194) method fireTableStructureChanged (p. 1200) notifies any
JTable using a particular TableModel object as its model that the data in the model has changed.

Section 28.9 RowSet Interface
• Interface RowSet (p. 1207) configures a database connection and executes a query automatically.

• A connected RowSet (p. 1207) remains connected to the database while the object is in use. A
disconnected RowSet (p. 1207) connects, executes a query, then closes the connection.

• JdbcRowSet (p. 1207), a connected RowSet, wraps a ResultSet object and allows you to scroll and
update its rows. Unlike a ResultSet object, a JdbcRowSet object is scrollable and updatable by
default.

• CachedRowSet (p. 1207), a disconnected RowSet, caches a ResultSet’s data in memory. A
CachedRowSet is scrollable and updatable. A CachedRowSet is also serializable.

Section 28.10 Java DB/Apache Derby
• Java DB (p. 1209) has both an embedded version and a network version.

Section 28.11 PreparedStatements
• PreparedStatements (p. 1211) are compiled, so they execute more efficiently than Statements.

1232 Chapter 28 Accessing Databases with JDBC

• PreparedStatements can have parameters, so the same query can execute with different arguments.

• A parameter is specified with a question mark (?) in the SQL statement. Before executing a Pre-
paredStatement, you must use PreparedStatement’s set methods to specify the arguments.

• PreparedStatementmethod setString’s (p. 1211) first argument represents the parameter num-
ber being set and the second argument is that parameter’s value.

• Parameter numbers are counted from 1, starting with the first question mark (?).

• Method setString automatically escapes String parameter values as necessary.

• Interface PreparedStatement provides set methods for each supported SQL type.

• An identity column is the SQL standard way to represent an autoincremented (p. 1174) column.
The SQL IDENTITY keyword (p. 1212) marks a column as an identity column.

Section 28.12 Stored Procedures
• JDBC enables programs to invoke stored procedures (p. 1226) using CallableStatement

(p. 1226) objects.

• CallableStatement can specify input parameters. CallableStatement can specify output param-
eters (p. 1226) in which a stored procedure can place return values.

Section 28.13 Transaction Processing
• Transaction processing (p. 1227) enables a program that interacts with a database to treat a da-
tabase operation (or set of operations) as a single operation—known as an atomic operation
(p. 1227) or a transaction (p. 1227).

• At the end of a transaction, a decision can be made to either commit or roll back the transaction.

• Committing a transaction (p. 1227) finalizes the database operation(s)—inserts, updates and de-
letes cannot be reversed without performing a new database operation.

• Rolling back a transaction (p. 1227) leaves the database in its state prior to the database operation.

• Java provides transaction processing via methods of interface Connection.

• Method setAutoCommit (p. 1227) specifies whether each SQL statement commits after it com-
pletes (a true argument) or whether several SQL statements should be grouped as a transaction.

• When autocommit is disabled, the program must follow the last SQL statement in the transaction
with a call to Connectionmethod commit (to commit the changes to the database; p. 1227) or Con-
nectionmethod rollback (to return the database to its state prior to the transaction; p. 1227).

• Method getAutoCommit (p. 1227) determines the autocommit state for the Connection.

Self-Review Exercise
28.1 Fill in the blanks in each of the following statements:

a) The international standard database language is .
b) A table in a database consists of and .
c) Statement objects return SQL query results as objects.
d) The uniquely identifies each row in a table.
e) SQL keyword is followed by the selection criteria that specify the rows to se-

lect in a query.
f) SQL keywords specify the order in which rows are sorted in a query.
g) Merging rows from multiple database tables is called the tables.
h) A(n) is an organized collection of data.
i) A(n) is a set of columns whose values match the primary-key values of an-

other table.

Answers to Self-Review Exercise 1233

j) method is used to obtain a Connection to a database.
k) Interface helps manage the connection between a Java program and a database.
l) A(n) object is used to submit a query to a database.
m) Unlike a ResultSet object, and objects are scrollable and updat-

able by default.
n) , a disconnected RowSet, caches the data of a ResultSet in memory.

Answers to Self-Review Exercise
28.1 a) SQL. b) rows, columns. c) ResultSet. d) primary key. e) WHERE. f) ORDER BY.
g) joining. h) database. i) foreign key. j) DriverManager, getConnection. k) Connection. l) State-
ment. m) JdbcRowSet, CachedRowSet n) CachedRowSet.

Exercises
28.2 (Query Application for the books Database) Using the techniques shown in this chapter, de-
fine a complete query application for the books database. Provide the following predefined queries:

a) Select all authors from the Authors table.
b) Select a specific author and list all books for that author. Include each book’s title, year

and ISBN. Order the information alphabetically by the author’s last then first name.
c) Select a specific title and list all authors for that title. Order the authors alphabetically

by last name then by first name.
d) Provide any other queries you feel are appropriate.

Display a JComboBox with appropriate names for each predefined query. Also allow users to supply
their own queries.

28.3 (Data Manipulation Application for the books Database) Define a data-manipulation ap-
plication for the books database. The user should be able to edit existing data and add new data to
the database (obeying referential and entity integrity constraints). Allow the user to edit the database
in the following ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author. (Remember that the book must have an entry in the Au-

thorISBN table.).
d) Add a new entry in the AuthorISBN table to link authors with titles.

28.4 (Employee Database) In Section 10.7, we introduced an employee-payroll hierarchy to cal-
culate each employee’s payroll. In this exercise, we provide a database of employees that corresponds
to the employee-payroll hierarchy. (A SQL script to create the employees MySQL database is pro-
vided with the examples for this chapter.) Write an application that allows the user to:

a) Add employees to the employee table.
b) Add payroll information to the appropriate table for each new employee. For example,

for a salaried employee add the payroll information to the salariedEmployees table.

Figure 28.33 is the entity-relationship diagram for the employees database.

28.5 (Employee Database Query Application) Modify Exercise 28.4 to provide a JComboBox and
a JTextArea to allow the user to perform a query that is either selected from the JComboBox or de-
fined in the JTextArea. Sample predefined queries are:

a) Select all employees working in Department SALES.
b) Select hourly employees working over 30 hours.
c) Select all commission employees in descending order of the commission rate.

1234 Chapter 28 Accessing Databases with JDBC

28.6 (Employee Database Data Manipulation Application)Modify Exercise 28.5 to perform the
following tasks:

a) Increase base salary by 10% for all base-plus-commission employees.
b) If the employee’s birthday is in the current month, add a $100 bonus.
c) For all commission employees with gross sales over $10,000, add a $100 bonus.

28.7 (Address Book Modification: Update an Existing Entry) Modify the program in
Figs. 28.30–28.32 to provide a JButton that allows the user to call a method named updatePerson

in PersonQueries class to update the current entry in the AddressBook database.

28.8 (Address Book Modification: Delete an Existing Entry) Modify the program of
Exercise 28.7 to provide a JButton that allows the user to call a method named deletePerson in
PersonQueries class to delete the current entry in the AddressBook database.

28.9 (Project: ATM Case Study with a Database) Modify the ATM Case Study (Chapters 12–
13) to use an actual database to store the account information. We provide a SQL script to create a
MySQL BankDatabase, which has a single table consisting of four columns—AccountNumber (an
int), PIN (an int), AvailableBalance (a double) and TotalBalance (a double).

Fig. 28.33 | Table relationships in the employees database.

1

1

1

1

1

1 1

1

employees

departmentName

employeeType

birthday

lastName

firstName

socialSecurityNumber

basePluscommissionEmployees

bonus

baseSalary

commissionRate

grossSales

socialSecurityNumber

hourlyEmployees

bonus

wage

hours

socialSecurityNumber

salariedEmployees

bonus

weeklySalary

socialSecurityNumber

commissionEmployees

bonus

commissionRate

grossSales

socialSecurityNumber

