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ABSTRACT

Three families of distributive lattices (so-called “semistandard lattices for A2, B2, and

G2”) which arise naturally in a certain algebraic context are considered. Two of these fami-

lies of semistandard lattices (A2 and G2) were studied previously by McClard [Mc]. From a

combinatorial point of view, the lattices are quite striking and exhibit some pleasant sym-

metries and certain enumerative niceties. Evidence is presented suggesting that many of

these lattices provide a suitable combinatorial environment for realizing linear representa-

tions of certain Lie algebras. This evidence includes results of McClard and others which

led to a conjecture that all semistandard lattices could be used to realize Lie algebra repre-

sentations. This conjecture has been confirmed for several special classes of semistandard

lattices. A primary contribution of this thesis is a demonstration that the conjecture fails

for many other classes of semistandard lattices.
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CHAPTER 1

INTRODUCTION

The subject of this thesis lies in the intersection of combinatorics and Lie algebra rep-

resentation theory. Although it will take just a little time to make the next statement

precise, for now we can state the main goal of this thesis as follows: we aim to investigate a

conjecture on what the actions of rank two simple Lie algebras on finite-dimensional vector

spaces “look like” when presented as actions on finite partially ordered sets. This might

seem like a strange problem at first: what is a Lie algebra action anyway, and why might

such an action be of combinatorial interest? But indeed there is growing evidence (see for

example [Don] and [Eve]) that actions of simple Lie algebras on finite-dimensional vector

spaces are connected with some unexpectedly rich combinatorial structures.

Lie theory itself is a very deep and perhaps fundamental subject, connected to areas as

diverse as topology (e.g. knot theory), special functions, enumeration, and physics. (See

[How] for a readable survey and introduction to the subject. Two recent book reviews

[Row], [Kna] make for illuminating reading as well: Rowe reviews a book on the early

history of Lie theory, and Knapp reviews two new introductory Lie theory texts; these

books might be of interest to the curious reader.) Many connections between combinatorics

and Lie theory have been explored in the last half-century or so. Many of the applications

go in one direction, however: Lie theoretic techniques are applied to prove results that

are, in their statements, purely combinatorial. In [Pr], for example, one finds a lively and
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interesting exposition of two combinatorial problems that can be resolved using Lie algebra

representation theory. Broadly speaking, we are interested in an application that goes in

the other direction: we want to know when certain combinatorial information is sufficient

to “construct” or “recover” Lie algebra representations.

It follows from a beautiful classification theorem due to Cartan that there are precisely

three “rank two simple Lie algebras,” denoted A2, B2, and G2 respectively. Each of these Lie

algebras is a finite-dimensional complex vector space equipped with a certain non-associative

“multiplication.” This multiplication is denoted by a “bracket,” so for Lie algebra elements

x and y, their product is written [xy]. The Lie algebra A2 has dimension eight as a vector

space over the complex numbers, the Lie algebra B2 has dimension ten, and the Lie algebra

G2 has dimension fourteen. Each of these Lie algebras is “simple” in the sense that it does

not have any nontrivial proper vector subspaces that are “inside-outside closed.” Or, put

another way, let g be one of A2, B2, or G2, and let I be a vector subspace of g with the

property that for any x in g and y in I, the product [xy] remains in I. The simplicity

of g means that I must be the trivial subspace {0} or that I must be all of g. A simple

Lie algebra is the analog of a simple group; a simple Lie algebra has no nontrivial proper

“ideals.” Finally, the Lie algebras A2, B2, and G2 are “rank two” in the sense that each has

a nice set of generators consisting of two “x’s,” two “y’s,” and two “h’s.” That is, when g

is one of A2, B2, or G2, we have

g = 〈x1, y1, h1, x2, y2, h2 | certain relations〉

The “certain relations” mentioned above are called “Serre relations” (these are recorded

explicitly in [Mc] p. 19). These relations are somewhat tedious to produce, but for each
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algebra A2, B2, or G2, the critical information needed to write down the Serre relations is

encoded in the “Cartan matrix.” The Cartan matrix uniquely identifies a simple Lie algebra

in the sense that one can use the Cartan matrix to recover the defining Serre relations for

the Lie algebra (see for example Theorem 2.2.2 in [Eve]). For the rank two simple Lie

algebras the Cartan matrices are:

Lie Algebra Associated Cartan Matrix

A2




2 −1

−1 2




B2




2 −1

−2 2




G2




2 −1

−3 2




In [Mc] one can find a very readable introduction to the main combinatorial and Lie

algebra representation theoretic notions needed to understand our main results. We will not

attempt to duplicate that exposition here; the reader is referred to that thesis for any Lie

algebra or combinatorics terminology not defined here. Much of the exposition in [Mc] is

drawn from [Hum] (Lie algebra representation theory basics) and from [Sta] (combinatorics

background). Some parts of this thesis will depend crucially on other results from [Mc]

as well. In some sense, this thesis extends McClard’s discussion of the representations of

the simple Lie algebras A2 and G2 to include the representations of the simple Lie algebra

B2 (see Chapter 3). This thesis will also provide a partial answer to a generalization of

Conjecture 6.2.3 of [Mc].
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This conjecture, formulated in generality by Donnelly as a result of collaborations with

Scott Lewis, Marti McClard, Robert Pervine, and Norman Wildberger (henceforth referred

to as the Semistandard Lattice Conjecture, or SLC), proposes that all representations of

the rank two simple Lie algebras can be “constructed” in a certain sense from some very

pretty families of distributive lattices. A solid body of evidence for the veracity of the SLC

has been compiled in recent years. In Chapters 2, 3, and 4 we survey some of these results,

which are interesting in their own right.

One of the main contributions of this study is many counterexamples to the Semistan-

dard Lattice Conjecture (see Table 1.1, Table 1.2, and Theorem 6.1). These counterexam-

ples were initially found by computer experimentation. By suitably modifying some fairly

involved algorithms developed by Donnelly, Lewis, and Pervine [DLP2], we were able to

use Maple to perform the many tedious computations needed to check the SLC. These

algorithms (Chapter 5), along with the Maple code which implemented these algorithms

(Appendix A) as well as their output and applications (Chapter 6) are among the other

mathematical contributions of this thesis. The smallest counterexample to the SLC we

found has dimension 35, which is small enough to be verified by hand. We have subse-

quently been able to verify with formal proofs many other counterexamples (see Theorem

6.1). Although these counterexamples show the SLC fails in full generality, it does hold for

certain special infinite families (see Theorems 2.6, 3.6 and 4.6). These results have led us

to a refinement of the conjecture. Finally, it should be noted that our work leaves open the

question of whether other families of distributive lattices might work in place of those used

to formulate the SLC.
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In the “Lie algebra actions” and the “Rank two simple Lie algebras acting on posets”

subsections below, we develop some of the technical language needed to more fully under-

stand our results. In the “Identifying posets as supporting graphs” subsection below, we

motivate the results which will be recorded in Chapters 2, 3, and 4. Finally, we close this

section with a precise statement of the Semistandard Lattice Conjecture and give a summary

of our investigations which in some cases verify and in some cases disprove the conjecture.

The details of the algorithms we use, along with their applications, Maple implementation,

and output, are contained in Chapters 5, 6, and Appendix A.

Lie algebra actions

Let g be a simple Lie algebra, and suppose g acts on a complex d-dimensional vector

space V by way of the Lie algebra homomorphism

φ : g −→ gl(V ).

Here gl(V ) := {T |T is a linear mapping from V to V } is a d2-dimensional complex vector

space with Lie bracket “multiplication” defined by [S, T ] := ST − TS for S, T in gl(V ).

The homomorphism φ is a linear mapping satisfying φ([x, y]) = [φ(x), φ(y)] for x, y in g.

We say that φ is a “representation” of g since it allows us to view elements of g as linear

transformations; abusing notation, we often say that V is a “representation” of g when

the mapping φ is implied. Since g is simple, the kernel ker(φ) must be trivial or all of g.

Assuming that φ is not a trivial mapping sending everything to 0, i.e. assuming ker(φ) 6= g,

then it follows that ker(φ) = {0}, and so φ is injective. For x ∈ g and v ∈ V , it is customary

to write

x.v := φ(x)(v).
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In this case notice that (1) x.(av + bw) = ax.v + bx.w, (2) (αx + βy).v = α(x.v) + β(y.v),

and (3) [x, y].v = x.y.v − y.x.v. This notation gives another perspective on what it means

to have a Lie algebra “acting on” a vector space. The action φ of g on V is “irreducible” if

V has no nontrivial proper subspaces that “remain stable” under the action of g. That is,

φ is irreducible if whenever W is a vector subspace of V for which x.w remains in W for all

x in g and w in W , then W must be either the trivial subspace {0} or W must be all of V .

Rank two simple Lie algebras acting on posets

For now let us limit our consideration to the actions of simple Lie algebras of rank

two. Suppose g is a rank two simple Lie algebra acting on a complex vector space V

via the homomorphism φ : g −→ gl(V ). Moreover, suppose that the representation φ

is irreducible. Another wonderful classification result states that there is precisely one

irreducible representation φ : g −→ gl(V ) corresponding to each pair (a, b) of non-negative

integers a and b. Let us briefly explain what this classification result means. First, when

φ : g −→ gl(V ) is irreducible, then in V there exists a unique nonzero vector v (up to

scalar multiples) such that x1.v = 0 = x2.v. Moreover, it is the case that h1.v = av and

h2.v = bv for some non-negative integers a and b. This vector v is called the “maximal

vector” for the irreducible representation. The pair of integers (a, b) corresponding to the

maximal vector v is called the “dominant weight,” and is usually denoted by λ. Second, the

classification theorem tells us that given any pair of non-negative integers λ = (a, b), there

exists an irreducible representation φ : g −→ gl(V ) with maximal vector v having dominant

weight λ. And third, any two irreducible representations with the same dominant weight

are “equivalent.” That is, suppose ψ : g −→ gl(W ) is another irreducible representation
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with dominant weight λ = (a, b). Then there exists an isomorphism f : V −→ W of vector

spaces such that f ◦ φ(x) = ψ(x) ◦ f for all x in g.

Suppose now that φ : g −→ gl(V ) is irreducible. Assuming V has dimension d, let

{vs}s∈P be a basis for V , where the index set P has size d. We will create an edge-colored

directed graph using the elements of P as vertices. Let s and t be elements of P and let

i be either 1 or 2. We can expand xi.vs and yi.vt relative to the basis {vs}s∈P . That is,

write xi.vs =
∑

x∈P

cx,svx and yi.vt =
∑

x∈P

dx,tvx. Place a directed edge of color i from s to

t if ct,s 6= 0 or ds,t 6= 0. In this case we write s i−→ t. We call the set P together with

this collection of colored, directed edges the supporting graph for the basis {vs}s∈P of the

representation φ : g −→ gl(V ).

What will a supporting graph P look like? It could be unreasonably messy for all

we know. But, as it turns out, any edge-colored directed graph arising in this way will be

connected, and will be the Hasse diagram for a rank symmetric and rank unimodal partially

ordered set. As it turns out, for some well chosen bases for certain representations, the

posets corresponding to the supporting graphs are distributive lattices. This leads to the

main question we are concerned with:

Given an irreducible representation of a rank two simple Lie algebra, can we

find a distributive lattice and color the edges of its Hasse diagram in such a way

that we will be looking at a supporting graph for the representation?

Identifying posets as supporting graphs

Given an edge-colored directed graph P , what does it take in order to know that P arises

as the supporting graph obtained by fixing some basis for an irreducible representation of a
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rank two simple Lie algebra? Let g be a simple Lie algebra of rank two, and let λ = (a, b) be a

dominant weight. Consult [Don] and [DLP1] for justification that the following requirements

and conditions on P are necessary for P to be a supporting graph.

1. Combinatorial Requirement for g(λ). If an edge-colored directed graph P is a sup-

porting graph for the irreducible representation of g with dominant weight λ, then (1)

P must be a connected graph with just two edge colors (“1” or “2”), (2) P must be

the Hasse diagram for a ranked poset, and (3) P must have a unique maximal and a

unique minimal element. An edge-colored directed graph P meets the Combinatorial

Requirement for g(λ) if it satisfies properties (1), (2), and (3).

remark: In addition, a supporting graph P for an irreducible representation of g

must be rank symmetric and rank unimodal. Rank symmetry is often easy to prove

directly. On the other hand, rank unimodality is usually difficult to verify directly, and

is something one normally concludes after demonstrating the Structure and Character

Conditions for g(λ) (discussed below).

2. Dimension Requirement for g(λ). In the 1920’s Hermann Weyl worked out formu-

las for the dimensions of the irreducible representations of g.

Algebra
Dimension of irreducible module

corresponding to dominant weight λ = (a, b)

A2
1
2(a + 1)(b + 1)(a + b + 2)

B2
1
3!(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)

G2
1
5!(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)(a + 3b + 4)(2a + 3b + 5)

If P is to be a supporting graph for the irreducible representation of g corresponding

to the dominant weight λ, then the size of the vertex set for P must agree with
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the appropriate formula from the above table. So we say P meets the Dimension

Requirement for g(λ) if |P | agrees with Weyl’s dimension formula for the irreducible

representation of g with dominant weight λ.

3. Structure Condition for g. Fix an edge color i = 1 or 2. For any s in P , the “i-

component containing s” consists of all vertices of P which can be reached from s

by walking along edges of color i, together with all edges of color i connecting these

vertices. Note that the i-component containing s is automatically connected. If s

is maximal (resp. minimal) in some i-component, we say s is “i-maximal” (resp. “i-

minimal”) in P . Since it has already been checked that P is the Hasse diagram for a

connected ranked poset, it follows that the i-component containing s is the also the

Hasse diagram for some ranked poset. Define ρi(s) to be the rank of the element s in

its i-component, and let li(s) be the length of the i-component containing s. Define

wt(s) = ( 2ρ1(s)− l1(s) , 2ρ2(s)− l2(s) )

We say P satisfies the Structure Condition for g if for each edge s i−→ t in P we have

wt(s) + αi = wt(t),

where αi is the ith row vector of the Cartan matrix corresponding to g.

Remark: If m is the unique maximal element of P , then for P to be a supporting

graph for the irreducible representation corresponding to λ, we need it to be the case

(among other things) that wt(m) = λ.

4. Character Condition for g(λ). Corresponding uniquely to the irreducible represen-

tation V of g with dominant weight λ is a Laurent polynomial in the variables X and
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Y which has non-negative integral coefficients. We denote this polynomial, called the

“character” of the representation V , by the notation charλ(X,Y ), and write

charλ(X,Y ) =
∑

µ=(µ1,µ2)∈Z×Z
dλ(µ)Xµ1Y µ2 .

In particular, it is the case that each dλ(µ) is a non-negative integer, and that

charλ(1, 1) = dim(V ). Thus, only finitely many of the dλ(µ)’s can be non-zero. In

fact, each non-zero dλ(µ) counts the dimension of a certain eigen-subspace of V . See

[Hum] for a thorough discussion of the character polynomial.

We say P satisfies the Character Condition for g(λ) if dλ(µ) = |{s ∈ P |wt(s) = µ}|

for each µ in Z× Z.

remark: In practice, this is quite hard to check directly, and one must usually appeal

to some more sophisticated algebraic arguments in order to verify this condition. For

the lattices we consider in Chapters 2, 3, and 4, we appeal to work of Littelmann [Lit]

to settle this question. Note that the Character Condition implies the Dimension

Requirement. If P meets the Combinatorial Requirement, the Structure Condition,

and the Character Condition, then P is rank symmetric and rank unimodal.

5. Actions. All of the preceding requirements and conditions are necessary, but not suf-

ficient, to conclude that P is a supporting graph. However, if P is the Hasse diagram

for a distributive lattice, if P meets the Combinatorial Requirement for g(λ), the Di-

mension Requirement for g(λ), and the Structure Condition for g, and if the weight of

the maximal element of P is λ, then a description of “actions” as follows is sufficient to

imply that P is indeed a supporting graph for the irreducible representation of g with

highest weight λ. In particular, sorting out “actions” will automatically imply that
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the Character Condition is satisfied! As it turns out, however, explicitly describing

“actions” from scratch can be quite difficult.

To describe “actions,” one must attach an “x-coefficient” ct,s and a “y-coefficient” ds,t

to each edge s i−→ t in P . (The x-coefficient should be thought of as “acting” in the

“up” direction, i.e. in the direction of the edge s i−→ t, while the y-coefficient “acts”

in the “down” direction.) Let πs,t denote the product ct,sds,t of the x-coefficient and

y-coefficient on this edge. These coefficients must meet the following two conditions:

(1) The Diamond Condition: Whenever elements r, s, t and u form a diamond of

edges r
r

r
r¡¡

@@
@@
¡¡j i

i j

r
s

u
t in P , then cu,sdt,u = dr,sct,r and cu,tds,u = dr,tcs,r.

(2) The Crossing Condition: For any s in P and any color i,

∑

r:r
i→s

πr,s −
∑

t:s
i→t

πs,t = 2ρi(s)− li(s).

In what sense do these coefficients describe “actions”? Suppose P is a distributive

lattice meeting all of the above requirements, and suppose we have assigned edge

coefficients which meet the Diamond and the Crossing Conditions. Now let V [P ]

denote the complex vector space freely generated by {vs}s∈P . Recall that g has the

special set of generators {x1, y1, h1, x2, y2, h2}. Define linear transformations X1, Y1,

H1, X2, Y2, and H2 acting on V [P ] as follows:

Xi(vs) :=
∑

t : s
i→t

ct,svt Yi(vt) :=
∑

s : s
i→t

ds,tvs Hi(vs) := (2ρi(s)−li(s))vs

for i = 1 or i = 2. The Diamond, Crossing, and Structure Conditions are now

sufficient to guarantee that {X1, Y1,H1, X2, Y2, H2} satisfy the Serre relations for g.

For example, one can use the Diamond Condition to check that Xi commutes with Yj
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when i 6= j. In [Don] one can find the details for an argument that the remaining Serre

relations hold. We can now let φ : g −→ gl(V [P ]) be the Lie algebra homomorphism

induced by mapping xi
φ7−→ Xi, yi

φ7−→ Yi, and hi
φ7−→ Hi for i = 1, 2. Then φ : g −→

gl(V [P ]) is an irreducible representation of g with dominant weight λ. Moreover, the

graph P is the supporting graph for the basis {vs}s∈P for this action of g in V [P ].

remark: Finding two coefficients ct,s and ds,t to attach to each edge s i−→ t in P can

be a chore. When P is a distributive lattice, it actually suffices to simply supply a

single nonzero complex coefficient πs,t to each edge. The Crossing Condition remains

the same, but the Diamond Condition simplifies to checking that πs,uπt,u = πr,sπr,t

whenever elements r, s, t and u form a diamond of edges r
r

r
r¡¡

@@
@@
¡¡j i

i j

r
s

u
t in P . Then on any

edge s i−→ t, use the principal square root of πs,t for ct,s and ds,t.

The Semistandard Lattice Conjecture and our main results

In Chapters 2, 3, and 4, we define certain families of edge-colored distributive lattices

which we will call “semistandard lattices.” For a given rank two simple Lie algebra g

and a given dominant weight λ = (a, b), there is precisely one g-semistandard lattice Lλ.

Semistandard lattices are built from certain combinatorial objects called “tableaux.” The

main content of Chapters 2, 3, and 4 is to confirm the Combinatorial Requirement, the

Dimension Requirement, the Structure Condition, and the Character Condition for each

semistandard lattice. Moreover, one can also describe Actions for semistandard lattices in

many special cases. Further, whenever such actions exist, they are “uniquely determined by

the lattice” (see Theorem 5.4.4 and succeeding remarks). So, in a precise sense, whenever

a semistandard lattice is a supporting graph, it combinatorially encodes exactly enough
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information to be able to recover a unique basis for the corresponding representation as

well as actions of generators on that basis. This evidence led to the following conjecture:

The Semistandard Lattice Conjecture: Let g be a rank two simple Lie algebra, and let

λ = (a, b) for non-negative integers a and b. Let Lλ denote the corresponding g-semistandard

lattice. Then Lλ is a supporting graph for the irreducible representation of g with dominant

weight λ.

The “tableaux” and the the lattices described in Chapters 2, 3, and 4 may at first glance

seem strange and perhaps somewhat arbitrary. However, the tableaux descriptions can be

obtained (with some work) from a single result of [Lit]. In that paper, Littelmann offers

a “uniform” description of tableau-like objects for almost all irreducible representations of

the simple Lie algebras. Littelmann does not consider the lattice ordering of tableaux which

we present here, however. On the other hand, Donnelly and Wildberger [DW] have found a

combinatorial procedure which “uniformly” generates the semistandard lattices and which

also yields sets of combinatorial objects which are easily converted to the tableaux of this

thesis. (By “uniform” we mean independent of the type of the Lie algebra.)

By implementing the algorithms presented in Chapter 5 using the computer based math-

ematical manipulation language Maple V (see Appendix A), we are now able to easily con-

struct examples of these beautiful edge-colored distributive lattices and test them against

the SLC. In Chapter 6 we provide many examples of these distributive lattices.

One initial goal of this study was to confirm the SLC for all represenations with “small”

dimension, say, less than 10,000. In other words, given a rank two simple Lie algebra

g, we wanted to demonstrate that the g-semistandard lattice Lλ is indeed a supporting
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graph for the irreducible representations of g with dominant weight λ = (a, b) whenever

that representation has suitably small dimension. We also hoped that by doing this, we

might see something that could lead to a proof of the SLC in general. In fact, Theorem 2.6

records that the SLC holds for the algebra A2 and any dominant weight λ. However, as

one can see from Table 1.1 and Table 1.2, the results we obtained for B2 and G2 were not

as expected. It is now apparent that in many cases the conjecture fails for these algebras.

We first discovered the data appearing in these tables by computer experimentation. Code

for the computer programs we used can be found in Appendix A.

Table 1.1 Does the SLC hold for the B2-semistandard lattice Lλ when λ = (a, b)?

b

a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 y y y y y y y y y y y y y y y y y y y y
1 y y y y y y y y y y y y y y y y y y y y
2 y n n n n n n n n n n n n n n n n n n n
3 y n n n n n n n n n n n n n n n n
4 y n n n n n n n n n n n n n n
5 y n n n n n n n n n n n n n
6 y n n n n n n n n n n n
7 y n n n n n n n n n n
8 y n n n n n n n n n
9 y n n n n n n n n
10 y n n n n n n n n
11 y n n n n n n n
12 y n n n n n n
13 y n n n n n n
14 y n n n n n
15 y n n n n n
16 y n n n n
17 y n n n n
18 y n n n
19 y n n n
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Table 1.2 Does the SLC hold for the G2-semistandard lattice Lλ when λ = (a, b)?

b

a

0 1 2 3 4 5 6 7

0 y y n n n n n n
1 y n n n n n n
2 y n n n n
3 y n n n n
4 y n n n
5 y n n
6 y n n
7 y n
8 y n
9 y
10 y
11 y

Based in part on these findings, we offer the following refinement of the SLC:

A Refinement of the Semistandard Lattice Conjecture: Let g be a rank two simple

Lie algebra. Let a and b be non-negative integers. Then the g-semistandard lattice Lλ is a

supporting graph for the irreducible representation of g with dominant weight λ if and only

if λ = (a, b) when g = A2; λ = (a, 0), λ = (0, b) or λ = (1, b) when g = B2; and λ = (a, 0)

or λ = (0, 1) when g = G2.

The A2 part of the previous statement is the content of Theorem 2.6. In Theorem 4.6

we cite a result of [DLP1] which confirms the SLC for G2 and all dominant weights of the

form λ = (a, 0). In Theorem 3.6 we use another result of [DLP1] to confirm the SLC for B2

and all dominant weights of the form λ = (0, b). In addition, we also confirm the SLC for

B2 and all dominant weights of the form λ = (a, 0); while this result was known previously

to Donnelly and others, it appears here for the first time as a formal statement with proof.

In Theorem 6.1, we prove that for a dominant weight λ = (a, b) with a ≥ 2 and b ≥ 1, the

B2-semistandard lattice is not a supporting graph for a representation of B2.
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In addition to these results, there are several other related questions worth pursuing.

Confirming the SLC for B2 and all dominant weights of the form λ = (1, b) is an open

question at this time. At the time of this writing we are also working toward a formal

proof that the SLC fails for any G2-semistandard lattice Lλ if λ = (a, b) with b ≥ 2 or if

λ has form λ = (a, 1) with a ≥ 1. Another possible project might be to re-formulate the

definition of “semistandard lattice” in such a way that semistandard lattices can serve as

supporting graphs for more classes of dominant weights. However, this already seems to be

a challenging problem in the case of the algebra B2 and the dominant weight λ = (2, 1).



CHAPTER 2

DISTRIBUTIVE LATTICES AND REPRESENTATIONS OF A2

Semistandard lattices for A2. We begin by defining some combinatorial objects called

“tableaux” which we will then partially order. The resulting poset will be a distributive

lattice. We color the edges of the Hasse diagram for this lattice to obtain what we call a

“semistandard lattice for A2.”

Fix non-negative integers a and b and set λ = (a, b). We identify λ with the “Ferrers

diagram” of the partition (a + b, b), which we refer to as sh(λ) and read “shape λ.” This

is a grid with two rows of left-justified boxes; the top row has a + b boxes and the bottom

row has b boxes. Put another way, the shape λ has a + b columns; the first b columns have

two boxes each, and the final a columns have just one box each. For example, if λ = (2, 1),

then sh(λ) is . A tableaux of shape λ is a filling of the boxes in sh(λ) with integers.

The filling is said to be semistandard if the box-entries of the tableaux weakly increase from

left to right across the rows and strictly increase from top to bottom down the columns. If

t is a tableau of shape λ, we often write t = (t1, . . . , tb, t1+b, . . . , ta+b), where tq is the qth

column of t for 1 ≤ q ≤ a + b; note that tq is a tableau of shape when 1 ≤ q ≤ b and is

a tableau of shape when 1 + b ≤ q ≤ a + b. We also index box-entries of t as we would

the entries of a matrix: tp,q refers to the integer entry in the pth row, qth column of t. An

A2-tableaux of shape λ is any semistandard filling of sh(λ) with box-entries taken from the

set {1, 2, 3}. An example of an A2-tableau of shape (2,1) is t =
1

3

1 2
.
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Partially order the set of all A2-tableaux of shape λ by reverse componentwise compari-

son: that is, for A2-tableaux s and t of shape λ, we have s ≤ t if and only if each box-entry

in t is no bigger than the corresponding box-entry in s. One can easily see that relative to

this partial order s is covered by t, written s −→ t, if and only if there exist indices k and

l such that sk,l = tk,l + 1 while sp,q = tp,q for p 6= k or q 6= l. In this case let i := tk,l; then

we assign the “color” i to this edge, and write s i−→ t. The A2-semistandard lattice Lλ is

the set of A2-tableaux of shape λ together with the reverse componentwise partial ordering

and the above assignment of colors to the covering relations of this partial order.

Figure 2.1 The A2-semistandard lattice corresponding to the shape λ = (1, 1)
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As an example, consider the A2-semistandard lattice Lλ when λ = (1, 1) (see Figure

2.1). We will sometimes refer to vertex k in this picture by the symbol vk. The tableaux

corresponding to these vertices are: v1 =
1
2

1
, v2 =

1
3

1
, v3 =

1
2

2
, v4 =

1
3

2
, v5 =

1
2

3
,

v6 =
2
3

2
, v7 =

1
3

3
, and v8 =

2
3

3
. It is clear by inspection that this is a connected graph

with just two edge colors (“1” and “2”) and is the Hasse diagram for a ranked partially

ordered set. Additionally, one can see that this graph has a unique maximal and a unique

minimal element (v1 and v8, respectively). Together, these three conditions show that the
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Combinatorial Requirement is met. With just a little work, one can see that this is a dis-

tributive lattice. The best way to see this is to apply the Fundamental Theorem of Finite

Distributive Lattices (see [Sta]), and observe that the poset of Figure 2.1 is isomorphic to

the poset of order ideals taken from the 4-element poset of “irreducibles” in Figure 2.2.

To verify the Dimension Requirement, note that the number of vertices in Figure 2.1 is 8,

which agrees with the Weyl dimension formula for A2 with a = 1 and b = 1.

Figure 2.2 4-element poset of “irreducibles”

@
@

@@ss

s s2 5

6 7

There are 10 edges to check in order to verify the Structure Condition. Take, for example,

edge v4
2−→ v3. Recall that

wt(s) = (2ρ1(s)− l1(s), 2ρ2(s)− l2(s))

where ρi(s) is the rank of the element s in its i-component and li(s) is the length of the

i-component containing s. Since ρ1(v4) = 1, ρ2(v4) = 1, l1(v4) = 2, and l2(v4) = 2, one

can verify that wt(v4) = (0, 0). Likewise, since ρ1(v3) = 0, ρ2(v3) = 2, l1(v3) = 1, and

l2(v3) = 2, one can verify that wt(v3) = (−1, 2). It follows that

wt(v4) + α2 = (0, 0) + (−1, 2) = (−1, 2) = wt(v3).

One can do similar computations on the other 9 edges to verify the Structure Condition.

Using Diamond and Crossing relations, one can easily determine that the coefficients

πp,q for this example are: π2,1 = 1, π3,1 = 1, π4,2 = 2, π4,3 = 1
2 , π5,3 = 3

2 , π6,4 = 2, π7,4 = 1
2 ,
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π7,5 = 3
2 , π8,6 = 1, and π8,7 = 1. Recall that the Crossing Condition for any vertex s and

any color i is:

∑

r:r
i→s

πr,s −
∑

t:s
i→t

πs,t = 2ρi(s)− li(s).

Choosing color 2 at vertex v5 for example, this identity holds since

∑

r:r
2→v5

πr,v5 −
∑

t:v5
2→t

πv5,t = π7,5 − π5,3 = 0 = 2ρ2(v5)− l2(v5),

where ρ2(v5) = 1 and l2(v5) = 2. Recall that the Diamond Condition is checked by

πs,uπt,u = πr,sπr,t whenever elements r, s, t and u form a diamond of edges r
r

r
r¡¡

@@
@@
¡¡j i

i j

r
s

u
t

for any color i and j. Taking, for example, diamond 7-4-6-8, we see that

π7,4π6,4 = 1 = π8,7π8,6.

The other diamond and crossing relations can be similarly verified.

Proposition 2.1 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ is a distributive lattice and meets the Combinatorial Requirement for A2(λ).

Proof. Distributivity of Lλ is just Corollary 5.1.2 of [Mc]. By definition edges in Lλ take

only one of two colors. Finally, since Lλ is a distributive lattice, it is a ranked poset with a

unique maximal element and a unique minimal element.

Proposition 2.2 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ meets the Dimension Requirement for A2(λ). That is, the number of A2-tableaux

of shape λ agrees with Weyl’s dimension formula for A2, so

|Lλ| = 1
2
(a + 1)(b + 1)(a + b + 2)

Proof. For this proof we let
((

m
n

))
(read “m multichoose n”) denote the number of

ways to select n objects from among m objects with repetition allowed. It can be seen
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that
((

m
n

))
=

(
m+n−1

n

)
. As an example,

((
m
n

))
counts the number of sequences of integers

(a1, . . . , an) satisfying 1 ≤ a1 ≤ · · · ≤ an ≤ m.

Let t ∈ Lλ. Then t can be one of three types: (1) tb =
1
2 , (2) tb =

1
3 , or (3) tb =

2
3 .

In case (1), it follows that tq =
1
2 for 1 ≤ q ≤ b − 1. There are

((
3
a

))
ways to choose the

remaining a columns t1+b, . . . , ta+b of t. In case (2), the columns t1, . . . , tb−1 can be chosen

from
{

1
2 ,

1
3

}
. There are

((
2

b−1

))
ways to choose these columns. There are

((
3
a

))
ways to

choose the remaining a columns t1+b, . . . , ta+b of t. In case (3), the columns t1, . . . , tb−1

can be chosen from
{

1
2 ,

1
3 ,

2
3

}
. There are

((
3

b−1

))
ways to choose these columns. There

are
((

2
a

))
ways to choose the remaining a columns t1+b, . . . , ta+b of t, since t1+b, . . . , ta+b

must be selected from the set
{

2 , 3
}
.

Now add up the totals from each the three types:

((
3
a

))
+

((
2

b− 1

))((
3
a

))
+

((
3

b− 1

))((
2
a

))

This simplifies to
1
2
(a + 1)(b + 1)(a + b + 2).

With some work, the above description of A2-tableau can be derived from [Lit]. Littel-

mann supplied his own rule for computing the weight of an A2-tableaux. With a little more

work, this rule can be seen to be

wtLit(s) :=
(

n1(s)− n2(s) , n2(s)− n3(s)
)
,

where ni(s) is the number of times the integer i appears as a box-entry in the tableau s.

Littelmann’s weight rule is known to meet the Character Condition for A2(λ). That is,

Littelmann shows that dλ(µ) = |{s ∈ P |wtLit(s) = µ}| for each µ in Z× Z.

Lemma 2.3 Let λ = (a, b) for non-negative integers a and b. Let s be in Lλ. Let i be in

{1, 2}. (1.) Let sq (1 ≤ q ≤ a+ b) be the leftmost (respectively, rightmost) column of s that
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is not i-maximal (respectively, i-minimal) in L or L . Let xq denote an element of L or

L that covers (respectively, is covered by) sq along an edge of color i. Form the tableau

x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b).

Then x is in Lλ, and s i−→ x (respectively, x i−→ s). (2.) The tableau s is i-maximal

(respectively, i-minimal) in Lλ if and only if sq is i-maximal (respectively i-minimal) in L

or L for all 1 ≤ q ≤ a+ b. (3.) The functions li and ρi are additive in the columns of s, i.e.

li(s) = li(s1) + li(s2) + · · ·+ li(sa+b) and ρi(s) = ρi(s1) + ρi(s2) + · · ·+ ρi(sa+b). The weight

rule wt is additive in the columns of s, so wt(s) = wt(s1) + wt(s2) + · · ·+ wt(sa+b). (4.) If

s i−→ t, then wt(s) + αi = wt(t). (5.) Littelmann’s weight rule is additive in the columns

of s, so wtLit(s) = wtLit(s1) + wtLit(s2) + · · ·+ wtLit(sa+b). (6.) wtLit(s) = wt(s).

Proof. Note that the 1-maximal columns in L are 1 and 3 , and the 2-maximal columns

in L are 1 and 2 . The 1-minimal columns in L are 2 and 3 , and the 2-minimal columns

in L are 1 and 3 . The 1-maximal columns in L are
1
2 and

1
3 , and the 2-maximal columns

in L are
1
2 and

2
3 . The 1-minimal columns in L are

1
2 and

2
3 , and the 2-minimal columns

in L are
1
3 and

2
3 .

For (1), we consider cases. First take i = 1 and assume sq is the leftmost column of

s that is not 1-maximal. It follows that sq must be either 2 or
2
3 . If sq = 2 , then

the semistandard condition implies that the box in tableau s immediately to the left of

sq (entry s1,q−1) must be either a 1 or a 2. But if s1,q−1 = 2, then sq−1 is either 2 or

2
3 , which contradicts that fact that sq is the leftmost column of s that is not 1-maximal.

Therefore s1,q−1 is 1. To the right of the column sq we must have either 2 or 3 . Thus,

if we set xq := 1 , then the tableau x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still meet the
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semistandard requirement. Then x is in Lλ. Moreover, it is clear that s and x only differ

in the entry (1, q), and that s 1−→ x. Similarly, if sq =
2
3 , then the semistandard condition

implies that the box in tableau s immediately to the left of sq (entry s1,q−1) must be either

a 1 or a 2. But if s1,q−1 = 2, then sq−1 is
2
3 , which contradicts that fact that sq is the

leftmost column of s that is not 1-maximal. Therefore s1,q−1 is 1, and sq−1 is either
1
2 or

1
3 .

To the right of the column sq we have one of 2 , 3 , or
2
3 . Thus, if we set xq :=

1
3 , then the

tableau x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still meet the semistandard requirement.

Then x is in Lλ. Moreover, it is clear that s and x only differ in the entry (1, q), and that

s 1−→ x. The remaining i = 2 cases and the i-minimal arguments are entirely similar.

Part (2) follows immediately from (1). For (3), let i ∈ {1, 2}. For 1 ≤ q ≤ a+b, let uq be

the i-maximal element in the i-component of sq in L or L , and let rq be the corresponding

i-minimal element. Observe that the number of steps from rq to sq in L or L is just ρi(sq),

and the number of steps from rq to uq is li(sq). For 1 ≤ j ≤ a + b, form tableaux u(j) and

r(j) by the rules

u(j) := (u1,u2, . . . ,uj , sj+1, . . . , sa+b)

r(j) := (s1, s2, . . . , sj−1, rj , . . . , ra+b)

Parts (1) and (2) of this lemma imply that u(j) and r(j) are in the i-component of s in

Lλ, and that u(a+b) and r(1) are respectively the maximal and minimal elements in this

i-component. Moreover, from part (1) we see that the number of steps from r(a+b+1−j)

to s in Lλ is ρi(sa+b) + ρi(sa+b−1) + · · · + ρi(sa+b+1−j) for 1 ≤ j ≤ a + b. Of course,

ρi(s) is just the number of steps from r(1) to s in Lλ. So by setting j = a + b, we get

ρi(s) = ρi(sa+b) + ρi(sa+b−1) + · · ·+ ρi(s1). Similarly we see that the number of steps from
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r(1) to u(j) is li(s1) + li(s2) + · · · + li(sj) + ρi(sj+1) + · · · + ρi(sa+b) for 1 ≤ j ≤ a + b.

But li(s) is the number of steps from r(1) to u(a+b). So by setting j = a + b, we see that

li(s) = li(s1) + li(s2) + · · ·+ li(sa+b). In particular, notice now that

wt(s) = ( 2ρ1(s)− l1(s) , 2ρ2(s)− l2(s) )

= ( 2ρ1(s1)− l1(s1) , 2ρ2(s1)− l2(s1) )

+ · · ·+ ( 2ρ1(sa+b)− l1(sa+b) , 2ρ2(sa+b)− l2(sa+b) )

= wt(s1) + · · ·+ wt(sa+b)

For (4), suppose s i−→ t in Lλ. Now s and t only differ in one entry. In particular, there

is an index k (1 ≤ k ≤ a + b), such that sq = tq for q 6= k while sk
i−→ tk in L or L . One

can check by hand that for any such edge in L or L , we will have wt(sk) + αi = wt(tk).

(There is a total of only four edges in L or L .) Of course wt(sq) = wt(tq) for q 6= k. We

get:

wt(s) + αi = wt(s1) + · · ·+ wt(sk−1) + wt(sk) + wt(sk+1) + · · ·+ wt(sa+b) + αi

= wt(t1) + · · ·+ wt(tk−1) + wt(sk) + wt(tk+1) + · · ·+ wt(ta+b) + αi

= wt(t1) + · · ·+ wt(tk−1) + wt(tk) + wt(tk+1) + · · ·+ wt(ta+b)

= wt(t)

For (5), observe that the function ni is additive in the columns of s, that is, ni(s) =

ni(s1)+ni(s2)+ · · ·+ni(sa+b). It follows that wtLit will be additive as well. Finally, for (6)

one can easily check by hand that for any column sq in L or L , we have wtLit(sq) = wt(sq).
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(There are only six different elements in L and L to be checked.) Then

wtLit(s) = wtLit(s1) + wtLit(s2) + · · ·+ wtLit(sa+b)

= wt(s1) + wt(s2) + · · ·+ wt(sa+b)

= wt(s)

Proposition 2.4 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Structure Condition for A2.

Proof. This is just Lemma 2.3.4.

Proposition 2.5 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Character Condition for A2(λ).

Proof. In the paragraph preceding Lemma 2.3, we noted that Littelmann’s weight rule

is known to meet the Character Condition for A2(λ). The proposition now follows from

Lemma 2.3.6.

The next theorem confirms the Semistandard Lattice Conjecture for A2 for any dominant

weight λ. An explicit description of Actions (as discussed in Chapter 1) on Lλ can be found

in [DLP1].

Theorem 2.6 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ is a supporting graph for the irreducible representation of A2 with dominant

weight λ.

Proof. See Proposition 4.1 of [Don]. There, a construction originally due to Gelfand

and Tsetlin [GT] is used to obtain a basis with supporting graph Lλ for the irreducible

representation of A2 with dominant weight λ. This result is re-derived in [DLP1].



CHAPTER 3

DISTRIBUTIVE LATTICES AND REPRESENTATIONS OF B2

Semistandard lattices for B2. The results of this chapter extend to the algebra B2

all of the A2 results of Chapter 2, with the exception of Theorem 2.6. One can also view this

chapter as a B2 version of McClard’s thesis [Mc] in the sense that it records for the algebra

B2 all of the major results obtained in [Mc] for G2. While these B2 results were known

previously to Donnelly and others, most of them do not appear anywhere in the literature,

and so they are appearing here for the first time as formal statements with proofs.

Following Chapter 2, a B2-tableau t of shape λ is any semistandard filling of sh(λ) with

box-entries taken from the set {1, 2, 3, 4} such that t has no columns of the form
1
4 and at

most one column of the form
2
3 . An example of a B2-tableau of shape (2,1) is t =

1

3

1 2
.

As in Chapter 2, partially order the set of all B2-tableaux of shape λ by reverse compo-

nentwise comparison. One can easily see that relative to this partial order s is covered by

t, written s −→ t, if and only if there exist indices k and l such that sk,l = tk,l + 1 while

sp,q = tp,q for p 6= k or q 6= l. Let i := 1 if tk,l ∈ {1, 3}, and let i := 2 otherwise; then we

assign the “color” i to this edge, and write s i−→ t. The B2-semistandard lattice Lλ is the

set of B2-tableaux of shape λ together with the reverse componentwise partial ordering and

the above assignment of colors to the covering relations of this partial order.

As an example, consider the B2-semistandard lattice Lλ when λ = (1, 1) (see Figure

3.1). As in Chapter 2, we will sometimes refer to vertex k in this picture by the symbol
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Figure 3.1 The B2-semistandard lattice corresponding to shape λ = (1, 1)
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vk. The tableaux corresponding to these vertices are: v1 =
1
2

1
, v2 =

1
3

1
, v3 =

1
2

2
,

v4 =
1
3

2
, v5 =

1
2

3
, v6 =

2
3

2
, v7 =

1
3

3
, v8 =

1
2

4
, v9 =

2
4

2
, v10 =

2
3

3
, v11 =

1
3

4
,

v12 =
2
4

3
, v13 =

2
3

4
, v14 =

3
4

3
, v15 =

2
4

4
, and v16 =

3
4

4
. It is clear by inspection

that this is a connected graph with just two edge colors (“1” and “2”) and is the Hasse

diagram for a ranked partially ordered set. Additionally, one can see that this graph has

a unique maximal and a unique minimal element (v1 and v16, respectively). Together,

these three conditions show that the Combinatorial Requirement is met. With just a little

work, one can see that this is a distributive lattice. The best way to see this is to apply

the Fundamental Theorem of Finite Distributive Lattices (see [Sta]), and observe that the

poset of Figure 3.1 is isomorphic to the poset of order ideals taken from the 7-element poset

of “irreducibles” in Figure 3.2. To verify the Dimension Requirement, note that the number
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of vertices in Figure 3.1 is 16, which agrees with the Weyl dimension formula for B2 with

a = 1 and b = 1.

Figure 3.2 7-element poset of “irreducibles”
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There are 23 edges to check in order to verify the Structure Condition. Take, for example,

edge v7
2−→ v5. Recall that

wt(s) = (2ρ1(s)− l1(s), 2ρ2(s)− l2(s))

where ρi(s) is the rank of the element s in its i-component and li(s) is the length of the

i-component containing s. Since ρ1(v7) = 3, ρ2(v7) = 0, l1(v7) = 3, and l2(v7) = 2, one

can verify that wt(v7) = (3,−2). Likewise, since ρ1(v5) = 1, ρ2(v5) = 1, l1(v5) = 1, and

l2(v5) = 2, one can verify that wt(v5) = (1, 0). It follows that

wt(v7) + α2 = (3,−2) + (−2, 2) = (1, 0) = wt(v5).

One can do similar computations on the other 22 edges to verify the Structure Condition.

Using Diamond and Crossing relations, one can easily determine that the coefficients

πp,q for this example are: π2,1 = 1, π3,1 = 1, π4,2 = 3, π4,3 = 1
3 , π5,3 = 5

3 , π6,4 = 4, π7,4 = 1
3 ,

π7,5 = 5
3 , π8,5 = 1, π9,6 = 3, π10,6 = 1, π10,7 = 4

3 , π11,7 = 5
3 , π11,8 = 1, π12,9 = 2, π12,10 = 3

2 ,

π13,10 = 5
6 , π13,11 = 8

3 , π14,12 = 2, π15,12 = 1
2 , π15,13 = 5

2 , π16,14 = 1, and π16,15 = 1. Recall
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that the Crossing Condition for any vertex s and any color i is:

∑

r:r
i→s

πr,s −
∑

t:s
i→t

πs,t = 2ρi(s)− li(s).

Choosing color 1 at vertex v10 for example, this identity holds since

∑

r:r
1→v10

πr,v10 −
∑

t:v10
1→t

πv10,t = (π12,10 + π13,10)− π10,7 = 1 = 2ρ1(v10)− l1(v10),

where ρ1(v10) = 2 and li(v10) = 3. Recall that the Diamond Condition is checked by

πs,uπt,u = πr,sπr,t whenever elements r, s, t and u form a diamond of edges r
r

r
r¡¡

@@
@@
¡¡j i

i j

r
s

u
t for

any colors i and j. Taking, for example, diamond 8-5-7-11, we see that

π8,5π7,5 =
5
3

= π11,8π11,7.

The other diamond and crossing relations can be similarly verified.

Proposition 3.1 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ is a distributive lattice and meets the Combinatorial Requirement for B2(λ).

Proof. Let s, t ∈ Lλ. Define min(s, t) to be the componentwise max of entries from

s, t (since Lλ is ordered by reverse componentwise comparison). In particular, the (i, j)-

entry of min(s, t) is the max {si,j , ti,j}. (Note that i ∈ {1, 2} and 1 ≤ j ≤ a + b.) Let

r = min(s, t). (1) Suppose ri,j > ri,j+1. Without loss of generality, assume si,j ≥ ti,j .

Therefore, by definition ri,j = si,j . Also, ri,j+1 ≥ si,j+1. So, si,j = ri,j > ri,j+1 ≥ si,j+1,

hence si,j > si,j+1. But, si,j ≤ si,j+1 for every i, j since s ∈ Lλ. Therefore we must have

ri,j ≤ ri,j+1 for every j, so r meets the criteria that box-entries of a B2-tableau weakly

increase from left to right across the rows. (2) Similarly suppose entry r1,j ≥ r2,j . Without

loss of generality, assume s1,j ≥ t1,j . Therefore, by definition r1,j = s1,j . Also, r2,j ≥ s2,j .

So, s1,j = r1,j ≥ r2,j ≥ s2,j , hence s1,j ≥ s2,j . But, s1,j < s2,j for every j since s ∈ Lλ.



30

Therefore r1,j < r2,j for each j, so r meets the criteria that box-entries of a B2-tableau

strictly increase from top to bottom down the columns. (3) Now, assume
1
4 is the jth

column in r. Since r1,j is a 1, then s1,j and t1,j are both 1. Therefore, either s2,j or t2,j

must be a 4, which means that
1
4 is the jth column in either s or t. But s, t ∈ Lλ, hence

1
4 does not appear as a column in s or t. Therefore,

1
4 is not in r, so r meets the criteria

that a B2-tableau has no columns of the form
1
4 . (4) Finally, assume the jth and (j + 1)st

columns of r are
2
3 . Since r2,j is a 3, then without loss of generality s2,j is a 3. Since

s2,j ≤ s2,j+1, then s2,j+1 ∈ {3, 4}. If s2,j+1 was a 4, then r2,j+1 would have to be a 4. But

r2,j+1 = 3 by assumption. Then s2,j+1 = 3. At this point, the jth and (j + 1)st columns of

s must be
1
3

1
3 ,

1
3

2
3 , or

2
3

2
3 . If

1
3

1
3 ∈ s, then the jth and (j + 1)st columns of t must be

2
3

2
3 to obtain r. But t ∈ Lλ, so

2
3 appears at most once in t. Similarly, if

1
3

2
3 ∈ s, then

(again) t must contain
2
3

2
3 to obtain r. Since s ∈ Lλ, s can not contain

2
3

2
3 . Therefore,

the jth and (j + 1)st columns of r are not
2
3 , so r meets the criteria that in a B2-tableau,

2
3 appears at most once.

By combining (1) through (4), we see that r ∈ Lλ, hence min(s, t) ∈ Lλ for every

s, t ∈ Lλ. A similar argument can be used to show that max(s, t) ∈ Lλ, where max(s, t) is

the componentwise min of entries from s and t. Note that Lλ ⊆ L ×· · ·×L ×L ×· · ·×L .

Note also that L for B2 is a chain with four elements, while L is a chain with five elements.

Chains are known to be distributive lattices. Therefore by Lemma 2.2.3 of [Mc], Lλ is a

distributive lattice, with s∧ t := min(s, t) and s∨ t := max(s, t). By definition, the edges

in Lλ can only take one of two colors. Finally, since Lλ is a distributive lattice, it is a

ranked poset with a unique maximal element and a unique minimal element.
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Proposition 3.2 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ meets the Dimension Requirement for B2(λ). That is, the number of B2-tableaux

of shape λ agrees with Weyl’s dimension formula for B2, so

|Lλ| = 1
3!

(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)

Proof. Let t ∈ Lλ. Then t can be one of five types: (1) tb =
1
2 , (2) tb =

1
3 , (3) tb =

2
3 ,

(4) tb =
2
4 , or (5) tb =

3
4 . In case (1), it follows that tq =

1
2 for 1 ≤ q ≤ b− 1. There are

((
4
a

))
ways to choose the remaining a columns t1+b, . . . , ta+b of t. In case (2), the columns

t1, . . . , tb−1 can be chosen from
{

1
2 ,

1
3

}
. There are

((
2

b−1

))
ways to choose these columns.

There are
((

4
a

))
ways to choose the remaining a columns t1+b, . . . , ta+b of t. In case (3),

the columns t1, . . . , tb−1 can be chosen from
{

1
2 ,

1
3

}
, but not

2
3 since it can appear at

most once in t. There are
((

2
b−1

))
ways to choose these columns. There are

((
3
a

))
ways to

choose the remaining a columns t1+b, . . . , ta+b of t, since t1+b, . . . , ta+b must be selected

from the set
{

2 , 3 , 4
}
. Since there can only be one

2
3 in t, cases (4) and (5) can be

broken up into two subcases: (a)
2
3 does not appear, and (b)

2
3 appears only once. In case

(4), the columns t1, . . . , tb−1 can be chosen from
{

1
2 ,

1
3 ,

2
4

}
. So, for case (4a), there are

((
3

b−1

))
ways to choose these columns, while in case (4b), there are

((
3

b−2

))
ways to choose

the columns. There are
((

3
a

))
ways to choose the remaining a columns t1+b, . . . , ta+b of t

for both case (a) and case (b). In case (5), the remaining columns of t1, . . . , tb−1 can be

chosen from
{

1
2 ,

1
3 ,

2
4 ,

3
4

}
. There are

((
4

b−1

))
ways to choose these columns in case (5a),

and
((

4
b−2

))
ways to choose these columns in case (5b). There are

((
2
a

))
ways to choose

the remaining a columns t1+b, . . . , ta+b of t for both case (a) and case (b), since t must be

selected from the set
{

3 , 4
}
.
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Now add up the totals from each of the five types:

((
4
a

))
+

((
2

b− 1

))((
4
a

))
+

((
2

b− 1

))((
3
a

))
+

{((
3

b− 1

))
+

((
3

b− 2

))} ((
3
a

))
+

{ ((
4

b− 1

))
+

((
4

b− 2

))} ((
2
a

))

This simplifies to
1
3!

(a + 1)(b + 1)(a + b + 2)(a + 2b + 3).

With some work, the above description of B2-tableaux can be derived from [Lit]. Lit-

telmann supplied his own rule for computing the weight of an B2-tableaux. With a little

more work, this rule can be seen to be

wtLit(s) :=
(

n1(s)− n2(s) + n3(s)− n4(s) , n2(s)− n3(s)
)
,

where ni(s) is the number of times the integer i appears as a box-entry in the tableau s.

Littelmann’s weight rule is known to meet the Character Condition for B2(λ). That is,

Littelmann shows that dλ(µ) = |{s ∈ P |wtLit(s) = µ}| for each µ in Z× Z.

Lemma 3.3 Let λ = (a, b) for non-negative integers a and b. Let s be in Lλ. Let i be

in {1, 2}. (1.) Let sq (1 ≤ q ≤ a + b) be the leftmost (respectively, rightmost) column of s

that is not i-maximal (respectively, i-minimal) in L or L . Let xq denote an element of L

or L that covers (respectively, is covered by) sq along an edge of color i. Form the tableau

x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b).

Then x is in Lλ, and s i−→ x (respectively, x i−→ s). (2.) The tableau s is i-maximal

(respectively, i-minimal) in Lλ if and only if sq is i-maximal (respectively i-minimal) in L

or L for all 1 ≤ q ≤ a+ b. (3.) The functions li and ρi are additive in the columns of s, i.e.

li(s) = li(s1) + li(s2) + · · ·+ li(sa+b) and ρi(s) = ρi(s1) + ρi(s2) + · · ·+ ρi(sa+b). The weight
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rule wt is additive in the columns of s, so wt(s) = wt(s1) + wt(s2) + · · ·+ wt(sa+b). (4.) If

s i−→ t, then wt(s) + αi = wt(t). (5.) Littelmann’s weight rule is additive in the columns

of s, so wtLit(s) = wtLit(s1) + wtLit(s2) + · · ·+ wtLit(sa+b). (6.) wtLit(s) = wt(s).

Proof. Note that the 1-maximal columns in L are 1 and 3 , and the 2-maximal columns

in L are 1 , 2 , and 4 . The 1-minimal columns in L are 2 and 4 , and the 2-minimal

columns in L are 1 , 3 , and 4 . The 1-maximal columns in L are
1
2 ,

1
3 , and

3
4 , and the

2-maximal columns in L are
1
2 ,

2
3 , and

2
4 . The 1-minimal columns in L are

1
2 ,

2
4 , and

3
4 , and the 2-minimal columns in L are

1
3 ,

2
3 , and

3
4 .

For (1), we consider cases. First take i = 1 and assume sq is the leftmost column of s

that is not 1-maximal. It follows that sq must be either 2 , 4 ,
2
3 or

2
4 . If sq = 2 , then

the semistandard condition implies that the box in tableau s immediately to the left of sq

(entry s1,q−1) must be either a 1 or a 2. But if s1,q−1 = 2, then sq−1 is either 2 ,
2
3 or

2
4 , which contradicts that fact that sq is the leftmost column of s that is not 1-maximal.

Therefore s1,q−1 is 1. To the right of the column sq we must have either 2 , 3 , or 4 .

Thus, if we set xq := 1 , then the tableau x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still

meet the semistandard requirement. Then x is in Lλ. Moreover, it is clear that s and

x only differ in the entry (1, q), and that s 1−→ x. If sq = 4 , then the semistandard

condition implies that s1,q−1 must be a 1, 2, 3, or 4. But if s1,q−1 = 4, then sq−1 is 4 ,

which contradicts the fact that sq is the leftmost column of s that is not 1-maximal. Also,

if s1,q−1 = 2, then sq−1 is either 2 ,
2
3 , or

2
4 , which again contradicts the fact that sq is

the leftmost column of s that is not 1-maximal. Therefore s1,q−1 is either a 1 or a 3. To

the right of the column sq we must have 4 . Thus, if we set xq := 3 , then the tableau

x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still meet the semistandard requirement. Then x
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is in Lλ. Moreover, it is clear that s and x only differ in the entry (1, q), and that s 1−→ x.

Now, if sq =
2
3 , then the semistandard condition implies that s1,q−1 must be a 1 or a

2. But if s1,q−1 = 2, then sq−1 is
2
3 , which contradicts the fact that sq is the leftmost

column of s that is not 1-maximal (it also contradicts the fact that
2
3 appears at most

once in s). Therefore s1,q−1 is 1, and sq−1 is either
1
2 or

1
3 . To the right of the column

sq we must have one of 2 , 3 , 4 ,
2
4 , or

3
4 . Thus, if we set xq :=

2
4 , then the tableau

x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still meet the semistandard requirement. Then x

is in Lλ. Moreover, it is clear that s and x only differ in the entry (1, q), and that s 1−→ x.

Similarly, if sq =
2
4 , then the semistandard condition implies that s1,q−1 must be either a

1 or a 2. But if s1,q−1 = 2, then sq−1 is either
2
3 or

2
4 , both of which contradict the fact

that sq is the leftmost column of s that is not 1-maximal. Therefore s1,q−1 is 1, and sq−1

is either
1
2 or

1
3 . To the right of the column sq we have one of 2 , 3 , 4 ,

2
4 , or

3
4 . Thus,

if we set xq :=
2
3 , then the tableau x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b) will still meet the

semistandard requirement. Additionally, since sq−1 could not have been
2
3 , then x meets

the restriction requirement that
2
3 appears at most once. Then x is in Lλ. Moreover, it is

clear that s and x only differ in the entry (1, q), and that s 1−→ x. The remaining i = 2

cases and the i-minimal arguments are entirely similar.

Note that L for B2 is a chain with four vertices and three edges, while L is a chain

with five vertices and four edges. Otherwise, the proofs of parts (2) through (6) of Lemma

3.3 are identical to the proofs of parts (2) through (6) given in Lemma 2.3.

Theorem 3.4 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Structure Condition for B2.
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Proof. This is just Lemma 3.3.4.

Theorem 3.5 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Character Condition for B2(λ).

Proof. In the paragraph preceding Lemma 3.3, we noted that Littelmann’s weight rule

is known to meet the Character Condition for B2(λ). The proposition now follows from

Lemma 3.3.6.

The next theorem confirms the Semistandard Lattice Conjecture for B2 for two special

classes of dominant weights. For one of these families of dominant weights, the result follows

as an application of the main result of [DLP1].

Theorem 3.6 Let λ = (a, b) for some non-negative integers a and b such that a = 0

or b = 0. Then the semistandard lattice Lλ is a supporting graph for the irreducible

representation of B2 with dominant weight λ.

Proof. For λ = (0, b), the semistandard lattice Lλ is just the Molev lattice LMol
B (b, 4)

from [DLP1]. To see this, associate to a tableau s = (s1, . . . , sb) in Lλ the 5-tuple mol(s) :=

(s1, s2, s3, s4, s5) in LMol
B (b, 4), where s1 counts the number of columns of the form

1
2 in s,

s2 counts the number of columns of the form
1
3 in s, s3 counts the number of columns of

the form
2
3 in s, s4 counts the number of columns of the form

2
4 in s, and s5 counts the

number of columns of the form
3
4 in s. One can check that s −→ t in Lλ if and only if

mol(s) −→ mol(t) in LMol
B (b, 4). The Cartan matrix for B2 used in [DLP1] is




2 −2

−1 2


,

so one must reverse the colors on the edges of Lλ to get the same arrangement of edge colors

in LMol
B (b, 4). Theorem 2.1.Molev of [DLP1] shows that the edge-colored lattice LMol

B (b, 4),
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and hence Lλ, is a supporting graph for the irreducible representation of B2 with dominant

weight λ.

Disregarding edge colors, the B2 lattice Lλ for λ = (a, 0) coincides with the A3 lattice

denoted LGT−left
A (3, (a, 0, 0)) in [Don]. That is, Lλ and LGT−left

A (3, (a, 0, 0)) are isomorphic

as lattices, but with slightly different edge coloring schemes. For the remainder of this

proof, set LGT−left
A := LGT−left

A (3, (a, 0, 0)). In [Don], edges of the A3 lattice LGT−left
A

are colored 1, 2, or 3: the edge s −→ t is given color i if an entry i in t changes to

i+1 to form the tableau s. It is easy to see that all i-components in LGT−left
A are chains.

Pick an i-component C in LGT−left
A and supply the edges of this chain with coefficients as

follows: If s i−→ t is an edge in C, set ct,s = ρi(t) and ds,t = li(t) − ρi(t) + 1. (For an

example of these coefficients, see Example 4.1.1 of [Mc].) It now follows from Theorem

6.4 of [Don] that with this assignment of edge coefficients, LGT−left
A meets the Diamond

and Crossing Conditions. (In the language of that paper, LGT−left
A is now a representation

diagram for a “one-dimensional weight space representation” of A3.) Keep this assignment

of edge coefficients, but now change all edges of color 3 in LGT−left
A to color 1 to obtain

the B2 lattice Lλ. Clearly this assignment of coefficients to the edges of Lλ will satisfy

the Diamond condition at any diamond, and will satisfy the Crossing Condition for color

2 because the 2-components of Lλ are the same as the 2-components of LGT−left
A . We now

only need to check the Crossing Condition for color 1 in the B2 lattice Lλ.

The color 1 component of a tableau t in Lλ coincides with the {1,3}-component of t in

LGT−left
A . Let k := l1(t) and p := ρ1(t) (the length of the 1-component of t in LGT−left

A

and the rank of t in the 1-component, respectively). Let l := l3(t) and q := ρ3(t), where

we think of t as an element of LGT−left
A . One can check that the color 1 edge below t (if
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it exists) has product (k − p + 1)(p), the color 3 edge below t (if it exists) has product

(l− q +1)(q), the color 1 edge above t (if it exists) has product (k−p)(p+1), and the color

3 edge above t (if it exists) has product (l− q)(q + 1). Now change color 3 to color 1. It is

clear that the length of the 1-component containing t in Lλ is k + l, and that the rank of

t in this 1-component is p + q. To check the Crossing Condition for color 1 at t in Lλ now

requires us to simply verify the identity

(l − q + 1)(q) + (k − p + 1)(p)− (k − p)(p + 1)− (l − q)(q + 1) = 2p + 2q − l − k.

One can check by hand that this identity holds.



CHAPTER 4

DISTRIBUTIVE LATTICES AND REPRESENTATIONS OF G2

Semistandard lattices for G2. Fix non-negative integers a and b and set λ = (a, b).

Following Chapter 6 of [Mc], a G2-tableaux of shape λ is any semistandard filling of sh(λ)

with box-entries taken from the set {1, 2, 3, 4, 5, 6, 7}, adhering to the restrictions in Table

4.1. An example of a G2-tableau of shape (2,1) is t =
1

3

1 2
.

Table 4.1 Filling restrictions for G2-tableaux

This column in t ∈ Tλ. . . . . . cannot be succeeded by a column containing these entries:

4 4

1

4 1

1

5 1

1

6 1 or 2

1

7 1 , 2 , 3 , or 4

2

6 2

2

7 2 , 3 , or 4

3

7 3 or 4

4

7 4
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As in Chapter 2, partially order the set of all G2-tableaux of shape λ by reverse com-

ponentwise comparison. It follows from Lemma 6.1.4 of [Mc] that relative to this partial

order s is covered by t, written s −→ t, if and only if there exist indices k and l such that

sk,l = tk,l + 1 while sp,q = tp,q for p 6= k or q 6= l. Let i := 1 if tk,l ∈ {1, 3, 4, 6}, and

let i := 2 otherwise; then we assign the “color” i to this edge, and write s i−→ t. The

G2-semistandard lattice Lλ is the set of G2-tableaux of shape λ together with the reverse

componentwise partial ordering and the above assignment of colors to the covering relations

of this partial order.

Figure 4.1 The G2-semistandard lattice corresponding to the shape λ = (0, 1)
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As an example, consider the G2-semistandard lattice Lλ when λ = (0, 1) (see Figure

4.1). We will sometimes refer to vertex k in this picture by the symbol vk. The tableaux

associated to these vertices can be found in Appendix B. It is clear by inspection that this

is a connected graph with just two edge colors (“1” and “2”) and is the Hasse diagram for a

ranked partially ordered set. Additionally, one can see that this graph has a unique maximal

and a unique minimal element (v1 and v14, respectively). Together, these three conditions

show that the Combinatorial Requirement is met. With just a little work, one can see

that this is a distributive lattice. The best way to see this is to apply the Fundamental

Theorem of Finite Distributive Lattices (see [Sta]), and observe that the poset in Figure 4.1

is isomorphic to the poset of order ideals taken from the 10-element poset of “irreducibles”

in Figure 4.2. To verify the Dimension Requirement, note that the number of vertices in

Figure 4.1 is 14, which agrees with the Weyl dimension formula for B2 with a = 0 and

b = 1.

Figure 4.2 10-element poset of “irreducibles”
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There are 16 edges to check in order to verify the Structure Condition. Take, for example,

edge v6
2−→ v4. Recall that

wt(s) = (2ρ1(s)− l1(s), 2ρ2(s)− l2(s))

where ρi(s) is the rank of the element s in its i-component and li(s) is the length of the

i-component containing s. Since ρ1(v6) = 2, ρ2(v6) = 0, l1(v6) = 2, and l2(v6) = 1, one

can verify that wt(v6) = (2,−1). Likewise, since ρ1(v4) = 1, ρ2(v4) = 1, l1(v4) = 3, and

l2(v4) = 1, one can verify that wt(v4) = (−1, 1). It follows that

wt(v6) + α2 = (2,−1) + (−3, 2) = (−1, 1) = wt(v4).

One can do similar computations on the other 15 edges to verify the Structure Condition.

Using Diamond and Crossing relations, one can easily determine that the coefficients

πp,q for this example are: π2,1 = 1, π3,2 = 3, π4,3 = 4, π5,4 = 3, π6,4 = 1, π7,5 = 2, π7,6 = 3
2 ,

π8,6 = 1
2 , π9,7 = 2, π10,7 = 3

2 , π10,8 = 1
2 , π11,9 = 3, π11,10 = 1, π12,11 = 4, π13,12 = 3, and

π14,13 = 1. Recall that the Crossing Condition for any vertex s and any color i is:

∑

r:r
i→s

πr,s −
∑

t:s
i→t

πs,t = 2ρi(s)− li(s).

Choosing color 1 at vertex v6 for example, this identity holds since

∑

r:r
1→v6

πr,v6 −
∑

t:v6
1→t

πv6,t = (π7,6 + π8,6)− 0 = 2 = 2ρ1(v6)− l1(v6),

where ρ1(v6) = 2 and li(v6) = 2. Recall that the Diamond Condition is checked by

πs,uπt,u = πr,sπr,t whenever elements r, s, t and u form a diamond of edges r
r

r
r¡¡

@@
@@
¡¡j i

i j

r
s

u
t

for any colors i and j. Taking, for example, diamond 10-7-9-11, we see that

π10,7π9,7 = 3 = π11,10π11,9.
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The other diamond and crossing relations can be similarly verified.

Proposition 4.1 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ is a distributive lattice and meets the Combinatorial Requirement for G2(λ).

Proof. Distributivity of Lλ is just Theorem 6.2.2 of [Mc]. By definition edges in Lλ take

only one of two colors. Finally, since Lλ is a distributive lattice, it is a ranked poset with a

unique maximal element and a unique minimal element.

Proposition 4.2 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ meets the Dimension Requirement for G2(λ). That is, the number of G2-tableaux

of shape λ agrees with Weyl’s dimension formula for G2, so

|Lλ| = 1
5!

(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)(a + 3b + 4)(2a + 3b + 5)

Remarks on proof. While a combinatorial proof similar to the proofs of Proposition 2.2

and 3.2 would be nice, the number of subcases involved would make for a lengthy argument.

Recall that the Character Condition for G2(λ) (Theorem 4.5 below) implies the Dimension

Requirement.

McClard shows in Chapter 6 of [Mc] how certain tableaux originating in [Lit] can be

translated into the G2-tableaux defined above. Note that McClard uses LLit
G (2, λ) to denote

Lλ, and writes wtP (t) instead of wt(t). In [Lit], Littelmann prescribes his own “weight

rule” for G2-tableaux. From Lemma 6.1.2 and other remarks on p. 39 of [Mc], one can see

that Littelmann’s weight rule is simply

wtLit(s) =
(

n1(s)−n2(s)+2n3(s)−2n5(s)+n6(s)−n7(s) , n2(s)−n3(s)+n5(s)−n6(s)
)
,

where ni(s) is the number of times the integer i appears as a box-entry in the tableau s.

Littelmann’s weight rule is known to meet the Character Condition for G2(λ). That is,
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Littelmann shows that dλ(µ) = |{s ∈ P |wtLit(s) = µ}| for each µ in Z × Z. The next

lemma collects into one statement many results and observations from [Mc].

Lemma 4.3 Let λ = (a, b) for non-negative integers a and b. Let s be in Lλ. Let i be in

{1, 2}. (1.) Let sq (1 ≤ q ≤ a+ b) be the leftmost (respectively, rightmost) column of s that

is not i-maximal (respectively, i-minimal) in L or L . Let xq denote an element of L or

L that covers (respectively, is covered by) sq along an edge of color i. Form the tableau

x := (s1, . . . , sq−1,xq, sq+1, . . . , sa+b).

Then x is in Lλ, and s i−→ x (respectively, x i−→ s). (2.) The tableau s is i-maximal

(respectively, i-minimal) in Lλ if and only if sq is i-maximal (respectively i-minimal) in L

or L for all 1 ≤ q ≤ a+ b. (3.) The functions li and ρi are additive in the columns of s, i.e.

li(s) = li(s1) + li(s2) + · · ·+ li(sa+b) and ρi(s) = ρi(s1) + ρi(s2) + · · ·+ ρi(sa+b). The weight

rule wt is additive in the columns of s, so wt(s) = wt(s1) + wt(s2) + · · ·+ wt(sa+b). (4.) If

s i−→ t, then wt(s) + αi = wt(t). (5.) Littelmann’s weight rule is additive in the columns

of s, so wtLit(s) = wtLit(s1) + wtLit(s2) + · · ·+ wtLit(sa+b). (6.) wtLit(s) = wt(s).

Proof. The proof of (1) can be found in the proof of Proposition 6.2.5 of [Mc]. Part (2)

of the lemma is just a restatement of Proposition 6.2.5 in [Mc]. For part (3) of the lemma,

additivity of ρi and li follow from Corollary 6.2.7 of [Mc]. Additivity of wt now follows:

wt(s) + αi = wt(s1) + · · ·+ wt(sk−1) + wt(sk) + wt(sk+1) + · · ·+ wt(sa+b) + αi

= wt(t1) + · · ·+ wt(tk−1) + wt(sk) + wt(tk+1) + · · ·+ wt(ta+b) + αi

= wt(t1) + · · ·+ wt(tk−1) + wt(tk) + wt(tk+1) + · · ·+ wt(ta+b)

= wt(t)
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For part (4) of the lemma, consult the proof of Theorem 6.2.8 of [Mc], p. 48. For part (5)

of the lemma, additivity of wtLit follows from Lemma 6.1.2 of [Mc]. Part (6) of the lemma

is just Theorem 6.2.8 of [Mc]. Part (6) can also be concluded from the additivity of wt and

wtLit, together with the observation that wt and wtLit agree in L and L .

The next two theorems were the main results of [Mc]. We reformulate these results in

the language and notation of this thesis.

Theorem 4.4 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Structure Condition for G2.

Proof. This is just Lemma 4.3.4.

Theorem 4.5 Let λ = (a, b) for non-negative integers a and b. Then the semistandard

lattice Lλ satisfies the Character Condition for G2(λ).

Proof. In the paragraph preceding Lemma 4.3, we noted that Littelmann’s weight rule is

known to meet the Character Condition for G2(λ). The theorem now follows from Lemma

4.3.6.

The next theorem confirms the Semistandard Lattice Conjecture for G2 for a special

class of dominant weights. This theorem restates a result from [DLP1].

Theorem 4.6 Let λ = (a, 0) for some non-negative integer a. Then the semistandard

lattice Lλ is a supporting graph for the irreducible representation of G2 with dominant

weight λ.

Proof. See Corollary 3.3 of [DLP1]. The lattice LLit
G (2, aω1) there is just the lattice Lλ

when λ = (a, 0).



CHAPTER 5

KEY ALGORITHMS FOR INVESTIGATING THE

SEMISTANDARD LATTICE CONJECTURE

In order to investigate the Semistandard Lattice Conjecture, we developed three main

algorithms. The first algorithm, tableaux, creates the set of all tableaux of shape λ. The

second algorithm, total order, defines a total ordering for the tableaux in Lλ. The final

algorithm, edges, determines (if possible) the coefficient associated with any edge in a

semistandard lattice with a view toward describing the “actions” of the Lie Algebra g.

Throughout this section, we let g denote a simple Lie Algebra of rank two, and we let

λ = (a, b), where a and b are non-negative integers. Define lattice dimension(g, λ) to

be the size of the g-semistandard lattice Lλ. This coincides with Weyl’s formula for the

dimension of the irreducible represenation of g with dominant weight λ (see Propositions

2.2, 3.2, and 4.2). Define a function lattice length(g, λ) which returns the length of the

g-semistandard lattice Lλ. That is, lattice length(g, λ) counts the number of steps from

the maximal tableau to the minimal tableau in Lλ. One can see that

lattice length(g, λ) =





2a + 2b if g = A2

3a + 4b if g = B2

6a + 10b if g = G2

by noting that the maximal tableau in all three cases is
1

2

...

...

1

2

1 ... 1
, while for A2 the

minimal tableau in Lλ is
2

3

...

...

2

3

3 ... 3
, for B2 the minimal tableau is

3

4

...

...

3

4

4 ... 4
,
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and for G2 the minimal tableau is
6

7

...

...

6

7

7 ... 7
. For a tableau t in the g-semistandard

lattice Lλ, we let descendant set(g, λ, t) denote the set {s ∈ Lλ | s −→ t}. That is,

descendant set(g, λ, t) is the set of all tableaux in Lλ covered by t (regardless of the color

of the edges). In the semistandard lattice Lλ for a rank two simple Lie Algebra g, tableaux

can be organized according to “rank” or “level.” Let L
(0)
λ denote the top level, so L

(0)
λ :=

{
1

2

...

...

1

2

1 ... 1
}

, and more generally, L
(i)
λ will denote the set of tableaux which are i steps

below the maximum tableau.

Algorithm 5.1 Tableaux

INPUT: A rank two simple Lie Algebra g and two non-negative integers a and b that

indicate the size of the tableaux λ.

OUTPUT: A sequence (K0, . . . , Kl) of sets of tableaux, where l = lattice length(g, λ).

Step 1: Set l := lattice length(g, λ). Let (K0, K1, · · · ,Kl) denote a sequence

of sets. Initialize K0 :=
{

1

2

...

...

1

2

1 ... 1
}

, and set Ki := ∅ for 1 ≤ i ≤ l.

Step 2: FOR i from 1 to l LOOP

FOR t in Ki−1 LOOP

Ki := Ki union descendant set(g, λ, t)

END LOOP

END LOOP

Step 3: RETURN(K0, . . . , Kl)

Proposition 5.2 Let l := lattice length(g, λ). Let (K0, . . . , Kl) := tableaux(g, λ).

Then Ki = L
(i)
λ for 0 ≤ i ≤ l.
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Proof. Clearly, K0 = L
(0)
λ =

{
1

2

...

...

1

2

1 ... 1
}

. Assume Ki−1 = L
(i−1)
λ . Choose an

element s in L
(i)
λ . By definition, s is a descendant of an element of L

(i−1)
λ , say t. Since

Ki−1 = L
(i−1)
λ , then t is an element of Ki−1. By step 4 of algorithm tableaux, each

descendant of t will be an element of Ki. Therefore s ∈ Ki, hence L
(i)
λ ⊂ Ki. Now

choose an element s in Ki. By algorithm tableaux, s can only be added to Ki if it is the

descendant of some element t in Ki−1. Since Ki−1 = L
(i−1)
λ , then t is an element of L

(i−1)
λ .

By definition, s will be an element of L
(i)
λ since it is the descendant of t, an element of

L
(i−1)
λ . Therefore, s ∈ L

(i)
λ , hence Ki ⊂ L

(i)
λ . Then Ki = L

(i)
λ . The proposition statement

now follows by induction.

In particular, it follows from Proposition 5.2 that the output of the tableaux algorithm

is the set of all tableaux in Lλ. Our next algorithm totally orders the set of tableaux in Lλ.

This will aid crucially in the iterative search for the edges and associated coefficients in the

edges algorithm, which will follow shortly.

One tool that is very useful for assigning edge coefficients in a g-semistandard lat-

tice is its “boundary.” The boundary is not easy to characterize abstractly, but roughly

speaking it is a long chain of vertices and edges going from the minimal tableau up to

the maximal tableau. We use edges in this chain as the starting point for edge coefficient

computations between any two levels of vertices. In Appendix B, we explicitly define the

sequences of boundary vertices for the semistandard lattices of each type (A2, B2, or G2).

The function boundary(g, λ) returns the sequence (b0, · · · ,bl) of boundary vertices in

the g-semistandard lattice Lλ, where b0 = maximal tableau, bl = minimal tableau (l =

lattice length(g, λ)), and bk is the unique boundary vertex in the level set L
(k)
λ .
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For two tableaux s, t ∈ Lλ, we define a function distance(g, λ, s, t) which returns the

shortest number of steps between s and t, i.e. the length of any shortest path from s to t in

the Hasse diagram for Lλ. In particular, if s is the maximal tableau and t is the minimal

tableau in Lλ, then distance(g, λ, s, t) = lattice length(g, λ). Before we introduce a total

ordering of tableaux in the g-semistandard lattice Lλ for an arbitrary shape λ (Algorithm

5.3), let us first describe a total ordering on columns in the g-semistandard lattices L and

L . See Appendix B for explicit descriptions of these lattices. If s and t are two distinct

g-semistandard columns of the same shape, then we say s precedes t in the total order on

columns if (a) the rank of s in L or L is greater than the rank of t or (b) s and t have

the same rank but s is a boundary vertex. Notice that condition (b) is only relevant for

the G2-semistandard lattice L . For example, in B2-semistandard lattices, we say that 2

precedes 3 , and we say
1
3 precedes

3
4 . In L for G2, consider

2
6 and

1
7 . While both sit

on the same level of L , the column
2
6 is a boundary vertex, so we say that

2
6 precedes

1
7 . In the “Convention Adopted for Code” tables located in Appendix B, each column

for the g-semistandard lattices L and L is assigned a unique positive integer. Using this

assignment of integers one can easily compare two columns of the same shape for precedence

in the total ordering on columns.

Now let λ be an arbitrary dominant weight. Let us describe how we will compare two

tableaux with the same rank and the same distance from the boundary. Suppose s and t

are at the same level L
(k)
λ in the g-semistandard lattice Lλ, and suppose they have the same

distance from the boundary vertex bk. Let si (respectively ti) denote the ith column of s

(respectively t). Say s precedes t in the righthand lexicographic ordering if there exists a j
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such that (a) si = ti for i > j, and (b) sj precedes tj in the total order on the columns. We

refer to this as the righthand lexicographic rule.

In the algorithm that follows, the concatenation of two finite sequences (a1, . . . , am) and

(b1, . . . , bn), written (a1, . . . , am) concat (b1, . . . , bn), is the new sequence (a1, . . . , am, b1, . . . , bn).

For a sequence S = (a1, . . . , am), we let {S} denote the set {a1, . . . , am}. Note that

(a1, . . . , am) concat (empty sequence) = (a1, . . . , am).

Algorithm 5.3 Total Order

INPUT: A rank two simple Lie Algebra g and two non-negative integers a and b that

indicate the size of the tableaux λ.

OUTPUT: A ordered sequence T of tableaux of shape λ.

Step 1: Set l := lattice length(g, λ), dim := lattice dimension(g, λ),

(K0, . . . , Kl) := tableaux(g, λ), and (b0, . . . ,bl) := boundary(g, λ).

Step 2: For 0 ≤ j ≤ l, let mj be the maximum distance of a tableau at level

Kj from the boundary bj . Let 0 ≤ k ≤ mj . Let Sk
j := {s ∈ Kj |

distance(g, s,bj) = k}. Let d(j, k) := |Sk
j |.

Step 3: Now sort Sk
j using the righthand lexicographic rule to get the sequence

T k
j = (s1, . . . , sd(j,k)). Here, T k

j and Sk
j coincide as sets, and sp precedes

sq in the right hand lexicographic ordering whenever p < q.

Step 4: Now, form a sequence T by concatenating the T k
j ’s by level and then

by distance within each level. That is:

Let T := empty sequence.

FOR j from 0 to l LOOP
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FOR k from 0 to mj LOOP

T := T concat T k
j

END LOOP

END LOOP

Step 5: RETURN(T ).

Proposition 5.4 Let T = total order(g, λ). Then each tableau in Lλ appears once and

only once in the sequence T , and the set {T} coincides with Lλ.

Proof. Keep the notation of Algorithm 5.3 and the preceding paragraphs. Let t ∈ {T}.

Since {T} =
⋃{T k

j }, then t ∈ {T k
j } for some 0 ≤ j ≤ l and 0 ≤ k ≤ mj . Since Sk

j = {T k
j }

as sets, then t ∈ Sk
j . By definition, Sk

j ⊆ Kj ⊆ Lλ, therefore t ∈ Lλ. We see then that

{T} ⊆ Lλ. Now, let t ∈ Lλ. By definition, t ∈ Kj for some 0 ≤ j ≤ l. Also, by definition,

t ∈ Sk
j for some 0 ≤ k ≤ mj . Since Sk

j = {T k
j } as sets, then t appears in the sequence T k

j .

Since T k
j appears as a subsequence of T , then t appears in the sequence T . Therefore each

tableau in Lλ appears in T , and hence Lλ ⊆ {T}. Moreover, since t ∈ Lλ can appear in at

most one subsequence T k
j of T , t can appear at most once in T .

Define a function lub(r, s) which returns the tableau r ∨ s. Recall that the (i, j)-entry

of r∨ s is the min {si,j , ti,j}. For an edge s i−→ t in Lλ, let diamond set(g, λ, s, t) denote

the set {u ∈ Lλ |u precedes t in total order(g, λ), u is at the same level as t, and u covers

s}. We visualize s i−→ t as the “southeast” edge of the diamond r
r

r
r¡¡

@@
@@
¡¡s

t
v

u whenever u ∈

diamond set(g, λ, s, t) and v = lub(u, t). Additionally, define a function mi(g, t) which

returns the ith coordinate of the weight vector wt(t). This number can be calculated using
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Littelmann’s definition of the weight rule:

mi(g, t) =





n1(t)− n2(t) for i = 1 and g = A2

n2(t)− n3(t) for i = 2 and g = A2

n1(t)− n2(t) + n3(t)− n4(t) for i = 1 and g = B2

n2(t)− n3(t) for i = 2 and g = B2

n1(t)− n2(t) + 2n3(t)− 2n5(t) + n6(t)− n7(t) for i = 1 and g = G2

n2(t)− n3(t) + n5(t)− n6(t) for i = 2 and g = G2

where nj(t) is the number of times the integer j appears as a box-entry in the tableau t.

Algorithm 5.5 Edges

INPUT: A rank two simple Lie Algebra g and two non-negative integers a and b that

indicate the size of the tableaux λ.

OUTPUT: A set of edge coefficients or a failure error.

Step 1: Set T := total order(g, λ), so T = (t1, . . . , td), where d = lattice

dimension(g, a, b).

Step 2: FOR j from 1 to d LOOP

Set t := tj .

Sort descendant set(g, λ, t) by the righthand lexicographic rule

to get a sequence (s1, . . . , sr). (Here, descendant set(g, λ, t) =

{s1, . . . , sr}, where r = |descendant set(g, λ, t)|.)

FOR k from 1 to r LOOP

Set s := sk.

Determine color i of edge s −→ t.
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Set diamond := diamond set(g, s, t).

IF diamond 6= {∅} THEN

Let u ∈ diamond

IF πs,u = 0 THEN

RETURN(“Division by zero error”)

ELSE

Let v := lub(u, t).

Set πs,t :=
πu,vπt,v

πs,u

END IF

diamond := diamond \ {u}.

WHILE diamond 6= {∅} LOOP

Let u
′ ∈ diamond

Let v
′
:= lub(u

′
, t)

IF πs,t 6=
π
u
′
,v
′ π

t,v
′

π
s,u
′ THEN

RETURN(“Inconsistent Diamond Relation”)

END IF

diamond := diamond \ {u′}.

END LOOP

ELSE

πs,t := mi(g, t) +
∑

v πt,v −
∑

r πr,t. The first summation is

taken over the set of all v such that t i→ v. The second

summation is taken over the set of all r such that r 6= s and
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r i→ t.

END IF

END LOOP

FOR i from 1 to 2 LOOP

IF mi(g, t) 6= ∑
s:s

i→t
πs,t −

∑
v:t

i→v
πt,v THEN

RETURN(“Inconsistent Crossing Relation”)

END IF

END LOOP

END LOOP

Step 3: RETURN(Π) where Π is the sequence of all edge coefficients πs,t in-

dexed by the edges s i−→ t in Lλ.

The total ordering of the total order algorithm is critical in order to ensure that the

edges algorithm is “well-defined,” i.e. at any stage in the algorithm, we have enough infor-

mation to compute a new edge coefficient. This is the content of part (1) of the following

theorem.

Theorem 5.6 Let a and b be non-negative integers. Let λ = (a, b). Let g be a rank two

simple Lie Algebra.

(1) Preserving the notation of the preceding algorithm, suppose diamond set(g, s, t) = ∅

for edge s i→ t. (That is, there does not exist a tableau u such that (a) u precedes t

in the total order, (b) u is at the same level as t, and (c) u covers s.) Then for any s
′

such that s
′ i→ t, it is the case that the coefficient πs

′
,t has already been calculated. In
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particular, if there is no diamond with s i→ t as its “southeast” edge, then πs,t can be

computed with the crossing relation for color i at vertex t.

(2) If edges(g, λ) returns “Inconsistent” (i.e. the algorithm returns a consistency error),

then the g-semistandard lattice Lλ is NOT a supporting graph for a representation of

g.

(3) If edges(g, λ) returns non-zero coefficients, then the g-semistandard lattice Lλ is a

supporting graph for the representation of g with dominant weight λ.

(4) Suppose Lλ is the supporting graph for a basis {vs} for the irreducible representation

of g with dominant weight λ, and suppose that relative to this basis the product of

coefficients π∗s,t attached to any edge s i−→ t in Lλ is nonzero. Then edges(g, λ)

returns a sequence of nonzero coefficients, and this sequence is precisely (π∗s,t).

Part (4) of Theorem 5.4 is something of a converse to part (3). It says that whenever

Lλ is known to be a supporting graph, then the actions along the edges of Lλ (or, more

precisely, the products of the coefficients on any edge) are uniquely determined by the edges

algorithm. From Theorems 2.6, 3.6, and 4.6 we see that Theorem 5.4.4 applies to Lλ when

λ is any dominant weight for A2; when λ has the form (a, 0) or (0, b) for B2; and when λ has

the form (a, 0) or (0, 1) for G2. (The references cited in the proofs of Theorems 2.6, 3.6, and

4.6 actually demonstrate that these lattices are supporting graphs for bases whose actions

yield nonzero edge coefficients.) It can be shown ([DLP2]) that this uniqueness of edge

coefficients implies “uniqueness” of the basis in the representing space. That is, keeping the

notation of the theorem statement, suppose {ws} is another basis for the representation of

g with dominant weight λ, and suppose Lλ is the supporting graph for this basis as well.
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Then for each s ∈ Lλ, there exists a nonzero scalar as such that ws = asvs. It is in this sense

that the combinatorics of a semistandard lattice supporting graph uniquely determines a

basis for the corresponding representation as well as actions of the generators on that basis.

Proof of Theorem 5.6. The proof of part (1) has been demonstrated by Donnelly, Lewis,

and Pervine [DLP2] by analyzing cases. Crucial to this case analysis is the total ordering

of tableaux in the total order algorithm. For part (2), we proceed by contradiction.

Suppose that Algorithm 5.5 terminates at vertex t with an inconsistency, but suppose Lλ is

a supporting graph for a representation of g. Since Lλ is a supporting graph, it follows from

the discussion of Chapter 1 that we can assign coefficients c∗q,p and d∗p,q to each edge p i−→ q

in Lλ in such a way that these coefficients meet the Diamond and Crossing Conditions. For

any such edge p i−→ q, set π∗p,q := c∗q,pd∗p,q. It is easy to check that π∗p,m = πp,m for any

edge p i−→ m, where m = max tableau of Lλ. (This follows from the Crossing Condition,

since the i-component of any such edge p i−→ m is a chain.) Let us suppose that Algorithm

5.5 terminates with a Diamond inconsistency at edge s i−→ t. Let p i−→ q be any edge in

Lλ with coefficient πp,q successfully computed prior to termination. Since πp,q must have

been obtained from a Diamond or Crossing Relation, it follows easily from an inductive

argument that π∗p,q = πp,q. Now following the Algorithm we see that

πs,t =
πu,vπt,v

πs,u
=

π∗u,vπ∗t,v
π∗s,u

= π∗s,t.

Moreover, since Lλ is a supporting graph, the Diamond Condition implies that

π∗s,t =
π∗
u
′
,v
′π∗

t,v
′

π∗
s,u′

=
πu

′
,v
′πt,v

′

πs,u
′

.
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But the algorithm terminates with

πs,t 6=
πu′ ,v′πt,v′

πs,u′
,

a contradiction. So suppose the algorithm terminates with a Crossing inconsistency. As

before, for any edge p i−→ q encountered prior to termination, we have π∗p,q = πp,q. But

now just prior to termination we have

mi(g, t) 6=
∑

s:s
i→t

πs,t −
∑

v:t
i→v

πt,v.

However, the Crossing condition for Lλ implies that

mi(g, t) =
∑

s:s
i→t

π∗s,t −
∑

v:t
i→v

π∗t,v =
∑

s:s
i→t

πs,t −
∑

v:t
i→v

πt,v,

a contradiction. Then Lλ cannot be a supporting graph for a representation of g.

For part (3), if edges(g, λ) returns non-zero coefficients, then we have a unique assign-

ment of non-zero coefficients to the edges of Lλ. Now one needs only to observe that every

Diamond and every Crossing relation has been verified by Algorithm 5.5. Returning to the

discussion of Chapter 1, we see that with this assignment of edge coefficients, Lλ meets all

requirements sufficient to imply that the lattice is a supporting graph for the irreducible

representation of g with dominant weight λ.

Similar to the proof of part (2), an inductive argument for part (4) will show that

πp,q = π∗p,q for any edge p i−→ q in Lλ. The assumption that each π∗p,q is nonzero is

necessary in order to avoid division by zero whenever a diamond relation is encountered.



CHAPTER 6

APPLICATIONS OF ALGORITHMS

Our first application of the algorithms of Chapter 5 and Theorem 5.4 will be an analysis

of certain B2-semistandard lattices. In Theorem 6.1 we will show that if λ = (a, b) with

a ≥ 2 and b ≥ 1, then the B2-semistandard lattice Lλ will NOT be a supporting graph

for a representation of B2. That is, we show that the SLC fails for these B2 lattices. This

result verifies, at least in part, data obtained experimentally and summarized in Table 1.1.

Before the statement and proof of Theorem 6.1, we illustrate the edges algorithm for the

concrete 35-dimensional B2-semistandard lattice Lλ with λ = (2, 1).

In this chapter we also present a sampling of the g-semistandard lattices investigated

during the course of this project. The pictures we present were obtained using the com-

puter algebra system Maple to implement the algorithms of Chapter 5. (We used Maple V

Release 5.1.) See Appendix A for the actual Maple code. Our presentations of the many

lattice pictures below was significantly aided by our use of the “posets” package for Maple

developed by John Stembridge of the University of Michigan [Stem]. In particular, this

package contains several Maple procedures that were useful for allowing us to visualize the

lattices once the edges were created.

B2 Counterexamples to the Semistandard Lattice Conjecture

We begin by considering the 35-element B2-semistandard lattice Lλ corresponding to

weight λ = (2, 1) (see Figure 6.1). We will show the output of edges(B2, λ) is an “Inconsis-
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tent diamond relation” error. It follows from Theorem 5.6.2 that the B2 lattice Lλ cannot

be a supporting graph for a representation of B2. In the analysis of this lattice that follows,

we will sometimes refer to vertex number k in Figure 6.1 by the symbol vk.

Figure 6.1 Example lattice of the B2-semistandard lattice corresponding to λ = (2, 1)
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Figure 6.2 Clarification of vertices 13 and 14 for Figure 6.1
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Start with vertex v1. Consider the edge v2
2−→ v1. Since this is not the “southeast”

edge for any diamond in Lλ, we cannot use a diamond relation to compute π2,1. Instead,

utilize the crossing condition for color 2 to get π2,1 = 1. Next consider v3
1−→ v1. Again

there is no appropriate diamond, but utilizing the crossing condition for color 1 we get

π3,1 = 2. The edges algorithm now moves to vertex v2. Consider v4
1−→ v2. Again, a

diamond appropriate for computing π4,2 does not exist, so utilize the crossing condition

for color 1 to get π4,2 = 4. Moving on to the next vertex v3, we see that the next edge

v4
2−→ v3 is part of the 4-3-1-2 diamond. This gives π4,3 = 1

2 . The next edge v5
1−→ v3

cannot be computed using a diamond relation, but the crossing condition for color 1 gives

π5,3 = 2. Edge v6
2−→ v3 does not involve an appropriate diamond either, but using the

crossing condition for color 2 (note that π4,3 has already been found) we get π6,3 = 3
2 .

Continuing as such, one obtains: π2,1 = 1, π3,1 = 2, π4,2 = 4, π4,3 = 1
2 , π5,3 = 2, π6,3 = 3

2 ,

π7,4 = 6, π8,4 = 1
2 , π7,5 = 1

6 , π9,5 = 17
6 , π8,6 = 3

2 , π9,6 = 18
17 , π10,6 = 16

17 , π11,7 = 6, π12,7 = 7
6 ,

π12,8 = 18
7 , and π14,8 = 10

7 .

Now, moving to vertex v9 and choosing the edge v12
2−→ v9, there exist two diamonds: 9-

5-7-12 and 9-6-8-12. Coefficients on all of the edges in these diamonds have been computed

already, with the exception of π12,9. Diamond 9-5-7-12 yields π12,9 = 17
42 , but diamond

9-6-8-12 yields π12,9 = 21
34 . Thus the Diamond Condition will fail on at least one of these

diamonds. Therefore, we have an inconsistency in the diamond relations. By Theorem 5.6.2,

the B2-semistandard lattice Lλ with λ = (2, 1) is not a supporting graph for a representation

of B2. The next theorem provides a more general argument demonstrating that the SLC

fails for a large class of B2-semistandard lattices.



60

Figure 6.3 Top 5 ranks (levels) in a generic B2-semistandard lattice Lλ

1

32

7654

141312111098

2524232221201918171615

Theorem 6.1 Let λ = (a, b) for integers a ≥ 2 and b ≥ 1. Then the B2-semistandard

lattice Lλ is NOT a supporting graph for a representation of B2.

Proof. We show that for any such λ, edges(B2, λ) returns a diamond inconsistency.

It will follow then from Theorem 5.4.2 that the B2-semistandard lattice Lλ cannot be a

supporting graph for a representation of B2. We will assume throughout that a ≥ 4 and

b ≥ 4. The remaining cases (a ∈ {2, 3} and b ≥ 1; b ∈ {2, 3} and a ≥ 2) can, with a little

work, be viewed as special cases of the argument that follows.

Let Pλ be the subposet of all vertices of Lλ within 4 steps (inclusive) of the max tableaux

of Lλ, together with the ordering on these tableaux induced by Lλ. As a set, Pλ = L0
λ ∨

L1
λ ∨ L2

λ ∨ L3
λ ∨ L4

λ. Let µ := (4, 4). Observe that Pλ and Pµ are identical (isomorphic as

posets). To see this, note that if a tableau t is within 4 steps of the max tableau, then it

differs from the max tableau in at most 4 different columns. Thus the first b − 4 columns

of t will be
1
2 ’s, while tb+1 = tb+2 = . . . = ta+b−4 = 1 . So we can identify the tableau t in

Pλ with the tableau (tb−3, tb−2, tb−1, tb, ta+b−3, ta+b−2, ta+b−1, ta+b ∈ Pµ).

We depict a generic Pλ in Figure 6.3. In this and all remaining figures, the red edges in

these lattices correspond to color 1 while the blue edges correspond to color 2. In Table
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Table 6.1 Vertices in the top 5 ranks (levels) of a generic B2-semistandard lattice

Level Vertex t
Distance from

Boundary
m1(t) =

2ρ1(t)− l1(t)
m2(t) =

2ρ2(t)− l2(t)

0 v1 = 1
2

...

...
1
2

1 ...1 0 a b

1 v2 = 1
2

...

...
1
2

1
3

1 ...1 0 a + 2 b− 2

v3 = 1
2

...

...
1
2

1 ...1 2 2 a− 2 b + 1

2 v4 = 1
2

...

...
1
2

1
3

1
3

1 ...1 0 a + 4 b− 4

v5 = 1
2

...

...
1
2

1
3

1 ...1 2 2 a b− 1

v6 = 1
2

...

...
1
2

1 ...1 2 2 4 a− 4 b + 2

v7 = 1
2

...

...
1
2

1 ...1 3 4 a b− 1

3 v8 = 1
2

...

...
1
2

1
3

1
3

1
3

1 ...1 0 a + 6 b− 6

v9 = 1
2

...

...
1
2

1
3

1
3

1 ...1 2 2 a + 2 b− 3

v10 = 1
2

...

...
1
2

1
3

1 ...1 2 2 4 a− 2 b

v11 = 1
2

...

...
1
2

1
3

1 ...1 3 4 a + 2 b− 3

v12 = 1
2

...

...
1
2

1 ...1 2 2 2 6 a− 6 b + 3

v13 = 1
2

...

...
1
2

1 ...1 2 3 6 a− 2 b

v14 = 1
2

...

...
1
2

1 ...1 4 6 a− 2 b

4 v15 = 1
2

...

...
1
2

1
3

1
3

1
3

1
3

1 ...1 0 a + 8 b− 8

v16 = 1
2

...

...
1
2

1
3

1
3

1
3

1 ...1 2 2 a + 4 b− 5

v17 = 1
2

...

...
1
2

1
3

1
3

1 ...1 2 2 4 a b− 2

v18 = 1
2

...

...
1
2

1
3

1
3

1 ...1 3 4 a + 4 b− 5

v19 = 1
2

...

...
1
2

1
3

1 ...1 2 2 2 6 a− 4 b + 1

v20 = 1
2

...

...
1
2

1
3

1 ...1 2 3 6 a b− 2

v21 = 1
2

...

...
1
2

1
3

1 ...1 4 6 a b− 2

v22 = 1
2

...

...
1
2

1 ...1 2 2 2 2 8 a− 8 b + 4

v23 = 1
2

...

...
1
2

1 ...1 2 2 3 8 a− 4 b + 1

v24 = 1
2

...

...
1
2

1 ...1 3 3 8 a b− 2

v25 = 1
2

...

...
1
2

1 ...1 2 4 8 a− 4 b + 1
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6.1, we list the 25 vertices of Pλ, record the distance of each vertex from the corresponding

boundary element, and compute the weight of each vertex (thought of now as a element

of Lλ). Using this data, we proceed through the edges algorithm. The coefficients for the

edges below vertices v1 through v12 are π2,1 = b, π3,1 = a, π4,2 = 2(b−1), π5,2 = a+2, π5,3 =

ab
a+2 , π6,3 = 2(a− 1), π7,3 = a+2b+2

a+2 , π8,4 = 3(b− 2), π9,4 = a + 4, π9,5 = 2(a+2)(b−1)
a+4 , π10,5 =

2(a + 1), π11,5 = a(a+2b+2)
(a+2)(a+4) , π10,6 = ab(a−1)

(a+1)(a+2) , π12,6 = 3(a − 2), π13,6 = 2(2ab+b+a2+3a+2)
(a+1)(a+2) ,

π11,7 = b(a+4)
a+2 , π13,7 = (a−1)(a+1)(a+2b+2)

2ab+b+a2+3a+2
, π14,7 = (a+2)(a+b+1)

2ab+b+a2+3a+2
, π15,8 = 4(b − 3), π16,8 =

a + 6, π16,9 = 3(a+4)(b−2)
a+6 , π17,9 = 2(a + 3), π18,9 = a(a+2b+2)

(a+6)(a+4) , π17,10 = 2(a+1)(a+2)(b−1)
(a+3)(a+4) ,

π19,10 = 3a, π20,10 = 2(2a3b+7a2b+7ab+8b+a4+6a3+13a2+12a+4)
(a+1)(a+2)(a+3)(a+4) , π18,11 = 2(a+6)(b−1)

a+4 , π20,11 =

a(a+1)2(a+3)(a+2b+2)
2a3b+7a2b+7ab+8b+a4+6a3+13a2+12a+4

, π21,11 = (a+4)(a3+a2b+4a2+3ab+5a+4b+2)
2a3b+7a2b+7ab+8b+a4+6a3+13a2+12a+4

, π19,12 =

b(a−1)(a−2)
(a+1)(a+2) , π22,12 = 4(a− 3), and π23,12 = 3(2ab+a2+3a+2)

(a+1)(a+2) .

One can now check that at vertex v13, diamond 20-13-6-10 returns

π20,13 =
ab(a− 1)(2ab + b + a2 + 3a + 2)(a + 3)(a + 4)

(2a3b + 7a2b + 7ab + 8b + a4 + 6a3 + 13a2 + 12a + 4)(a + 1)(a + 2)

while diamond 20-13-7-11 returns

π20,13 =
b(a + 4)(a− 1)(2a3b + 7a2b + 7ab + 8b + a4 + 6a3 + 13a2 + 12a + 4)

a(a + 1)(a + 2)(a + 3)(2ab + b + a2 + 3a + 2)
.

Thus, edges(B2, λ) terminates with an inconsistent diamond relation.

Examples of Semistandard Lattices

In what follows, we present examples of A2, B2, and G2 semistandard lattices, each of

which is in fact a supporting graph for a representation of the appropriate rank two simple

Lie algebra. These examples were generated using Maple procedures which can be found in

Appendix A. Three of these examples (Figures 6.4, 6.7 and 6.10) have appeared previously

in Chapters 2, 3, and 4 of this thesis. Our programs are capable of attaching to each
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vertex the index of that vertex relative to the total ordering supplied by Algorithm 5.3. In

displaying each of the following examples, we have omitted these vertex numbers; however,

the reader should note that the vertices are depicted in order if one reads the lattice from

top to bottom, and left to right across each level.

Figure 6.4 is the computer generated output for the example detailed in Example 2.1.

As a reminder, it is an 8-dimensional A2 semistandard lattice. Additionally, it has 5 levels,

4 red edges and 6 blue edges.

Figure 6.4 The A2-semistandard lattice corresponding to shape λ = (1, 1)
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The next example, Figure 6.5, is of a 216-dimensional A2 semistandard lattice with 20

levels, 180 red edges and 330 blue edges.

Figure 6.5 The A2-semistandard lattice corresponding to shape λ = (5, 5)
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The next example, Figure 6.6, is a 1331-dimensional A2 semistandard lattice with 40

levels, 1210 red edges and 2310 blue edges.

Figure 6.6 The A2-semistandard lattice corresponding to shape λ = (10, 10)
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Figure 6.7 is the computer generated output for the example detailed in Example 3.1.

As a reminder, it is a 16-dimensional B2 semistandard lattice. Additionally, it has 8 levels,

13 red edges and 10 blue edges.

Figure 6.7 The B2-semistandard lattice corresponding to shape λ = (1, 1)



67

The next example, Figure 6.8, is of a 56-dimensional B2 semistandard lattice with 16

levels, 70 red edges and 35 blue edges.

Figure 6.8 The B2-semistandard lattice corresponding to shape λ = (5, 0)
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The next example, Figure 6.9, is of a 91-dimensional B2 semistandard lattice with 21

levels, 70 red edges and 110 blue edges.

Figure 6.9 The B2-semistandard lattice corresponding to shape λ = (0, 5)



69

Figure 6.10 is the computer generated output for the example detailed in Example 4.1.

As a reminder, it is a 14-dimensional G2 semistandard lattice. Additionally, it has 11 levels,

10 red edges and 6 blue edges.

Figure 6.10 The G2-semistandard lattice corresponding to shape λ = (0, 1)
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The next example, Figure 6.11, is of a 378-dimensional G2 semistandard lattice with 31

levels, 616 red edges and 364 blue edges.

Figure 6.11 The G2-semistandard lattice corresponding to shape λ = (5, 0)



APPENDIX A

MAPLE IMPLEMENTATION

This appendix contains the actual Maple implementation of the three algorithms and

numerous functions discussed in Chapter 5. Prior to each Maple procedure is a paragraph

describing output, any special requirements of procedure input, and any other noteworthy

particulars.

The procedure lattice length takes as input a rank two simple Lie Algebra g and two

non-negative integers a and b. These numbers indicate the shape for the tableaux that

are to be generated; in algebraic terms, the numbers a and b also specify the irreducible

representation of the Lie algebra g corresponding to the dominant weight λ = (a, b). The

output of the procedure is the total number of steps from the maximal tableaux to the

minimal tableaux in the g-semistandard lattice Lλ.

lattice_length := proc(g,a,b)

if g = ’A2’ then

RETURN(2*a+2*b):

elif g = ’B2’ then

RETURN(3*a+4*b):

elif g = ’G2’ then

RETURN(6*a+10*b):

fi:

end:

The procedure lattice dimension takes as input a Lie Algebra g and two non-negative

integers a and b as described above. The output of the procedure is the total number of

tableaux in Lλ.

lattice_dimension := proc(g,a,b)
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if g = ’A2’ then

RETURN((a+1)*(b+1)*(a+b+2)/2):

elif g = ’B2’ then

RETURN((a+1)*(b+1)*(a+b+2)*(a+2*b+3)/3!):

elif g = ’G2’ then

RETURN((a+1)*(b+1)*(a+b+2)*(a+2*b+3)*(a+3*b+4)*(2*a+3*b+5)/5!):

fi:

end:

The procedure tableaux takes as input a Lie Algebra g and two non-negative inte-

gers a and b as described above. The output of the procedure is an array which has

lattice length(g, a, b) + 1 entries. The ith entry (0 ≤ i ≤ lattice length(g, a, b)) of this

array is a set containing all tableaux that are i levels below the top level (so the maximal

tableaux is at the 0th level). To display the output as the procedure generates it, include in

the procedure call the optional argument display as a third input parameter. To simplify

the data storage, we adopted a slightly different convention for denoting the tableaux of

shape λ (see Appendix B).

tableaux := proc(g,a,b)

local L, length, t, i, j, display_flag:

if nargs >= 4 and args[4]=‘display‘ then

display_flag := true:

else

display_flag := false:

fi:

length:=lattice_length(g,a,b):

L:=array(0..length):

if g = ’A2’ then

L[0]:={[seq(1,i=1..b),seq(4,i=(b+1)..(a+b))]}:

if display_flag then print(L[0]) fi:

for i from 1 to length do

L[i]:={}:

for t in L[i-1] do

for j from 1 to (a+b) do

if t[j] = 1 and (j = a+b or member(t[j+1],{2,3,4,5,6})) then

t[j]:=2:

L[i] := L[i] union {t}:

t[j]:=1:

elif t[j] = 2 and (j = a+b or member(t[j+1],{3,5,6})) then

t[j]:=3:

L[i] := L[i] union {t}:
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t[j]:=2:

elif t[j] = 4 and (j = a+b or member(t[j+1],{5,6})) then

t[j]:=5:

L[i] := L[i] union {t}:

t[j]:=4:

elif t[j] = 5 and (j = a+b or member(t[j+1],{6})) then

t[j] := 6:

L[i] := L[i] union {t}:

t[j] := 5:

fi:

od:

od:

if display_flag then print(L[i]) fi:

od:

elif g = ’B2’ then

L[0]:={[seq(1,i=1..b),seq(6,i=(b+1)..(a+b))]}:

if display_flag then print(L[0]) fi:

for i from 1 to length do

L[i]:={}:

for t in L[i-1] do

for j from 1 to (a+b) do

if t[j] = 1 and (j = a+b or

member(t[j+1],{2,3,4,5,6,7,8,9})) then

t[j]:=2:

L[i] := L[i] union {t}:

t[j]:=1:

elif t[j] = 2 and (j = a+b or member(t[j+1],{4,5,7,8,9})) then

t[j]:=3:

L[i] := L[i] union {t}:

t[j]:=2:

elif t[j] = 3 and (j = a+b or member(t[j+1],{4,5,7,8,9})) then

t[j]:=4:

L[i] := L[i] union {t}:

t[j]:=3:

elif t[j] = 4 and (j = a+b or member(t[j+1],{5,8,9})) then

t[j]:=5:

L[i] := L[i] union {t}:

t[j]:=4:

elif t[j] = 6 and (j = a+b or member(t[j+1],{7,8,9})) then

t[j] := 7:

L[i] := L[i] union {t}:

t[j] := 6:

elif t[j] = 7 and (j = a+b or member(t[j+1],{8,9})) then

t[j] := 8:

L[i] := L[i] union {t}:

t[j] := 7:

elif t[j] = 8 and (j = a+b or member(t[j+1],{9})) then

t[j] := 9:

L[i] := L[i] union {t}:

t[j] := 8:

fi:



74

od:

od:

if display_flag then print(L[i]) fi:

od:

elif g = ’G2’ then

L[0]:={[seq(1,i=1..b),seq(15,i=(b+1)..(a+b))]}:

if display_flag then print(L[0]) fi:

for i from 1 to length do

L[i]:={}:

for t in L[i-1] do

for j from 1 to (a+b) do

if t[j] = 1 and (j = a+b or

member(t[j+1],{2,3,4,5,6,7,8,9,10,11,12,13,

14,15,16,17,18,19,20,21})) then

t[j]:=2:

L[i] := L[i] union {t}:

t[j]:=1:

elif t[j] = 2 and (j = a+b or

member(t[j+1],{5,7,9,10,11,13,14,16,17,19,20,21})) then

t[j]:=3:

L[i] := L[i] union {t}:

t[j]:=2:

elif t[j] = 3 and (j = a+b or

member(t[j+1],{5,7,9,10,11,13,14,16,17,19,20,21})) then

t[j]:=4:

L[i] := L[i] union {t}:

t[j]:=3:

elif t[j] = 4 and (j = a+b or

member(t[j+1],{5,7,9,10,11,12,13,14,16,17,18,19,20,21})) then

if (j = a+b or

member(t[j+1],{9,11,12,13,14,17,18,19,20,21})) then

t[j]:=6:

L[i] := L[i] union {t}:

fi:

t[j]:=5:

L[i] := L[i] union {t}:

t[j]:=4:

elif t[j] = 5 and (j = a+b or

member(t[j+1],{9,11,12,13,14,17,18,19,20,21})) then

t[j] := 7:

L[i] := L[i] union {t}:

t[j] := 5:

elif t[j] = 6 and (j = a+b or

member(t[j+1],{9,11,12,13,14,17,18,19,20,21})) then

if (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j]:=8:

L[i] := L[i] union {t}:

fi:

t[j]:=7:

L[i] := L[i] union {t}:

t[j]:=6:
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elif t[j] = 7 and (j = a+b or

member(t[j+1],{9,11,12,13,14,17,18,19,20,21})) then

if (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j]:=10:

L[i] := L[i] union {t}:

fi:

t[j]:=9:

L[i] := L[i] union {t}:

t[j]:=7:

elif t[j] = 9 and (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j] := 11:

L[i] := L[i] union {t}:

t[j] := 9:

elif t[j] = 10 and (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j] := 11:

L[i] := L[i] union {t}:

t[j] := 10:

elif t[j] = 11 and (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j] := 12:

L[i] := L[i] union {t}:

t[j] := 11:

elif t[j] = 12 and (j = a+b or member(t[j+1],{13,14,19,20,21})) then

t[j] := 13:

L[i] := L[i] union {t}:

t[j] := 12:

elif t[j] = 13 and (j = a+b or member(t[j+1],{14,20,21})) then

t[j] := 14:

L[i] := L[i] union {t}:

t[j] := 13:

elif t[j] = 15 and (j = a+b or member(t[j+1],{16,17,18,19,20,21})) then

t[j] := 16:

L[i] := L[i] union {t}:

t[j] := 15:

elif t[j] = 16 and (j = a+b or member(t[j+1],{17,18,19,20,21})) then

t[j] := 17:

L[i] := L[i] union {t}:

t[j] := 16:

elif t[j] = 17 and (j = a+b or member(t[j+1],{19,20,21})) then

t[j] := 18:

L[i] := L[i] union {t}:

t[j] := 17:

elif t[j] = 18 and (j = a+b or member(t[j+1],{19,20,21})) then

t[j] := 19:

L[i] := L[i] union {t}:

t[j] := 18:

elif t[j] = 19 and (j = a+b or member(t[j+1],{20,21})) then

t[j] := 20:

L[i] := L[i] union {t}:

t[j] := 19:

elif t[j] = 20 and (j = a+b or member(t[j+1],{21})) then

t[j] := 21:
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L[i] := L[i] union {t}:

t[j] := 20:

fi:

od:

od:

if display_flag then print(L[i]) fi:

od:

fi:

RETURN(L):

end:

The procedure boundary takes as input a Lie Algebra g and two non-negative in-

tegers a and b as described above. The output of the procedure is an array which has

lattice length(g, a, b) + 1 entries. The ith entry (0 ≤ i ≤ lattice length(g, a, b)) of this

array is the tableau that is i levels below the top level and is the “leftmost” among the

tableaux of the ith level. See Appendix B for a detailed definition of the boundary vertices

for the semistandard lattices of each type (A2, B2, or G2).

boundary := proc(g,a,b)

local B,i,k,length:

length:=lattice_length(g,a,b):

B := array(0..length):

if g = ’A2’ then

for k from 0 to b do

B[k]:=[seq(1,i=1..b-k),seq(2,i=b-k+1..b),seq(4,i=(b+1)..(a+b))]:

od:

for k from 1 to a do

B[b+k]:=[seq(2,i=1..b),seq(4,i=(b+1)..(a+b-k)),seq(5,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[a+b+k]:=[seq(2,i=1..b-k),seq(3,i=b-k+1..b),seq(5,i=b+1..a+b)]:

od:

for k from 1 to a do

B[a+2*b+k]:=[seq(3,i=1..b),seq(5,i=b+1..a+b-k),seq(6,i=a+b-k+1..a+b)]:

od:

elif g = ’B2’ then

for k from 0 to b do

B[k]:=[seq(1,i=1..b-k),seq(2,i=b-k+1..b),seq(6,i=(b+1)..(a+b))]:

od:

for k from 1 to a do

B[b+k]:=[seq(2,i=1..b),seq(6,i=(b+1)..(a+b-k)),seq(7,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do
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B[a+b+2*k-1]:=[seq(2,i=1..b-k),3,seq(4,i=b-k+2..b),seq(7,i=b+1..a+b)]:

B[a+b+2*k]:=[seq(2,i=1..b-k),seq(4,i=b-k+1..b),seq(7,i=b+1..a+b)]:

od:

for k from 1 to a do

B[a+3*b+k]:=[seq(4,i=1..b),seq(7,i=b+1..a+b-k),seq(8,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[2*a+3*b+k]:=[seq(4,i=1..b-k),seq(5,i=b-k+1..b),seq(8,i=(b+1)..(a+b))]:

od:

for k from 1 to a do

B[2*a+4*b+k]:=[seq(5,i=1..b),seq(8,i=b+1..a+b-k),seq(9,i=a+b-k+1..a+b)]:

od:

elif g = ’G2’ then

for k from 0 to b do

B[k]:=[seq(1,i=1..b-k),seq(2,i=b-k+1..b),seq(15,i=(b+1)..(a+b))]:

od:

for k from 1 to a do

B[b+k]:=[seq(2,i=1..b),seq(15,i=(b+1)..(a+b-k)),seq(16,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[a+b+3*k-2]:=[seq(2,i=1..b-k),3,seq(5,i=b-k+2..b),seq(16,i=b+1..a+b)]:

B[a+b+3*k-1]:=[seq(2,i=1..b-k),4,seq(5,i=b-k+2..b),seq(16,i=b+1..a+b)]:

B[a+b+3*k]:=[seq(2,i=1..b-k),seq(5,i=b-k+1..b),seq(16,i=b+1..a+b)]:

od:

for k from 1 to a do

B[a+4*b+k]:=[seq(5,i=1..b),seq(16,i=b+1..a+b-k),seq(17,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[2*a+4*b+2*k-1]:=[seq(5,i=1..b-k),7,seq(9,i=b-k+2..b),seq(17,i=(b+1)..(a+b))]:

B[2*a+4*b+2*k]:=[seq(5,i=1..b-k),seq(9,i=b-k+1..b),seq(17,i=(b+1)..(a+b))]:

od:

for k from 1 to a do

B[2*a+6*b+2*k-1]:=[seq(9,i=1..b),seq(17,i=b+1..a+b-k),18,seq(19,i=a+b-k+2..a+b)]:

B[2*a+6*b+2*k]:=[seq(9,i=1..b),seq(17,i=b+1..a+b-k),seq(19,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[4*a+6*b+3*k-2]:=[seq(9,i=1..b-k),11,seq(13,i=b-k+2..b),seq(19,i=b+1..a+b)]:

B[4*a+6*b+3*k-1]:=[seq(9,i=1..b-k),12,seq(13,i=b-k+2..b),seq(19,i=b+1..a+b)]:

B[4*a+6*b+3*k]:=[seq(9,i=1..b-k),seq(13,i=b-k+1..b),seq(19,i=b+1..a+b)]:

od:

for k from 1 to a do

B[4*a+9*b+k]:=[seq(13,i=1..b),seq(19,i=(b+1)..(a+b-k)),seq(20,i=a+b-k+1..a+b)]:

od:

for k from 1 to b do

B[5*a+9*b+k]:=[seq(13,i=1..b-k),seq(14,i=b-k+1..b),seq(20,i=b+1..a+b)]:

od:

for k from 1 to a do

B[5*a+10*b+k]:=[seq(14,i=1..b),seq(20,i=(b+1)..(a+b-k)),seq(21,i=a+b-k+1..a+b)]:

od:

fi:

RETURN(B):
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end:

The procedure tableaux distance takes as input a Lie Algebra g and two tableaux s

and t. In practice, this procedure is only called when s and t are tableaux from the same

g-semistandard lattice Lλ. The output of the procedure is the shortest number of steps

between s and t, i.e. the length of any shortest path from s to t in the Hasse diagram

for Lλ. Recall that if s is the maximal tableau in Lλ and t is the minimal tableau, then

tableaux distance(g, s, t) = lattice length(g, a, b).

tableaux_distance := proc(g,s,t)

local i,td:

if g = ’A2’ or g = ’B2’ then

RETURN(convert([seq(abs(s[i]-t[i]),i=1..nops(t))],‘+‘)):

elif g = ’G2’ then

td:=0:

for i from 1 to nops(t) do

if t[i]=1 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(s[i]-t[i]):

elif member(s[i],{6}) then

td:=td+4:

elif member(s[i],{7,8}) then

td:=td+5:

elif member(s[i],{9,10}) then

td:=td+6:

else

td:=td+abs(abs(s[i]-t[i])-3):

fi:

elif t[i]=2 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(s[i]-t[i]):

elif member(s[i],{6}) then

td:=td+3:

elif member(s[i],{7,8}) then

td:=td+4:

elif member(s[i],{9,10}) then

td:=td+5:

else

td:=td+abs(abs(s[i]-t[i])-3):

fi:

elif t[i]=3 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(s[i]-t[i]):



79

elif member(s[i],{6}) then

td:=td+2:

elif member(s[i],{7,8}) then

td:=td+3:

elif member(s[i],{9,10}) then

td:=td+4:

else

td:=td+abs(abs(s[i]-t[i])-3):

fi:

elif t[i]=4 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(s[i]-t[i]):

elif member(s[i],{6}) then

td:=td+1:

elif member(s[i],{7,8}) then

td:=td+2:

elif member(s[i],{9,10}) then

td:=td+3:

else

td:=td+abs(abs(s[i]-t[i])-3):

fi:

elif t[i]=5 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(s[i]-t[i]):

elif member(s[i],{7}) then

td:=td+1:

elif member(s[i],{8}) then

td:=td+3:

elif member(s[i],{6,9,10}) then

td:=td+2:

else

td:=td+abs(abs(s[i]-t[i])-3):

fi:

elif t[i]=6 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-1):

elif member(s[i],{5,9,10}) then

td:=td+2:

elif member(s[i],{7,8}) then

td:=td+1:

elif member(s[i],{6}) then

td:=td:

else

td:=td+abs(abs(s[i]-t[i])-2):

fi:

elif t[i]=7 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-1):

elif member(s[i],{5,6,9,10}) then

td:=td+1:

elif member(s[i],{8}) then
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td:=td+2:

elif member(s[i],{7}) then

td:=td:

else

td:=td+abs(abs(s[i]-t[i])-2):

fi:

elif t[i]=8 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-2):

elif member(s[i],{5,9}) then

td:=td+3:

elif member(s[i],{6,7,10}) then

td:=td+1:

elif member(s[i],{8}) then

td:=td:

else

td:=td+abs(abs(s[i]-t[i])-1):

fi:

elif t[i]=9 then

if member(s[i],{1,2,3,4,5}) then

td:=td+abs(abs(s[i]-t[i])-2):

elif member(s[i],{6,10}) then

td:=td+2:

elif member(s[i],{7}) then

td:=td+1:

elif member(s[i],{8}) then

td:=td+3:

elif member(s[i],{9}) then

td:=td:

else

td:=td+abs(abs(s[i]-t[i])-1):

fi:

elif t[i]=10 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-3):

elif member(s[i],{5,6,9}) then

td:=td+2:

elif member(s[i],{7,8}) then

td:=td+1:

else

td:=td+abs(s[i]-t[i]):

fi:

elif t[i]=11 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-3):

elif member(s[i],{5,6}) then

td:=td+3:

elif member(s[i],{7,8}) then

td:=td+2:

elif member(s[i],{9}) then

td:=td+1:
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else

td:=td+abs(s[i]-t[i]):

fi:

elif t[i]=12 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-3):

elif member(s[i],{5,6}) then

td:=td+4:

elif member(s[i],{7,8}) then

td:=td+3:

elif member(s[i],{9,10}) then

td:=td+2:

else

td:=td+abs(s[i]-t[i]):

fi:

elif t[i]=13 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-3):

elif member(s[i],{5,6}) then

td:=td+5:

elif member(s[i],{7,8}) then

td:=td+4:

elif member(s[i],{9,10}) then

td:=td+3:

else

td:=td+abs(s[i]-t[i]):

fi:

elif t[i]=14 then

if member(s[i],{1,2,3,4}) then

td:=td+abs(abs(s[i]-t[i])-3):

elif member(s[i],{5,6}) then

td:=td+6:

elif member(s[i],{7,8}) then

td:=td+5:

elif member(s[i],{9,10}) then

td:=td+4:

else

td:=td+abs(s[i]-t[i]):

fi:

else

td:=td+abs(s[i]-t[i]):

fi:

od:

RETURN(td):

fi:

end:



82

The procedure rhl precedes takes as input two tableaux s and t. In practice, this

procedure is only called when s and t are at the same level of Lλ and have the same

distance from the boundary. The output of the procedure is the Boolean value true if

the first tableau precedes the second tableau relative to the righthand lexicographic rule.

Otherwise, the procedure returns the Boolean value false.

rhl_precedes := proc(s,t)

local i:

for i from nops(t) to 1 by -1 do

if s[i] < t[i] then RETURN( evalb(1=1) )

elif s[i] > t[i] then RETURN( evalb(1=0) )

fi:

od:

## If it makes it this far, then s=t, so we’ll return true. ##

RETURN( evalb(1=1) ):

end:

The procedure total order takes as input a Lie Algebra g and two non-negative in-

tegers a and b as described above. The output of the procedure is an array which has

lattice dimension(g, a, b) entries. The ith entry of this array is a pair consisting of the ith

ordered tableau as determined by Algorithm 5.3 along with the distance of the ith tableau

from the boundary.

total_order := proc(g,a,b)

local T,B,length,dimension,S,level_sum_so_far,k,temptable,t,d,end_while_flag,j,i:

T:=tableaux(g,a,b):

B:=boundary(g,a,b):

length:=lattice_length(g,a,b):

dimension:=lattice_dimension(g,a,b):

S:=array(1..dimension):

S[1]:=[B[0],0,0]:

level_sum_so_far := 1:

for k from 1 to length do

temptable[1]:=[B[k],0,k]:

for t in T[k] do

d:=tableaux_distance(g,t,B[k]):

if d > 0 then

end_while_flag:=evalb(1=0):

for j from 1 while not(end_while_flag) do
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if d < temptable[j][2] then

for i from nops(op(op(temptable))) to j by -1 do

temptable[i+1]:=temptable[i]:

od:

temptable[j]:=[t,d,k]:

end_while_flag:=evalb(1=1):

elif d = temptable[j][2] and rhl_precedes(t,temptable[j][1]) then

for i from nops(op(op(temptable))) to j by -1 do

temptable[i+1]:=temptable[i]:

od:

temptable[j]:=[t,d,k]:

end_while_flag:=evalb(1=1):

elif j=nops(op(op(temptable))) then

temptable[j+1]:=[t,d,k]:

end_while_flag:=evalb(1=1):

fi:

od:

fi:

od:

for j from 1 to nops(T[k]) do

S[level_sum_so_far + j] := temptable[j]:

od:

level_sum_so_far := level_sum_so_far + nops(T[k]):

temptable:=’temptable’:

od:

RETURN(S):

end:

The procedure convert tableaux takes as input a Lie Algebra g and one tableau t.

The output of the procedure is an array of 6, 9, or 21 entries depending on g. The ith entry

of the array is the number of occurrences of a column of type i (see “Convention Adopted

for Code” in Appendix B) in the tableau t. This procedure is used inside the procedure

edges to compute the coordinates of the weight vector wt(t).

convert_tableaux := proc(g,t)

local m,i,j,tsize:

if g = ’A2’ then

tsize := 6:

elif g = ’B2’ then

tsize := 9:

elif g = ’G2’ then

tsize := 21:

fi:

m:=array(1..tsize):

for i from 1 to tsize do
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m[i]:=0:

od:

for i from 1 to nops(t) do

for j from 1 to tsize do

if t[i] = j then

m[j]:=m[j]+1:

fi:

od:

od:

RETURN(m);

end:

The procedure bdry index takes as input an ordered array S. In practice, the input

set S is the output of the total order procedure. The output of bdry index is an array

which has lattice length(g, a, b) + 1 entries. The ith entry of the array is the index of the

boundary tableau bi relative to the total ordering of the tableaux of Lλ. That is, the ith

entry of the output array is the position of the tableau bi in the sequence S.

bdry_index := proc(S)

local dimension,B,level,j:

dimension:=nops(convert(op(S),set)):

B:=array(0..S[dimension][3]):

level:=0:

for j from 1 to dimension do

if S[j][2] = 0 then

B[level] := j:

level:=level+1:

fi:

od:

RETURN(B):

end:

The procedure find index takes as input a Lie Algebra g, an ordered S, the array B

of the boundary indices, and a tableau t. In practice, the array S is the output of the

total order procedure, B is the output of the bdry index procedure, and t is a tableau

with the same shape as the tableaux in S. The output of the procedure is the index of

tableau t relative to the total ordering of the tableaux in Lλ. That is, the procedure

returns the position the tableau t appears in the sequence S.
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find_index := proc(g,S,B,t)

local level,dist,j;

level:=tableaux_distance(g,t,S[1][1]):

dist:=tableaux_distance(g,t,S[B[level]][1]):

for j from B[level] do

if S[j][2] = dist and S[j][1] = t then

RETURN(j):

fi:

od:

end:

The procedure rightmost decrease takes as input a Lie Algebra g and one tableau t.

The output of the procedure is the tableau that is the same as t in every column except for

the right most “decreasable” column tp. This column is “decreased” once along the edge

tp −→ v where v is the leftmost column above tp in L or L .

rightmost_decrease := proc(g,t)

local r,i,already_done,x;

if nargs = 3 and args[3]<=nops(t) then x:=args[3] else x:=nops(t) fi:

r:=array(1..nops(t)):

already_done:=evalb(0=1):

if x<nops(t) then

for i from nops(t) to x by -1 do

r[i]:=t[i];

od:

fi:

if g = ’A2’ then

for i from x to 2 by -1 do

if not(t[i-1]=t[i]) and not(t[i-1]=3) and not(t[i]=4) and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i-1]=3 and not(t[i]=5) and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

else

r[i]:=t[i]:

fi:

od:

if already_done then

r[1]:=t[1]:

else

if t[1]-1 = 0 then

r[1]:=t[1]:

else

r[1]:=t[1]-1:

fi:
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fi:

elif g = ’B2’ then

for i from x to 2 by -1 do

if not(t[i-1]=t[i]) and t[i]=9 and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=8 and not(member(t[i-1],{5})) and

not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=7 and not(member(t[i-1],{5,4,3})) and

not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=6 and not(already_done) then

r[i]:=t[i]:

already_done:=evalb(0=1):

elif not(t[i-1]=t[i]) and t[i]=5 and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=4 and not(t[i-1]=3) and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=3 and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=2 and not(already_done) then

r[i]:=t[i]-1:

already_done:=evalb(1=1):

else

r[i]:=t[i]:

fi:

od:

if already_done then

r[1]:=t[1]:

else

if t[1]-1 = 0 then

r[1]:=t[1]:

else

r[1]:=t[1]-1:

fi:

fi:

elif g = ’G2’ then

for i from x to 2 by -1 do

if not(t[i-1]=t[i]) and t[i]=21 and not(already_done) then

r[i]:=20:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=20 and not(member(t[i-1],{14})) and

not(already_done) then

r[i]:=19:

already_done:=evalb(1=1):
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elif not(t[i-1]=t[i]) and t[i]=19 and not(member(t[i-1],{8,10,11,12,13,14,18})) and

not(already_done) then

r[i]:=18:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=18 and not(member(t[i-1],{8,10,11,12,13,14})) and

not(already_done) then

r[i]:=17:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=17 and not(member(t[i-1],{6,7,8,9,10,11,12,13,14})) and

not(already_done) then

r[i]:=16:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=16 and not(member(t[i-1],{3,4,5,6,7,8,9,10,11,12,13,14}))

and not(already_done) then

r[i]:=15:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=15 and not(already_done) then

r[i]:=t[i]:

already_done:=evalb(0=1):

elif not(t[i-1]=t[i]) and t[i]=14 and not(already_done) then

r[i]:=13:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=13 and not(member(t[i-1],{8,10,11,12})) and

not(already_done) then

r[i]:=12:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=12 and not(member(t[i-1],{8,10,11})) and

not(already_done) then

r[i]:=11:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=11 and not(already_done) then

r[i]:=9:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=10 and not(member(t[i-1],{6,7,8})) and

not(already_done) then

r[i]:=7:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=9 and not(member(t[i-1],{6,7,8})) and

not(already_done) then

r[i]:=7:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=8 and not(member(t[i-1],{3,4,6})) and

not(already_done) then

r[i]:=6:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=7 and not(already_done) then

r[i]:=5:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=6 and not(member(t[i-1],{3,4})) and

not(already_done) then

r[i]:=4:
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already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=5 and not(member(t[i-1],{3,4})) and

not(already_done) then

r[i]:=4:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=4 and not(member(t[i-1],{3})) and

not(already_done) then

r[i]:=3:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=3 and not(already_done) then

r[i]:=2:

already_done:=evalb(1=1):

elif not(t[i-1]=t[i]) and t[i]=2 and not(already_done) then

r[i]:=1:

already_done:=evalb(1=1):

else

r[i]:=t[i]:

fi:

od:

if already_done then

r[1]:=t[1]:

else

if t[1]-1 = 0 then

r[1]:=t[1]:

elif member(t[1],{6,7,8,9,11}) then

r[1]:=t[1]-2:

elif t[1]=10 then

r[1]:=7:

else

r[1]:=t[1]-1:

fi:

fi:

fi:

RETURN(convert(r,list)):

end:

The procedure lub takes as input a Lie Algebra g and two tableaux s and t. Whenever

we call this procedure, the tableaux s and t are both g-tableaux of the same shape. The

output of the procedure is the least upper bound in the lattice Lλ of the two tableaux, i.e.

s ∨ t.

lub := proc(g,s,t)

local r,i:

r:=array(1..nops(s)):

if g = ’A2’ or g = ’B2’ then

for i from 1 to nops(s) do
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r[i]:=min(s[i],t[i]):

od:

elif g = ’G2’ then

for i from 1 to nops(s) do

if (s[i]=5 and t[i]=6) or (s[i]=6 and t[i]=5) then

r[i]:=4:

elif (s[i]=7 and t[i]=8) or (s[i]=8 and t[i]=7) then

r[i]:=6:

elif (s[i]=9 and t[i]=10) or (s[i]=10 and t[i]=9) then

r[i]:=7:

elif (s[i]=5 and t[i]=8) or (s[i]=8 and t[i]=5) then

r[i]:=4:

elif (s[i]=8 and t[i]=9) or (s[i]=9 and t[i]=8) then

r[i]:=6:

else

r[i]:=min(s[i],t[i]):

fi:

od:

fi:

RETURN(convert(r,list)):

end:

The procedure edge set takes as input a Lie Algebra g, an array of ordered tableaux

S, and two non-negative integers a and b as described above. The procedure assumes that

S :=total order(g, a, b) has been previously called. The output of the procedure varies

according to certain additional optional arguments. The procedure iteratively determines

all the directed edges (i.e. covering relations) between tableaux as well as the associated

color (red, blue) of each edge. If no optional arguments are given as input, the output will be

a set containing all the directed edges of the lattice and a table containing all the red edges

and all the blue edges. If the optional argument coeff is included in the procedure call, edge

coefficients πs,t are checked to verify that each one holds for the coefficients computed. If

any diamond or crossing relations fail, the procedure will display an error message detailing

where the failure occurs. If the optional argument max is given, then the output will be

the maximal edge coefficient. If the optional argument min is given, then the output will

be the minimal edge coefficient.
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edge_set := proc(g,S,a,b)

local edges, pmin, pmax, edge_min, edge_max, edge_color, total_level, dimension, B, m,

nlevel, i, j, k, l, temp, t, sum_above_vertex, sum_below_vertex, ndx_t, u, ndx_u,

ndx_d, crossing_flag, diamond_flag:

edge_min[1]:=infinity:

edge_max[1]:=-infinity:

edge_min[2]:={}:

edge_max[2]:={}:

edges:=table():

edge_color:=table([(blue)={},(red)={}]):

dimension:=lattice_dimension(g,a,b):

total_level:=S[dimension][3]:

B:=bdry_index(S):

m:=array(1..dimension,1..2):

for i from 1 to dimension do

t:=convert_tableaux(g,S[i][1]);

if g = ’A2’ then

m[i,1]:=t[2]+t[4]-t[3]-t[5]:

m[i,2]:=t[1]+t[5]-t[2]-t[6]:

elif g = ’B2’ then

m[i,1]:=2*t[2]-2*t[4]+t[6]-t[7]+t[8]-t[9]:

m[i,2]:=t[1]-t[2]+t[4]-t[5]+t[7]-t[8]:

elif g = ’G2’ then

m[i,1]:=3*t[2]+t[3]-t[4]-3*t[5]+2*t[6]+3*t[9]-2*t[10]+t[11]-t[12]-

3*t[13]+t[15]-t[16]+2*t[17]-2*t[19]+t[20]-t[21]:

m[i,2]:=t[1]-t[2]+t[4]+2*t[5]-t[6]-2*t[9]+t[10]-t[11]+t[13]-t[14]+

t[16]-t[17]+t[19]-t[20]:

fi:

od:

sum_above_vertex:=array(1..dimension,1..2):

sum_below_vertex:=array(1..dimension,1..2):

for i from 1 to dimension do

sum_above_vertex[i,1]:=0:

sum_above_vertex[i,2]:=0:

sum_below_vertex[i,1]:=0:

sum_below_vertex[i,2]:=0:

od:

nlevel:=array(0..total_level):

for i from 0 to total_level do

nlevel[i]:=0;

od:

for i from 1 to dimension do

nlevel[S[i][3]]:=nlevel[S[i][3]]+1;

od:

for i from 0 to total_level-1 do

for j from 0 to nlevel[i]-1 do

for k from 0 to nlevel[i+1]-1 do

crossing_flag[1]:=evalb(0=1):

crossing_flag[2]:=evalb(0=1):

diamond_flag:=evalb(0=1):

if (S[B[i+1]+k][2] = S[B[i]+j][2] - 2)
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or (S[B[i+1]+k][2] = S[B[i]+j][2])

or (S[B[i+1]+k][2] = S[B[i]+j][2] + 2) then

if tableaux_distance(g,S[B[i+1]+k][1],S[B[i]+j][1]) = 1 then

temp:=(S[B[i+1]+k][1]-S[B[i]+j][1]):

for l from 1 to nops(temp) do

if not(temp[l] = 0) then

if g = ’A2’ then

if member(S[B[i]+j][1][l],{1,5}) then

edge_color[blue]:=edge_color[blue] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i]+j][1][l],{2,4}) then

edge_color[red]:=edge_color[red] union {[B[i+1]+k,B[i]+j]}:

fi:

elif g = ’B2’ then

if member(S[B[i]+j][1][l],{1,4,7}) then

edge_color[blue]:=edge_color[blue] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i]+j][1][l],{2,3,6,8}) then

edge_color[red]:=edge_color[red] union {[B[i+1]+k,B[i]+j]}:

fi:

elif g = ’G2’ then

if member(S[B[i]+j][1][l],{1,5,10,13,16,19}) then

edge_color[blue]:=edge_color[blue] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i]+j][1][l],{2,3,6,8,9,11,12,15,17,18,20}) then

edge_color[red]:=edge_color[red] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i]+j][1][l],{4}) then

if member(S[B[i+1]+k][1][l],{5}) then

edge_color[red]:=edge_color[red] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i+1]+k][1][l],{6}) then

edge_color[blue]:=edge_color[blue] union {[B[i+1]+k,B[i]+j]}:

fi:

elif member(S[B[i]+j][1][l],{7}) then

if member(S[B[i+1]+k][1][l],{10}) then

edge_color[red]:=edge_color[red] union {[B[i+1]+k,B[i]+j]}:

elif member(S[B[i+1]+k][1][l],{9}) then

edge_color[blue]:=edge_color[blue] union {[B[i+1]+k,B[i]+j]}:

fi:

fi:

fi:

if member(’coeff’,[args]) then

t:=rightmost_decrease(g,S[B[i+1]+k][1]):

ndx_t:=find_index(g,S,B,t);

if not(evalb(S[ndx_t][1]=S[B[i]+j][1])) then

u:=lub(g,S[ndx_t][1],S[B[i]+j][1]):

ndx_u:=find_index(g,S,B,u):

edges[B[i+1]+k,B[i]+j]:=

(edges[ndx_t,ndx_u]*edges[B[i]+j,ndx_u])/edges[B[i+1]+k,ndx_t]:

diamond_flag:=evalb(1=1):

else

if member([B[i+1]+k,B[i]+j],edge_color[red]) then

edges[B[i+1]+k,B[i]+j]:=

m[B[i]+j,1]+sum_above_vertex[B[i]+j,1]-sum_below_vertex[B[i]+j,1]:

crossing_flag[1]:=evalb(1=1):
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elif member([B[i+1]+k,B[i]+j],edge_color[blue]) then

edges[B[i+1]+k,B[i]+j]:=

m[B[i]+j,2]+sum_above_vertex[B[i]+j,2]-sum_below_vertex[B[i]+j,2]:

crossing_flag[2]:=evalb(1=1):

fi:

fi:

if member([B[i+1]+k,B[i]+j],edge_color[red]) then

sum_above_vertex[B[i+1]+k,1]:=

sum_above_vertex[B[i+1]+k,1]+edges[B[i+1]+k,B[i]+j]:

sum_below_vertex[B[i]+j,1]:=

sum_below_vertex[B[i]+j,1]+edges[B[i+1]+k,B[i]+j]:

elif member([B[i+1]+k,B[i]+j],edge_color[blue]) then

sum_above_vertex[B[i+1]+k,2]:=

sum_above_vertex[B[i+1]+k,2]+edges[B[i+1]+k,B[i]+j]:

sum_below_vertex[B[i]+j,2]:=

sum_below_vertex[B[i]+j,2]+edges[B[i+1]+k,B[i]+j]:

fi:

if diamond_flag then

for ndx_d from ndx_t+1 to B[i]+j-1 do

if tableaux_distance(g,S[ndx_d][1],S[B[i+1]+k][1]) = 1 then

u:=lub(g,S[ndx_d][1],S[B[i]+j][1]):

ndx_u:=find_index(g,S,B,u):

if not(edges[ndx_d,ndx_u]*edges[B[i]+j,ndx_u]=

edges[B[i+1]+k,ndx_d]*edges[B[i+1]+k,B[i]+j]) then

print(‘Diamond Condition fails for a=‘.a.‘

and b=‘.b.‘ at edge ‘.(B[i]+j).‘->‘.(B[i+1]+k)):

RETURN(0,0);

fi:

fi:

od;

fi:

if edge_min[1]>=edges[B[i+1]+k,B[i]+j] then

if edge_min[1]=edges[B[i+1]+k,B[i]+j] then

edge_min[2]:=edge_min[2] union {[S[B[i+1]+k][1],S[B[i]+j][1]]}:

else

edge_min[1]:=edges[B[i+1]+k,B[i]+j]:

edge_min[2]:={[S[B[i+1]+k][1],S[B[i]+j][1]]}:

fi:

fi:

if edge_max[1]<=edges[B[i+1]+k,B[i]+j] then

if edge_max[1] = edges[B[i+1]+k,B[i]+j] then

edge_max[2]:=edge_max[2] union {[S[B[i+1]+k][1],S[B[i]+j][1]]}:

else

edge_max[1]:=edges[B[i+1]+k,B[i]+j]:

edge_max[2]:={[S[B[i+1]+k][1],S[B[i]+j][1]]}:

fi:

fi:

fi:

fi:

od:

fi:
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fi:

od:

if member(’coeff’,[args]) then

for l from 1 to 2 do

if not(crossing_flag[l]) then

if not(sum_below_vertex[B[i]+j,l]-sum_above_vertex[B[i]+j,l]=m[B[i]+j,l]) then

print(‘Crossing Condition fails for a=‘,a,‘

and b=‘,b,‘ at edge ‘,B[i+1]+k,‘, ‘,B[i]+j);

RETURN(0,0);

fi;

fi;

od;

fi:

od:

od:

if member(’min’,[args]) and member(’max’,[args]) then

lprint(‘min‘,a,b,a+b,edge_min[1],nops(edge_min[2]),edge_min[2]);

lprint(‘max‘,a,b,a+b,edge_max[1],nops(edge_max[2]),edge_max[2]);

elif member(’max’,[args]) then

lprint(‘max‘,a,b,a+b,edge_max[1],nops(edge_max[2]),edge_max[2]);

elif member(’min’,[args]) then

lprint(‘min‘,a,b,a+b,edge_min[1],nops(edge_min[2]),edge_min[2]);

else

RETURN(edges,edge_color);

fi;

end:



APPENDIX B

DATA FOR THE RANK TWO SIMPLE LIE ALGEBRAS

Data for A2

Dynkin diagram:
v v1 2

α β
ωα ωβ

Fundamental weights: wα, wβ

Dimension of A2: 8

Cartan Matrix:




2 −1

−1 2




Simple roots: α = [2,−1] = 2ωα − ωβ

β = [−1, 2] = −ωα + 2ωβ

“Adjoint” representation: λ = = ωα + ωβ

¡
¡

¡
¡

¡
¡

¡

@
@

@@
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@

@
@

@
@

@
@

@

¡
¡

¡¡2 1

1 2 2

1 2 2

2 1
s

s s

s s

s s

sα + β = ωα + ωβ

α β

−α −β

−α− β

←− zero weight space = span of {h1, h2}

Positive roots: α, β, α + β

Negative roots: −α, −β, −α− β

Dimension formula for irreducible representation with highest weight λ = a ωα + b ωβ

dim(λ) =
1
2
(a + 1)(b + 1)(a + b + 2)
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Fundamental representations:

2

1

1

2

s

s

s

s

s

sλ = = ωα λ = = ωβ

L = L =

Boundary for semistandard lattice Lλ:

2

1

2

a steps

a + b steps

b steps

1
2

...

...
1
2

1 ...1

1
3

...

...
1
3

1 ...1

2
3

...

...
2
3

2 ...2

2
3

...

...
2
3

3 ...3

λ = a ωα + b ωβ =
...

...

...

Length of Lλ: 2a + 2b

Convention Adopted for Code

Tableau · · · is denoted by · · ·
1
2 1

1
3 2

2
3 3

1 4

2 5

3 6
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Data for B2

Dynkin diagram:
v v¡¡

@@

1 2

α β
ωα ωβ

Fundamental weights: wα, wβ

Dimension of B2: 10

Cartan Matrix:




2 −1

−2 2




Simple roots: α = [2,−1] = 2ωα − ωβ

β = [−2, 2] = −2ωα + 2ωβ

“Adjoint” representation: λ = = 2ωα

¡
¡

¡
¡

¡
¡

¡

@
@

@@
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@

@
@

@
@

@
@

@

¡
¡

¡¡1 2

2 1 1

2 1 1

1 2

1

1

s

s s

s s

s s

s

s

s2α + β

α + β

β α

−β −α

−α− β

−2α− β

←− zero weight space = span of {h1, h2}

Positive roots: α, β, α + β, 2α + β

Negative roots: −α, −β, −α− β, −2α− β

Dimension formula for irreducible representation with highest weight λ = a ωα + b ωβ

dim(λ) =
1
3!

(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)
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Fundamental representations:

1

2

1

2

1

1

2

s

s

s

s

s

s

s

s

s
λ = = ωα

λ = = ωβ

L = L =

Boundary for semistandard lattice Lλ:

1

2

1

2

a steps

a + b steps

a + 2b steps

b steps

1
2

...

...
1
2

1 ...1

1
3

...

...
1
3

1 ...1

2
4

...

...
2
4

2 ...2

3
4

...

...
3
4

3 ...3

3
4

...

...
3
4

4 ...4

λ = a ωα + b ωβ =
...

...

...

A typical “intermediate” vertex −→
in this part of the boundary

1
3

...

...
1
3

2
3

2
4

...

...
2
4

2 ...2

Length of Lλ: 3a + 4b
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Convention Adopted for Code

Tableau · · · is denoted by · · ·
1
2 1

1
3 2

2
3 3

2
4 4

3
4 5

1 6

2 7

3 8

4 9
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Data for G2

Dynkin diagram:
y y¡¡

@@

1 2

α β
ωα ωβ

Fundamental weights: wα, wβ

Dimension of G2: 14

Cartan Matrix:




2 −1

−3 2




Simple roots: α = [2,−1] = 2ωα − ωβ

β = [−3, 2] = −3ωα + 2ωβ

“Adjoint” representation: λ = = ωβ

¡
¡

¡
¡

¡
¡

@
@

@
¡

¡
¡

¡
¡

¡

@
@

@
@

@
@

@
@

@
@

@
@

¡
¡

¡
1 2

2 1 1

2 1 1

1 2

1

1

2

1

1

2

s

s s

s s

s s

s

s

s

s

s

s

s3α + 2β

3α + β

2α + β

α + β

β α

−β −α

−α− β

−2α− β

−3α− β

−3α− 2β

←− zero weight space = span of {h1, h2}

Positive roots: α, β, α + β, 2α + β, 3α + β, 3α + 2β

Negative roots: −α, −β, −α− β, −2α− β, −3α− β, −3α− 2β

Dimension formula for irreducible representation with highest weight λ = a ωα + b ωβ

dim(λ) =
1
5!

(a + 1)(b + 1)(a + b + 2)(a + 2b + 3)(a + 3b + 4)(2a + 3b + 5)
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Fundamental representations:

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

1

2

1

1

2

1

2

1

1

1 2

2 1 1

2 1 1

1 2

1

1

2

q
q
q
q
q
q
q

q
q
q
q

q q
q q

q q
q
q
q
q

λ = = ωα

λ = = ωβ

L = L =

Boundary for semistandard lattice Lλ:

1

2

1

2

1

2

a steps

a + b steps

2a + 3b steps

a + 2b steps

a + 3b steps

b steps

1
2

...

...
1
2

1 ...1

1
3

...

...
1
3

1 ...1

2
5

...

...
2
5

2 ...2

3
6

...

...
3
6

3 ...3

5
7

...

...
5
7

5 ...5

6
7

...

...
6
7

6 ...6

6
7

...

...
6
7

7 ...7

λ = a ωα + b ωβ =
...

...

...

Various “intermediate” vertices
for certain parts of the boundary

1
3

...

...
1
3

1
4

2
5

...

...
2
5

2 ...2 −→

2
5

...

...
2
5

2
6

3
6

...

...
3
6

3 ...3 −→

3
6

...

...
3
6

3 ...3 4 5 ...5

=⇒
3
6

...

...
3
6

4
7

5
7

...

...
5
7

5 ...5

Length of Lλ: 6a + 10b
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Convention Adopted for Code

Tableau · · · is denoted by · · ·
1
2 1

1
3 2

1
4 3

1
5 4

2
5 5

1
6 6

2
6 7

1
7 8

3
6 9

2
7 10

3
7 11

4
7 12

5
7 13

6
7 14

1 15

2 16

3 17

4 18

5 19

6 20

7 21
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