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Four Counting Problems

1. How many different license plates with 6 “characters” can we make, if there are 36 choices
for each character (A through Z, 0 through 9)?

2. How many different ways are there to form a line with 6 people, if the 6 people are to be
chosen from this room?

3. How many different ways are there to put 6 people from this room into an elevator?

4. How many different bowls of alphabet soup are possible if there are 100 letters in each bowl
(and, of course, 26 letters to choose from)?

Repetition
allowed

Repetition
not allowed

Order matters
1. License plates

nk

2. People in line

(n)k

Order doesn’t matter

4. Alphabet soup((
n

k

)) 3. People in an elevator(
n

k

) ←− How to choose k objects

from among n objects.

License plates
n choices n choices n choices n choices

↓ ↓ ↓ ↓
. . .

n · n · n · · ·n = nk

︸ ︷︷ ︸
k positions

People in line
n choices n− 1 n− 2 n + 1− k

↓ ↓ ↓ ↓
. . .

n ·(n−1) ·(n−2) · · · (n+1−k)
(def)
== : (n)k

︸ ︷︷ ︸
k positions

People in an elevator

(
n

k

)
== ??? “n choose k”

Alphabet soup

((
n

k

))
== ??? “n multi-choose k”

Exercise Find a formula for
((

n

k

))
.
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The Binomial Coefficient

(
n

k

)

•
(

n

k

)
is read “n choose k.” Here, n and k are integers. We are trying to answer the question:

How many ways are there to choose k objects from among n objects if order doesn’t matter
and if repetition isn’t allowed?

• Recurrence relation (
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
,

where
(

n

k

)
(def)
:== 0 if k < 0 or k > n (why?), and

(
0
0

)
(def)
:== 1 (why?).

Exercise Prove this.

Application We use this recurrence to build “Pascal’s Triangle.” (For now, please ignore
the diagonal sums.)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
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The Binomial Coefficient

(
n

k

)
, continued

• Generating function

The Binomial Theorem (x+1)n =
(

n

0

)
x0+

(
n

1

)
x1+

(
n

2

)
x2+ · · ·+

(
n

n

)
xn =

n∑
k=0

(
n

k

)
xk

(So, binomial coefficients are the coefficients that appear when we write (x + 1)n as a power series.)

Exercise Prove the Binomial Theorem. hint: Use the recurrence relation for
(

n

k

)
.

Application 1 Plug in x = 1 to get

2n =
(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= sum of the entries in nth row of Pascal’s Triangle

Application 2 Plug in x = −1 to get

0 = 0n = (−1 + 1)n =
(

n

0

)
−

(
n

1

)
+

(
n

2

)
−

(
n

3

)
+ · · ·+ (−1)n

(
n

n

)
= alternating sum of the entries in nth row of Pascal’s Triangle

• Explicit formula (
n

k

)
==

n!
k! (n− k)!

when 0 ≤ k ≤ n. Here we take

n!
(def)
:== (n)n = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

when n > 0 and set
0!

(def)
:== 1.

(Why define 0! this way?)

Exercise Prove that this formula works. hint: Use the recurrence relation for
(

n

k

)
.
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Secret Santa

The Question Suppose n people attend a party. Each guest brings a gift. The gifts are placed
in a bin. Each guest blindly picks one gift from the bin. What is the probability that no
guest takes home the gift that he/she brought to the party?

Example Here’s a way to depict one possible scenario if there are n guests at the party:

σ =
(

1 2 3 4 5 6 7 8 9
1 2 6 4 5 9 7 8 3

)
←− Person

←− Gift he/she takes

Set-up for our solution

Sn
(def)
:== the set of all possible scenarios

Then |Sn| == (n)n = n!

Dn
(def)
:==

the set of all scenarios for which
no guest takes home the gift he/she brought

Then
|Dn|
n!

==
probability that no guest
takes home the gift he/she brought

Fix(p1, p2, . . . , pr)
(def)
:==

the set of all “fixed point” scenarios σ for which
each guest p1, p2, . . . , pr takes home the gift he/she brought

IMPORTANT NOTE: Fix(2, 4, 5, 7, 8) ⊂ Fix(2, 4, 7) ⊂ Fix(2, 7)

A sloppy way to count |Dn|

|Dn|
???== |Sn| −



|Fix(1)|
+

|Fix(2)|
+
...
+

|Fix(n)|


+



|Fix(1, 2)|
+

|Fix(1, 3)|
+
...
+

|Fix(n− 1, n)|


−



|Fix(1, 2, 3)|
+

|Fix(1, 2, 4)|
+
...
+

|Fix(n− 2, n− 1, n)|


+ · · ·(*)

So apparently many “fixed point” scenarios will be thrown out multiple times and added
back multiple times to the count on the right hand side.

Claim On the right hand side of (*), the net result is that each “fixed point” scenario is thrown

out exactly once.
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Secret Santa, continued

Proof of Claim. Consider a scenario σ which has r fixed points.

Example The scenario σ =
(

1 2 3 4 5 6 7 8 9
1 2 6 4 5 9 7 8 3

)
has r = 6 fixed points

Thrown out
(
6
1

)
times: −

(
6
1

)
−6

Added back
(
6
2

)
times: +

(
6
2

)
+15

Thrown out
(
6
3

)
times: −

(
6
3

)
−20

Added back
(
6
4

)
times: +

(
6
4

)
+15

Thrown out
(
6
5

)
times: −

(
6
5

)
−6

Added back
(
6
6

)
times: +

(
6
6

)
+1

−1

In general, the net result for σ is:

−
(

r

1

)
+

(
r

2

)
−

(
r

3

)
+ · · ·+ (−1)r

(
r

r

)
But, recall that (

r

0

)
−

(
r

1

)
+

(
r

2

)
−

(
r

3

)
+ · · ·+ (−1)r

(
r

r

)
= 0,

so

−
(

r

1

)
+

(
r

2

)
−

(
r

3

)
+ · · ·+ (−1)r

(
r

r

)
= −1

Conclusion: The probability is
1
e

(!!!)

|Dn| = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!−

(
n

3

)
(n− 3)! + · · ·+ (−1)n

(
n

n

)
(n− n)!

=
n∑

k=0

(
n

k

)
(−1)k (n− k)!

|Dn|
n!

=
n∑

k=0

1
n!

n!
k! (n− k)!

(−1)k (n− k)!

=
n∑

k=0

(−1)k

k!

= 1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n 1

n!

≈ 1
e
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The Elf Reproduction Problem

A model for elf reproduction? It takes one year for a baby elf to mature into an adult elf.
Each year an adult elf will “spontaneously reproduce” a baby elf. Elves have an extremely
long lifespan.

The Question How many elves will there be after n years, if we start with one baby elf in year
zero?

Year # of elves

0 1 ep p
∧

1 1
hp p
∧

2 2
hp p
∧

ep p
∧

3 3
hp p
∧

ep p
∧,

hp p
∧

4 5
hp p
∧

ep p
∧,

hp p
∧,

hp p
∧

ep p
∧

5 8
hp p
∧

ep p
∧,

hp p
∧,

hp p
∧

ep p
∧,

hp p
∧

ep p
∧,

hp p
∧

6 ???

Let fn

(def)
:== # of elves after n years

Recurrence relation

fn+2 = fn+1 + fn

for n ≥ 0, with f0 = 1.

Exercise Prove this.

This is the famous Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Generating function Let g(x)
(def)
:==

∞∑
k=0

fk xk.

Claim g(x) =
−1

x2 + x− 1
=

−1
(x− α)(x− β)

,

where α and β are the roots of x2 + x− 1 = 0 with α = −1+
√

5
2 and β = −1−

√
5

2 .

Exercise Prove this.

Claim g(x) =
−1

(x− α)(x− β)
=

1√
5

1
(α− x)

− 1√
5

1
(β − x)

=
∞∑

k=0

1√
5

(
1

αk+1
− 1

βk+1

)
xk

Exercise Prove this.

Explicit formula Equate coefficients to see that

fk =
1√
5

(
1

αk+1
− 1

βk+1

)
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The Elf Reproduction Problem, continued

Proof of generating function claims

Claim Let g(x)
(def)
:==

∞∑
k=0

fk xk. Then g(x) =
−1

x2 + x− 1
=

−1
(x− α)(x− β)

,

where α and β are the roots of x2 + x− 1 = 0 with α = −1+
√

5
2 and β = −1−

√
5

2 .

Proof. We have

y := g(x) =
∞∑

k=0

fk xk = 1 + x +
∞∑

k=2

fk xk

= 1 + x +
∞∑

k=2

(fk−1 + fk−2) xk

= 1 + x +
∞∑

k=2

fk−1 xk +
∞∑

k=2

fk−2 xk

= 1 + x + x
∞∑

k=2

fk−1 xk−1 + x2
∞∑

k=2

fk−2 xk−2

= 1 + x− x + x

∞∑
k=1

fk−1 xk−1 + x2
∞∑

k=2

fk−2 xk−2

= 1 + xy + x2y

So y = 1 + xy + x2y. Solve for y to get y =
−1

x2 + x− 1
.

Claim g(x) =
−1

(x− α)(x− β)
=

1√
5

1
(α− x)

− 1√
5

1
(β − x)

=
∞∑

k=0

1√
5

(
1

αk+1
− 1

βk+1

)
xk

Proof. Using the Calculus II notion of “partial fractions” we write

−1
(x− α)(x− β)

=
A

α− x
+

B

β − x

Solving for A and B we get A = 1/
√

5 and B = −1/
√

5. Then

−1
(x− α)(x− β)

=
1√
5

1
(α− x)

− 1√
5

1
(β − x)

The function 1
r−x can be written as a power series as follows:

1
r − x

=
1
r

1(
1− x

r

) =
1
r

∞∑
k=0

1
rk

xk

Apply this to 1
α−x and 1

β−x . Then

1√
5

1
(α− x)

− 1√
5

1
(β − x)

=
1√
5 α

∞∑
k=0

1
αk

xk − 1√
5 β

∞∑
k=0

1
βk

xk =
∞∑

k=0

1√
5

(
1

αk+1
− 1

βk+1

)
xk
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The Elf Reproduction Problem, continued

A solution that uses matrix methods∗: The set-up

Let xn denote the number of baby elves at year n, and let yn denote the number of adult
elves at year n. We can view these as a vector:

xn :==
[

xn

yn

]

Let’s suppose that at the nth year we have xn = x and yn = y, so that xn ==
[

x

y

]
. Then

in the following year, the population distribution will change as follows:[
x

y

]
−→

[
y

x + y

]
,

since all x of the babies become adults while each of the y adults will have one baby. This is a

linear transformation whose representing matrix in standard coordinates is A ==
[

0 1
1 1

]
.

Thus we see that:

xn == Axn−1 == A2xn−2 == · · · == Anx0 ==
[

0 1
1 1

]n [
1
0

]
In order to get an explicit formula for xn and yn, we need a way to compute An. If we
could diagonalize A — that is, find a diagonal matrix D and an invertible matrix P so that
A = PDP−1 — then this would be easy, since we would have

An = (PDP−1)n = (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)(PDP−1) = PDnP−1

Eigenvalues and eigenvectors for A

We diagonalize by finding eigenvalues and eigenvectors for A. The eigenvalues are κ = 1+
√

5
2

and λ = 1−
√

5
2 . Corresponding eigenvectors are v =

[
λ

−1

]
and w =

[
κ

−1

]
. Then we’ll

have A = PDP−1 as desired if we set

D
(def)
:==

[
κ 0
0 λ

]
and P

(def)
:==

[
λ κ

−1 −1

]
with P−1 ==

1√
5

[
−1 −κ

1 λ

]
Exercise Confirm the previous statement.

Putting it all together

Now check that

xn == Anx0 == PDnP−1

[
1
0

]
==

1√
5

[
−κnλ + λnκ

κn − λn

]
Then the total population at the nth year is fn = xn + yn = 1√

5

(
κn+1 − λn+1

)
.

Exercise Confirm the previous computations.

∗ This is a simplistic example of a phenomenon in population dynamics known as “discrete-time evolution.”


