
Posets, Weyl Characters,

and Representations of Semisimple Lie Algebras

Robert G. Donnelly

Department of Mathematics and Statistics, Murray State University, Murray, KY 42071

April 2008

Abstract

This work-in-progress is intended as an exposition of the background material, results, and

open problems of a particular poset theoretic study of Weyl characters and semisimple Lie

algebra representations begun in the late 1970’s and early 1980’s in the work of Richard P.

Stanley and Robert A. Proctor.

1. Introduction

Combinatorial representation theory is currently a flourishing area of research. Broadly speak-

ing, the goal of this area is to advance understanding of algebraic structures and their representa-

tions using combinatorial methods, and vice-versa. For an excellent survey, see [BR].

Our focus here is on one particular corner of this area: a poset theoretic study of Weyl characters

and semisimple Lie algebra representations. This subject began with certain work of Richard P.

Stanley and Robert A. Proctor in the late 1970’s and early 1980’s. In papers such as [Sta1], it

was clear that Stanley was aware of nice interactions between certain families of posets and Weyl

characters. Proctor introduced the idea of semisimple Lie algebras acting on posets in papers

such as [Pro1], [Pro2], [Pro3], and [Pro4]. Since that time, there has been interest in finding

combinatorial models for Weyl characters and in constructing representations using combinatorial

methods. These have been topics of interest for this author ([Don1], [Don2], [Don3], [Don4], [Don5])

as well as many other researchers ([Alv], [ADLP], [ADLMPPW], [DLP1], [DLP2], [DW], [HL], [KN],

[LS], [LP], [Lit], [Mc], [Stem3], [Wil1], [Wil2], [Wil3], etc).

One goal of this work-in-progress is to provide a reasonably self-contained exposition of the main

background ideas from combinatorics, Weyl group and Weyl character theory, and the representa-

tion theory of semisimple Lie algebras that are needed to understand the results of this subject.

Another goal is to survey the main results and contributions of this subject since its inception in

work of Stanley and Proctor, paying particular attention to developments over the past decade.

Finally, we hope to inspire interest in the subject by showcasing some of the beautiful objects this



study has produced and by pointing out many open problems. In many ways, this subject is still

in its infancy.

April 2008. In this edition, we mainly focus on providing a view of the combinatorial and Weyl

character theoretic environment for our subject. In introducing our main combinatorial objects of

interest, we recast some of the the conventional notions of finite partially ordered sets and finite

distributive lattices by “coloring” vertices and/or edges. The development of these combinatorial

ideas is largely self-contained. We also attempt to present basic Weyl character theory from a

combinatorial starting point. This part of our exposition is not as self-contained, but key references

are given for those parts of the development which require theory not included here.
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2. Combinatorics background

Some of the definitions, notational conventions, and results of this chapter borrow from [Don4],

[DLP1], [DLP2], [ADLP], [ADLMPPW], and [Sta2]. We use “R” (and when necessary, “Q”)

as a generic name for most of the combinatorial objects we define here (“edge-colored directed

graph,” “vertex-colored directed graph,” “ranked poset”). The letter “P” is reserved for posets

(and “vertex-colored” posets) that will be viewed as posets of irreducibles for distributive lattices;

we reserve use of the letter “L” for reference to lattices and “edge-colored” lattices.

§2.1 Vertex- and edge-colored directed graphs. Let I be any set. An edge-colored

directed graph with edges colored by the set I is a directed graph R with vertex set V(R) and

directed-edge set E(R) together with a function edgecolorR : E(R) −→ I assigning to each edge

of R an element (“color”) from the set I. If an edge s → t in R is assigned color i ∈ I, we write

s i→ t. For i ∈ I, we let Ei(R) denote the set of edges in R of color i, so Ei(R) = edgecolor−1
R (i).

If J is a subset of I, remove all edges from R whose colors are not in J ; connected components of

the resulting edge-colored directed graph are called J-components of R. For any t in R and any

J ⊂ I, we let compJ(t) denote the J-component of R containing t. The dual R∗ is the edge-colored

directed graph whose vertex set V(R∗) is the set of symbols {t∗}t∈R together with colored edges

Ei(R∗) := {t∗ i→ s∗ | s i→ t ∈ Ei(R)} for each i ∈ I. Let Q be another edge-colored directed graph

with edge colors from I. If R and Q have disjoint vertex sets, then the disjoint sum R ⊕Q is the

edge-colored directed graph whose vertex set is the disjoint union V(R) ∪ V(Q) and whose colored

edges are Ei(R)∪ Ei(Q) for each i ∈ I. If V(Q) ⊆ V(R) and Ei(Q) ⊆ Ei(R) for each i ∈ I, then Q is

an edge-colored subgraph of R. Let R×Q denote the edge-colored directed graph whose vertex set

is the Cartesian product {(s, t)|s ∈ R, t ∈ Q} and with colored edges (s1, t1)
i→ (s2, t2) if and only

if s1 = s2 in R with t1
i→ t2 in Q or s1

i→ s2 in R with t1 = t2 in Q. Two edge-colored directed

graphs are isomorphic if there is a bijection between their vertex sets that preserves edges and edge

colors. If R is an edge-colored directed graph with edges colored by the set I, and if σ : I −→ I ′

is a mapping of sets, then we let Rσ be the edge-colored directed graph with edge color function

edgecolorRσ := σ ◦ edgecolorR. We call Rσ a recoloring of R. Observe that (R∗)σ ∼= (Rσ)∗. We

similarly define a vertex-colored directed graph with a function vertexcolorR : V(R) −→ I that

assigns colors to the vertices of R. In this context, we speak of the dual vertex-colored directed graph

R∗, the disjoint sum of two vertex-colored directed graphs with disjoint vertex sets, isomorphism

of vertex-colored directed graphs, recoloring, etc. See Figures 2.1, 2.2, 2.3, and 2.4 for examples.



Figure 2.1: A vertex-colored poset P and an edge-colored distributive lattice L.
(The set of vertex colors for P and the set of edge colors for L are {1,2}.

Elements of P are denoted vi and elements of L are denoted ti.
Edges in P and L are directed “up”.)
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§2.2 Finiteness hypothesis. In this paper, all directed graphs, including all partially ordered

sets (discussed in the next subsection) will be assumed to be finite.

§2.3 Posets. A partially ordered set (‘poset’) is a set R together with a relation ≤R that is

reflexive (s ≤R s for all s ∈ R), transitive (r ≤R s and s ≤R t ⇒ r ≤R t for all r, s, t ∈ R), and

antisymmetric (s ≤R t and t ≤R s ⇒ s = t for all s, t ∈ R). In this paper, we identify a poset

(R,≤R) with its Hasse diagram ([Sta2] p. 98): For elements s and t of a poset R, there is a directed

edge s→ t in the Hasse diagram if and only if s < t and there is no x in R such that s < x < t, i.e.

t covers s. Thus, terminology that applies to directed graphs (connected, edge-colored, dual, vertex-

colored, etc) will also apply to posets. When we depict the Hasse diagram for a poset, its edges are

directed ‘up’. In an edge-colored poset R, we say the vertex s and the edge s i→ t are below t, and

the vertex t and the edge s i→ t are above s. The vertex s is a descendant of t, and t is an ancestor

of s. The edge-colored and vertex-colored directed graphs studied in this thesis will turn out to

be posets. Given a subset Q of the elements of a poset R, let Q inherit the partial ordering of R;

call Q a subposet in the induced order. Suppose Q ⊆ R for another poset (Q,≤Q), and suppose
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Figure 2.2: A product of chains.
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that s ≤Q t ⇒ s ≤R t for all s, t ∈ Q. Then Q is a weak subposet of R. The terminology “weak

subposet” applies in the case that Q and R are vertex-colored (resp. edge-colored) if the colors of

vertices (resp. edges) from Q are the same as their colors when viewed as vertices (resp. edges) of

R. An antichain in R is a subset whose elements are pairwise incomparable with respect to the

partial order. A chain in R is a subset whose elements are pairwise comparable.

For a directed graph R, a rank function is a surjective function ρ : R −→ {0, . . . , l} (where l ≥ 0)

with the property that if s→ t in R, then ρ(s) + 1 = ρ(t); if such a rank function exists then R is

the Hasse diagram for a poset — a ranked poset. We call l the length of R with respect to ρ, and the

set ρ−1(i) is the ith rank of R. The rank generating function RGF (R, q) for such a ranked poset R

is the polynomial
l∑

i=0

|ρ−1(i)|qi in the variable q. Given another ranked poset Q, a simple counting

argument can be used to show that RGF (Q × R, q) = RGF (Q, q) · RGF (R, q). A ranked poset

that is connected has a unique rank function. A ranked poset R with rank function ρ and length l

is rank symmetric if |ρ−1(i)| = |ρ−1(l − i)| for 0 ≤ i ≤ l. It is rank unimodal if there is an m such

that |ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(m)| ≥ |ρ−1(m + 1)| ≥ · · · ≥ |ρ−1(l)|. It is strongly Sperner

if for every k ≥ 1, the largest union of k antichains is no larger than the largest union of k ranks.

It has a symmetric chain decomposition if there exist chains R1, . . . , Rk in R such that (1) as a set

R = R1 ∪ · · · ∪Rk (disjoint union), and (2) for 1 ≤ i ≤ k, ρ(yi) + ρ(xi) = l and ρ(yi)− ρ(xi) = li,

where xi and yi are respectively the minimal and maximal elements of the chain Ri, and li is the

length of the chain Ri. See Figures 2.5 and 2.6. If R has a symmetric chain decomposition, then

one can see that R is rank symmetric, rank unimodal, and strongly Sperner; however, the converse

does not hold. In an edge-colored ranked poset R, compi(t) will be a ranked poset for each t ∈ R

and i ∈ I. We let li(t) denote the length of compi(t), and we let ρi(t) denote the rank of t within

this component. We define the depth of t in its i-component to be δi(t) := li(t)− ρi(t).
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Figure 2.3: L∗ and (L∗)σ for the lattice L from Figure 2.1.
(Here σ(1) = α and σ(2) = β.)
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A path from s to t in a poset R is a sequence (s0 = s, s1, . . . , sr = t) such that for 1 ≤ p ≤ r

it is the case that either sp−1 → sp or sp → sp−1. We say this path has length r. In notating

paths, we sometimes include the directed edges between sequence elements. The distance dist(s, t)

between s and t in a connected poset R is the minimum length achieved when all paths from s to

t in R are considered. (For example, the distance from t3 to t5 in the lattice L from Figure 2.5 is

dist(t3, t5) = 4.) If R is a ranked poset and if s ≤ t in R, then dist(s, t) = ρ(t)− ρ(s). We say a

poset R has no open vees if (1) whenever r→ s and r→ t in R, then there exists a unique u in R

such that s → u and t → u, and (2) whenever s → u and t → u in R, then there exists a unique

Figure 2.4: The disjoint sum of the 2-components
of the edge-colored lattice L from Figure 2.1.
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Figure 2.5: The lattice L from Figure 2.1 is rank symmetric and rank unimodal.
RGF (L, q) = 1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6
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2nd rank; |ρ−1(2)| = 3

3rd rank; |ρ−1(3)| = 3

4th rank; |ρ−1(4)| = 3

5th rank; |ρ−1(5)| = 2

6th rank; |ρ−1(6)| = 1

r in R such that r → s and r → t. An edge-colored poset R has the diamond coloring property if

whenever rr r r��

@@
@@

��k l
i j

is an edge-colored subgraph of the Hasse diagram for R, then i = l and j = k.

Let R be an edge-colored ranked poset. For this paragraph, the elements of R will be denoted

by v1, . . . , vn, so n = |R|. For an integer k ≥ 0, let
∧k(R) denote the set of all k-element subsets

of the vertex set of R. If k > n, then
∧k(R) = ∅. If k = 0 or k = n then

∧k(R) is a set with one

element. For s, t ∈
∧k(R), write s i→ t if and only if s and t differ by exactly one element in the

sense that (s − t, t − s) = ({vp}, {vq}) and vp
i→ vq in R. Use the notation

∧k(R) to refer to this

edge-colored directed graph, which we call the kth exterior power of R. Similarly let Sk(R) denote

the set of all k-element multisubsets of the vertex set of R and define colored, directed edges s i→ t

between elements of Sk(R). Call Sk(R) the kth symmetric power of R. It can be shown that
∧k(R)

and Sk(R) are ranked posets whose covering relations are the colored, directed edges prescribed in

this paragraph.

§2.4 Lattices, modular lattices, and distributive lattices. A lattice is a poset for which

any two elements s and t have a unique least upper bound s∨ t (the join of s and t) and a unique

greatest lower bound s∧t (the meet of s and t). That is, whenever s ≤ x and t ≤ x then (s∨t) ≤ x,
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Figure 2.6: The lattice L from Figure 2.1 has a symmetric chain decomposition.
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and whenever x ≤ s and x ≤ t then x ≤ (s∧ t). A lattice L is necessarily connected, and finiteness

implies that there is a unique maximal element max(L) and a unique minimal element min(L).

For any r, s, t ∈ L, the facts that r ∧ (s ∧ t) = (r ∧ s) ∧ t and r ∨ (s ∨ t) = (r ∨ s) ∨ t follow easily

from transitivity and antisymmetry of the partial order on L. That is, the meet and join operations

are associative. Thus for a nonempty subset S of L, the meet ∧s ∈ S(s) and the join ∨s ∈ S(s) are

well-defined. We take ∧s ∈ S(s) = min(L) and ∨s ∈ S(s) = max(L) if S is empty.

A lattice L is modular if it is ranked and ρ(s) + ρ(t) = ρ(s ∨ t) + ρ(s ∧ t) for all s, t ∈ L.

One can easily check that a modular lattice L is a ranked lattice with no open vees. If L is a

lattice with no open vees, then one can see that L is ranked and for any s and t, dist(s, t) =

2ρ(s∨ t)− ρ(s)− ρ(t) = ρ(s)+ ρ(t)− 2ρ(s∧ t); hence L is a modular lattice (see [Sta2] Proposition

3.3.2). A lattice L is distributive if for any r, s, and t in L it is the case that r∨(s∧t) = (r∨s)∧(r∨t)

and r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t). One can see that this distributive lattice L is a ranked lattice

with no open vees. It follows that L is also a modular lattice. The following lemma shows how the

modular lattice and diamond-coloring properties can interact. This lemma is used in the proofs of

Theorem 2.6 and Proposition 2.8.
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Lemma 2.1 Let L be a diamond-colored modular lattice. Suppose s ≤ t. Suppose s = r0
i1→ r1

i2→

r2
i3→ · · ·

ip−1→ rp−1
ip→ rp = t and s = r′0

j1→ r′1
j2→ r′2

j3→ · · ·
jp−1→ r′p−1

jp→ r′p = t are two paths from

s up to t. Then {i1, i2, . . . , ip} = {j1, j2, . . . , jp}. Moreover, if r1 and r′p−1 are incomparable, then

i1 = jp.

Proof. We use induction on the length p of the given paths to prove both claims of the lemma

statement. If p = 0, then there is nothing to prove. For our induction hypothesis, we assume

the theorem statement holds whenever p ≤ m for some nonnegative integer m. Suppose now that

p = m+1. We consider two cases: (1) rp−1 = r′p−1 and (2) rp−1 6= r′p−1. In case (1), if rp−1 = r′p−1,

then ip = jp. Moreover, the induction hypothesis applies to the paths s = r0
i1→ r1

i2→ r2
i3→ · · ·

ip−1→

rp−1 = r′p−1 and s = r′0
j1→ r′1

j2→ r′2
j3→ · · ·

jp−1→ r′p−1 = rp−1. It follows that {i1, i2, . . . , ip−1} =

{j1, j2, . . . , jp−1}. Since ip = jp, we conclude that {i1, i2, . . . , ip−1, ip} = {j1, j2, . . . , jp−1, jp}. Note

that in case (1), r1 ≤ rp−1 = r′p−1. So r1 and r′p−1 are comparable.

In case (2), if rp−1 6= r′p−1, then consider x := rp−1∧r′p−1. Since s ≤ rp−1 and s ≤ r′p−1, it follows

that s ≤ x. Then consider a path s = r′′0
k1→ r′′1

k2→ r′′2
k3→ · · ·

kp−3→ r′′p−3

kp−2→ r′′p−2 = x. Note that since

L is diamond-colored, we have x
jp→ rp−1 and x

ip→ r′p−1. Then by the induction hypothesis, we have

{k1, k2, . . . , kp−2, jp} = {i1, i2, . . . , ip−2, ip−1} and {k1, k2, . . . , kp−2, ip} = {j1, j2, . . . , jp−2, jp−1}.

Then, {i1, i2, . . . , ip−2, ip−1, ip} = {k1, k2, . . . , kp−2, ip, jp} = {j1, j2, . . . , jp−2, jp−1, jp}, as desired.

Now suppose that r1 and r′p−1 are incomparable. It follows that r1 and x are incomparable as well.

Then we can apply the induction hypothesis to the paths s = r′′0
k1→ r′′1

k2→ r′′2
k3→ · · ·

kp−3→ r′′p−3

kp−2→

r′′p−2 = x
jp→ rp−1 and s = r0

i1→ r1
i2→ r2

i3→ · · ·
ip−1→ rp−1. From this, we see that i1 = jp. This

completes the induction step, and the proof.

The following discussion of edge-colored distributive lattices and certain related vertex-colored

posets encompasses the classical uncolored situation (for example as in Ch. 3 of [Sta2]). These

concepts have antecedents in work of Proctor and Stembridge (see e.g. [Pro3], [Pro4], [Stem2],

[Stem1]), but there seems to be no standard treatment of these ideas. The main idea is that for

a certain kind of edge-colored distributive lattice, all the information about the lattice can be

compressed into a much smaller vertex-colored poset in such a way that the information can be

fully recovered.

Edge-colored distributive lattices can be constructed as follows: Let P be a poset with vertices

colored by a set I. An order ideal x from P is a vertex subset of P with the property that u ∈ x

whenever v ∈ x and u ≤ v in P . For order ideals x and y from P , write x ≤ y if x ⊆ y (subset

9



Figure 2.7: The lattice L from Figure 2.1 recognized as Jcolor(P ).
(In this figure, each order ideal from P is identified by the indices of its maximal vertices.

For example, 〈2, 3〉 in L denotes the order ideal {v2, v3, v4, v5, v6} in P .
A join irreducible in L is an order ideal 〈k〉 whose only maximal element is vk.)

P ∼= jcolor(L)
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containment). This is a partial ordering on the set L of order ideals from P . With respect to this

partial ordering, L is a distributive lattice: x ∨ y = x ∪ y (set union) and x ∧ y = x ∩ y (set

intersection) for all x,y ∈ L. One can easily see that x → y in L if and only if x ⊂ y (proper

containment) and y \ x = {v} for some maximal element v of y (thought of as a subposet of P

in the induced order). In this case, we declare that edgecolorL(x → y) := vertexcolorP (v),

making L an edge-colored distributive lattice. One can easily check that whenever rr r r��

@@
@@

��k l
i j

is an

edge-colored subgraph of the Hasse diagram for L, then i = l and j = k. Therefore L has

the diamond-coloring property. The diamond-colored distributive lattice just constructed is given

special notation: we write L := Jcolor(P ). See Figure 2.7. Note that if P ∼= Q as vertex-colored

posets, then Jcolor(P ) ∼= Jcolor(Q) as edge-colored posets. Moreover, L is ranked with rank function

given by ρ(t) = |t|, the number of elements in the subset t from P . In particular, the length of L

is |P |.
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The process described in the previous paragraph can be reversed. Given a diamond-colored

distributive lattice L, an element x is join irreducible if x 6= min(L) and whenever x = y ∨ z then

x = y or x = z. One can see that x is join irreducible if and only if x has precisely one descendant x′

in L, i.e. |{x′ |x′ → x}| = 1. Let P be the set of all join irreducible elements of L with the induced

partial ordering. Color the vertices of P by the rule: vertexcolorP (x) := edgecolorL(x′ → x).

We call P the vertex-colored poset of join irreducibles and denote it by P := jcolor(L). If K ∼= L

is an isomorphism of diamond-colored lattices, then jcolor(K) ∼= jcolor(L) is an isomorphism of

vertex-colored posets.

Example 2.2 Let P be an antichain whose elements all have the same color. Then the elements

of L := Jcolor(P ) are just the subsets of P . In particular, |L| = 2|P |. Moreover, the rank ρL(t) of a

subset t from P is just |t|. The join irreducible elements of L are just the singleton subsets of P .

Covering relations in L are easy to describe: s→ t if and only if t is formed from s by adding to s

exactly one element from P \ s. Any such lattice L is called a Boolean lattice.

What follows is a dual to the above constructions of edge-colored distributive lattices. A filter

from a vertex-colored poset P is a subset x with the property that if u ∈ x and u ≤ v in P then

v ∈ x. Note that for x ⊆ P , x is a filter if and only if the set complement P \ x is an order ideal.

Now partially order all filters from P by reverse containment: x ≤ y if and only if x ⊇ y for filters

x,y from P . The resulting partially ordered set L is a distributive lattice. We color the edges of L

as we did in the case of order ideals. The result is a diamond-colored distributive lattice which we

denote by L = Mcolor(P ). In the other direction, given a diamond-colored distributive lattice L,

we say x ∈ L is meet irreducible if and only if x 6= max(L) and whenever x = y ∧ z then x = y or

x = z. One can see that x is meet irreducible if and only if x has exactly one ancestor. Now consider

the set P of meet irreducible elements in L with the order induced from L. Color the vertices of P

in the same way we colored the vertices of the poset of join irreducibles. The vertex-colored poset

P is the poset of meet irreducibles for L. Write P = mcolor(L). We have mcolor(P ) ∼= mcolor(Q) if

P ∼= Q (an isomorphism of vertex-colored posets). We also have Mcolor(L) ∼= Mcolor(K) if L ∼= K

(an isomorphism of diamond-colored distributive lattices).

The next result shows that the operations Jcolor (respectively, Mcolor) and jcolor (respectively,

mcolor) are inverses in a certain sense. This is a straightforward generalization of the classical

Fundamental Theorem of Finite Distributive Lattices (cf. Theorem 3.4.1 of [Sta2]). The latter

result is formulated for uncolored posets and distributive lattices.
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Theorem 2.3 (The Fundamental Theorem of Finite Diamond-colored Distributive

Lattices) (1) Let L be any diamond-colored distributive lattice. Then it is the case that

L ∼= Jcolor(jcolor(L)) ∼= Mcolor(mcolor(L)). (2) Let P be any vertex-colored poset. Then P ∼=

jcolor(Jcolor(P )) ∼= mcolor(Mcolor(P )).

Proof. For (1), let P := jcolor(L). Let min = min(L) be the unique minimal element of L.

For any x ∈ L set Ix := {y ∈ P |y ≤L x}. Observe that Ix is an order ideal from P . Clearly

∨y∈Ix(y) ≤L x. We claim that x = ∨y∈Ix(y). To see this we induct on the rank of x. If

x = min, then Ix = ∅, so the desired result follows. For our induction hypothesis, we suppose

that z = ∨y∈Iz(y) for all z with ρL(z) ≤ k for some integer k ≥ 0. Suppose now that x ∈ L

with ρL(x) = k + 1. First, consider the case that x is join irreducible. Then x ∈ Ix, so the result

x = ∨y∈Ix(y) follows immediately. Now suppose x is not join irreducible. Then we may write

x = s ∨ t for some s 6= x 6= t. Since s ≤L (s ∨ t) and t ≤L (s ∨ t), then s <L x and t <L x.

In particular, ρL(s) ≤ k and ρL(t) ≤ k. So the induction hypothesis applies to s and t. That is,

s = ∨y∈Is(y) and t = ∨y∈It(y). Note also that (Is ∪ It) ⊆ Ix. Then,

x = s ∨ t = ∨y∈(Is∪It)(y) ≤L ∨y∈Ix(y) ≤L x,

so we have equality all the way through. That is, ∨y∈Ix(y) = x.

We also claim that for any x ∈ L, if x = ∨y∈I(y) for some order ideal I from P , then I = Ix and

|Ix| = ρL(x). To see this, we use induction on the rank of x. When ρL(x) = 0, then x = min. In

this case, if x = ∨y∈I(y) for some order ideal I from P , then it must be the case that I = ∅, hence

I = Ix and |Ix| = ρL(x). For our induction hypothesis, suppose the claim holds for all elements of

L with rank no more than k for some positive integer k. Next suppose that for some x ∈ L we have

ρL(x) = k + 1 and x = ∨y∈I(y) for some order ideal I from P . Choose a maximal element z in I.

Then let J := I \ {z}. Clearly J is an order ideal from P . Let x′ := ∨y∈J (y). Clearly x′ ≤L x.

In order to apply the induction hypothesis to x′, we need x′ <L x. Suppose otherwise, so x′ = x.

Then x′ 6= min, and hence J 6= ∅. Further, x′ = x = z ∨ (∨y∈J (y)) = z ∨ x′ implies that z ≤L x′.

So z∧x′ = z. But then z = z∧x′ = z∧ (∨y∈J (y)) = ∨y∈J (z∧y). Since z is join irreducible, then

z ∧ y = z for all y ∈ J . Since J 6= ∅, then for some y ∈ J we have z ≤L y. But z was chosen to

be maximal in I, and hence z 6≤L y for all y ∈ J = I \{z}. This is a contradiction, so we conclude

that x′ <L x. Then ρL(x′) < ρL(x), so the induction hypothesis applies to x′. We get J = Ix′ .

In particular, |I| = |Ix′ |+ 1. Applying this reasoning to the particular order ideal Ix we conclude

that |Ix| = |Ix′ |+ 1. Of course if t ∈ I, then by definition t ≤L x. Hence t ∈ Ix. This shows that
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I ⊆ Ix. Since |I| = |Ix|, we conclude that I = Ix. Next suppose x′ <L x′′ <L x for some x′′ ∈ L.

Then Ix′ ⊂ Ix′′ ⊂ Ix, both proper containments. (Otherwise, x′ = ∨y∈Ix′ (y) = ∨y∈Ix′′ (y) = x′′,

etc.) So |Ix′ | < |Ix′′ | < |Ix|. But |Ix′ | + 1 = |Ix|, so both of the preceding inequalities cannot be

strict. We conclude that there is no x′′ ∈ L for which x′ <L x′′ <L x. That is, x covers x′. By

the inductive hypothesis we have ρL(x′) = |Ix′ |. So ρL(x) = ρL(x′) + 1 = |Ix′ | + 1 = |Ix|. This

completes the proof of our claim.

Now consider the function φ : L → Jcolor(P ) defined by φ(x) := Ix. We show that φ is a

bijection. If Is = It, then s = ∨y∈Is(y) = ∨y∈It(y) = t. In particular, φ is injective. Now suppose

I is an order ideal from P . Let x := ∨y∈I(y). By the preceding paragraph, I = Ix. So, φ is

surjective.

We wish to show that s i→ t in L if and only if Is
i→ It in Jcolor(P ). First, suppose s i→ t in L.

It follows from the definitions that Is ⊆ It. Now s 6= t since t covers s in L. Since Is = φ(s) and

It = φ(t) and φ is injective, then Is 6= It. So Is ⊂ It is a proper containment. Suppose Is ⊆ I ⊆ It.

Since φ is surjective, then I = Ix for some x ∈ L. But then ∨y∈Is(y) ≤L ∨y∈Ix(y) ≤L ∨y∈It(y),

and hence s ≤L x ≤L t. Since t covers s, then s = x or x = t. Hence Is → It in Jcolor(P ).

In particular, there is some z ∈ P such that Is = It \ {z}. Moreover, by the definition of Jcolor,

Is
j→ It in Jcolor(P ) where j = vertexcolorP (z). Now j is just the color of the edge z′

j→ z for

the unique descendant z′ of z in L. If z = t, then necessarily z′ = s, and so j = i.

So now suppose that z 6= t. So we have z <L t, and hence Iz ⊂ It. We claim that z′ ≤L s. To see

this, apply the reasoning of the preceding paragraph to conclude that Iz′ ⊂ Iz with Iz = Iz′ ∪{z}.

It follows that Iz′ ⊂ It. Since z 6∈ Iz′ , Iz ⊂ It, and Is = It \ {z}, we get Iz′ ⊆ Is. Then

z′ = ∨y∈Iz′ (y) ≤L ∨y∈Is(y) = s. Since z′ ≤L s, there is a path (z′ = z′0, z
′
1, . . . , z

′
p = s) such that

for 1 ≤ q ≤ p it is the case that z′q covers z′q−1. In particular, for each 1 ≤ q ≤ p there is a color iq

such that z′q−1

iq→ z′q. Since z′
j→ z and z′ i1→ z′1 and since L has no open vees, then there is a unique

z1 such that z→ z1 and z′1 → z1. Since L is diamond-colored, then z i1→ z1 and z′1
j→ z1. Continue

in this way, eventually obtaining a path (z = z0, z1, z2, . . . , zq) such that for 1 ≤ q ≤ p we have

zq−1
iq→ zq and for 0 ≤ q ≤ p we have z′q

j→ zq. In particular, s ≤L zp and z ≤L zp, so s ∨ z ≤L zp.

We claim that z and s are not comparable. Otherwise, s ≤L z or z ≤L s. In the latter case, we

would have z ∈ Is, which is not true. In the former case, s ≤L z <L t. Since t covers s, then we

must have s = z. But then z ∈ Is, which is not true. Since s and z are not comparable, then

s < s∨ z. Since s∨ z ≤L zp and s
j→ zp, it follows that zp = s∨ z. But s∨ z = (∨y∈Is(y))∨ z = t,
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and hence t ≤ zp. Since s is covered by both zp and t, this can only mean that zp = t. Hence

j = i. So Is
i→ It in Jcolor(P ).

On the other hand, suppose Is
i→ It in Jcolor(P ). Then Is = Is \ {z} for some z ∈ P , where

i = vertexcolor(z). That is, z′ i→ z in L, where z′ is the unique descendant of z in L. Then

s <L t. Since ρL(s) = |Is| and ρL(t) = |It|, the s → t. Let j be the color of this edge, so s
j→ t.

The preceding two paragraphs showed that we must have Is
j→ It. Then i = j.

We conclude that φ is an edge and edge-color preserving bijection from L to Jcolor(jcolor(P )).

It follows that L ∼= Jcolor(jcolor(P )). The argument that L ∼= Mcolor(mcolor(P )) is entirely similar.

This completes the proof of (1).

For (2), we only show P ∼= jcolor(Jcolor(P )) since the argument that P ∼= mcolor(Mcolor(P )) is

entirely similar. Let L := Jcolor(P ), and let Q := jcolor(L). For any v ∈ P , let 〈v〉 := {u ∈ P |u ≤P

v}. Observe that 〈v〉 is an order ideal with v as its unique maximal element. It follows that for an

order ideal I from P we have I → 〈v〉 in L if and only if I = 〈v〉\{v}. Hence, 〈v〉 is join irreducible

in L. So we define a mapping ψ : P → Q by ψ(v) := 〈v〉.

We claim that ψ is a bijection. Indeed, if ψ(u) = ψ(v) for u, v ∈ P , then 〈u〉 = 〈v〉. But then

u ≤P v and v ≤P u. Therefore u = v, and hence ψ is injective. On the other hand, if I is an order

ideal from P that is join irreducible in L, then I must have a unique maximal element, say v. But

then I = 〈v〉 = ψ(v), so ψ is injective.

Finally we show ψ preserves edges and vertex colors. If u → v in P , then 〈u〉 <Q 〈v〉. Now if

〈u〉 ≤Q 〈z〉 ≤Q 〈v〉, it follows that u ≤P z ≤P v. Since v covers u in P , then u = z or z = v, and

hence 〈u〉 = 〈z〉 or 〈z〉 = 〈v〉. That is, u → v in P implies that ψ(u) → ψ(v) in Q. Conversely, if

〈u〉 → 〈v〉 in Q, then we must have u <P v in P . Suppose u ≤P z ≤P v. Then one easily sees that

〈u〉 ≤Q 〈z〉 ≤P 〈v〉, and hence 〈u〉 = 〈z〉 or 〈z〉 = 〈v〉. Then u = z or z = v. That is, ψ(u)→ ψ(v)

in Q implies that u→ v in P . As for vertex colors, observe that vertexcolorP (v) = i if and only

if 〈v〉 \ {v} i→ 〈v〉 in L if and only if vertexcolorQ(ψ(v)) = i. This completes the proof.

As a consequence, we note that a necessary and sufficient condition for an edge-colored dis-

tributive lattice L to be isomorphic (as an edge-colored poset) to Jcolor(P ) or Mcolor(P ) for some

vertex-colored poset P is for L to have the diamond coloring property. We will often refer to P

simply as the poset of irreducibles.

The details justifying the next result are routine.
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Figure 2.8: An illustration of the principles that Jcolor(P1 ⊕ P2) ∼= Jcolor(P1)× Jcolor(P2)
and jcolor(L1 × L2) ∼= jcolor(L1)⊕ jcolor(L2), cf. Proposition 2.4.

(As in Figure 2.7, here each order ideal from Q is identified by the indices of its maximal vertices.
A join irreducible in K is an order ideal 〈k〉 whose only maximal element is vk.)
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Proposition 2.4 Let P and Q be posets with vertices colored by a set I, and let K and L be

diamond-colored distributive lattices with edges colored by I. In what follows, ∗, σ, ⊕, ×, and ∼= ac-

count for colors on vertices or edges as appropriate. (1) Then Jcolor(P ∗) ∼= (Jcolor(P ))∗, Jcolor(P σ) ∼=

(Jcolor(P ))σ (recoloring), and Jcolor(P⊕Q) ∼= Jcolor(P )×Jcolor(Q). (2) Also, jcolor(L∗) ∼= (jcolor(L))∗,

jcolor(Lσ) ∼= (jcolor(L))σ, and jcolor(L × K) ∼= jcolor(L) ⊕ jcolor(K). (3) Further, Mcolor(P ∗) ∼=

(Mcolor(P ))∗, Mcolor(P σ) ∼= (Mcolor(P ))σ, and Mcolor(P ⊕Q) ∼= Mcolor(P )×Mcolor(Q). (4) In addi-

tion it is the case that mcolor(L∗) ∼= (mcolor(L))∗, mcolor(Lσ) ∼= (mcolor(L))σ, and mcolor(L×K) ∼=

mcolor(L) ⊕ mcolor(K). (5) If K ∼= L, then jcolor(K) ∼= mcolor(L). If P ∼= Q, then Jcolor(P ) ∼=

Mcolor(Q).

§2.5 Sublattices. Let L be a lattice with partial ordering ≤L and meet and join operations

∧L and ∨L respectively. Let K be a vertex subset of L. Suppose that K has a lattice partial

ordering ≤K of its own with meet and join operations ∧K and ∨K respectively. We say K is a

sublattice of L if for all x and y in K we have x ∧K y = x ∧L y and x ∨K y = x ∨L y. It is easy to
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see that if K is a sublattice of L then for all x and y in K we have x ≤K y if and only if x ≤L y.

That is, K is a weak subposet of L and a subposet in the induced order.

Lemma 2.5 Suppose K is a sublattice of L. Suppose K and L are ranked with rank functions

ρ(K) and ρ(L) respectively. Suppose K and L have the same length. Then ρ(K)(x) = ρ(L)(x) for all

x in K, and moreover for all x and y in K we have x→ y in K if and only if x→ y in L.

Proof. Let l denote the common length of the ranked posets K and L. Take a chain in K

min(K) = x0 → x1 → · · · → xl = max(K) of longest length. Then, x0 <L x1 <L · · · <L xl, so

ρ(L)(xl) ≥ l + ρ(L)(x0). Since L has length l, this must mean that ρ(L)(xl) = l and ρ(L)(x0) = 0.

So x = min(L) and xl = max(L).

Now take any x in K. Then x = xr in some longest chain x0 → x1 → · · · → xl in K. Now

(ρ(K)(x0), ρ(K)(x1), . . . , ρ(K)(xl) = (0, 1, . . . , l). Since (ρ(L)(x0), ρ(L)(x1), . . . , ρ(L)(xl) is an increas-

ing sequence of integers with ρ(L)(x0) and ρ(L)(xl) = l, then (ρ(L)(x0), ρ(L)(x1), . . . , ρ(L)(xl) =

(0, 1, . . . , l) also. Hence ρ(K)(x) = ρ(K)(xr) = ρ(L)(xr) = ρ(L)(x).

Finally, let x and y be elements of K. Assume x → y in K. Then x <K y and ρ(K)(x) + 1 =

ρ(K)(y). So x <L y in L and ρ(L)(x) + 1 = ρ(L)(y). Hence x → y is a covering relation in L as

well. Clearly this argument reverses to show that if x→ y in L then x→ y in K.

WhenK satisfies the hypotheses of Lemma 2.5, we sayK is a full length sublattice of L. Suppose

L is an edge-colored lattice. Suppose K is a sublattice of L such that x→ y in L whenever x→ y

in K. If K is also edge-colored and if the colors on edges of K match the colors when we view these

as edges in L, then we say K is an edge-colored sublattice of L. The previous lemma gives us one

way to know whether the edges of a sublattice are also edges of the ‘parent’ lattice. We now turn

our attention to the special case of diamond-colored distributive lattices.

Theorem 2.6 (1) Let P and Q be vertex-colored posets with vertices colored by a set I. Suppose

that for each i ∈ I, the vertices of color i in P coincide with the vertices of color i in Q (so

in particular P = Q as vertex sets). Further suppose that P is a weak subposet of Q. Let

K := Jcolor(Q) and L := Jcolor(P ). Then K is a full-length edge-colored sublattice of L. (2)

Conversely, suppose L is a diamond-colored distributive lattice with edges colored by a set I.

Suppose K is a full-length edge-colored sublattice of L (so K is necessarily a diamond-colored

distributive lattice). Let P := jcolor(L) and Q := jcolor(K). Then P ∼= P ′ (an isomorphism of

vertex-colored posets) where P ′ is weak-subposet of Q, P ′ = Q as vertex sets, and the color of a

vertex in P ′ is the same as its color when viewed as a vertex in Q.
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Proof. The proof of (1) is easy. Let x be an order ideal from Q. It follows from the definitions

that x is also an order ideal from P . So we get an inclusion K = Jcolor(Q) ⊆ Jcolor(P ) = L. The

length of K (resp. L) is the cardinality of Q (resp. P ), and since Q = P as vertex sets then K and

L have the same length. Finally, note that for order ideals x and y from Q, x∨K y = x∪y = x∨Ly

and x ∧K y = x ∩ y = x ∧L y.

For the proof of (2), we begin by choosing a join irreducible x in L. Let Fx := {y ∈ K |x ≤L y}.

We claim that Fx is a filter in K with a unique minimal element. First, if y ∈ Fx and y ≤K y′ for

some y′ ∈ K, then y ≤L y′, and by transitivity of the partial order on L it follows that x ≤L y′.

Hence y′ ∈ Fx. This shows that Fx is a filter in K. Second, if y and y′ are both minimal elements

of Fx, then whenever x ≤L y and x ≤L y′ we will have x ≤L (y ∧L y′) and so x ≤L (y ∧K y′).

Hence (y ∧K y′) ∈ Fx. Now (y ∧K y′) ≤K y and (y ∧K y′) ≤K y′. But y and y′ are minimal

elements of Fx. So (y ∧K y′) = y and (y ∧K y′) = y′, i.e. y = y′. So Fx has a unique minimal

element.

Let z be the unique minimal element of Fx, let DK(z) ⊂ K be the set of descendants of z in

K, and let y be the unique descendant of x in L. We claim that for any z′ ∈ DK(z) we have

x ∨L z′ = z and x ∧L z′ = y. To see this, note that when z′ → z in K, we cannot have x ≤L z′ or

else z will not be minimal in Fx. So we cannot have z′ = x ∨L z′. Therefore, z′ <L x ∨L z′. Then

ρ(L)(x ∨L z′) ≥ ρ(L)(z). But since x ≤L z and z′ <L z, we have ρ(L)(x ∨L z′) ≤ ρ(L)(z). Hence

ρ(L)(x∨Lz′) = ρ(L)(z). It now follows that z = x∨Lz′. Next, since x 6≤L z′, then x∧Lz′ <L x. But

ρ(L)(x∧L z′) = ρ(L)(x)+ρ(L)(z′)−ρ(L)(x∧L z′) = ρ(L)(x)+ρ(L)(z)−1−ρ(L)(x∧L z′) = ρ(L)(x)−1.

Thus x ∧L z′ → x. But since y is the only element of L covered by x, then x ∧L z′ = y.

Next we claim that z has exactly one descendant in K, i.e. |DK(z)| = 1. Let z1, z2 ∈ DK(z).

Let z′ := z1 ∧K z2. We will show that z′ ∨L x = z and z′ ∧L x = y. Since y ≤L zi (i = 1, 2) by

the previous paragraph, then y ≤L z1 ∧L z2 = z1 ∧K z2 = z′. Since we also have y ≤L x, then

y ≤L z′ ∧L x. Since z′ ∧L x ≤L x and y→ x, the only way to have y <L z′ ∧L x is if x = z′ ∧L x.

But then we would have x ≤L z′, which would mean z′ ∈ Fx. Then z ≤K z′ by the minimality of z.

This contradicts the fact that z′ ≤K z1 <K z. So y = z′∧Lx. Next, using a result from the previous

paragraph we see that z′∨Lx = (z1∧Kz2)∨Lx = (z1∧Lz2)∨Lx = (z1∨Lx)∧L(z2∨Lx) = z∧Lz = z.

Now, ρ(L)(z′)+ρ(L)(x) = ρ(L)(z)+ρ(L)(y). Since ρ(L)(y) = ρ(L)(x)−1, we have ρ(z′) = ρ(L)(z)−1.

Hence ρ(L)(z′) = ρ(L)(zi) for i = 1, 2. This can only happen if z1 = z′ = z1 ∧K z2 = z2. Hence

z1 = z2. Next we argue that DK(z) is nonempty. We have that x ≤L z and (since x is join
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irreducible) ρ(L)(x) > 0. Therefore ρ(K)(z) > 0, so z is not the unique minimal element of K. In

particular, DK(z) is nonempty. So z is join irreducible in K.

With P and Q as in the theorem statement, we define a function φ : P → Q by φ(x) = z,

where x and z are as in the preceding paragraphs. Next we show that φ is surjective. Let z ∈ L

be any join irreducible in K. Suppose z is also join irreducible in L. It follows that z is the unique

minimal element of Fz. That is, z = φ(z).

So now suppose z is not join irreducible in L. Let z′ be the unique element of K such that

z′ → z. Define a set Sz := {y ∈ L \K |y ∨L z′ = z}. Since z is not join irreducible in L, it follows

that Sz is nonempty. We claim Sz has a unique minimal element. Indeed, suppose y and y′ are

minimal elements in Sz. Then (y ∧L y′) ∨L z′ = (y ∨L z′) ∧L (y′ ∨L z′) = z ∧L z = z. Since y <L z

and y′ <L z, then y ∧L y′ <L z. If (y ∧L y′) ∈ K, then (y ∧L y′) <K z. Then it must be the case

that (y ∧L y′) ≤K z′ since any path from y ∧L y′ up to z and that stays in K must pass through

z′. But then we would have (y ∧L y′) ∨L z′ = z′ instead of (y ∧L y′) ∨L z′ = z. Then (y ∧L y′) is

in L \K and hence in Sz. Minimality of y and y′ in Sz then forces us to have y = (y ∧L y′) = y′.

Let x denote the unique minimal element of Sz.

We have two claims: x is join irreducible in L, and z is the unique minimal element of Fx. Let

x′ := x ∧L z′. Since ρ(x′) = ρ(x) + ρ(z′) − ρ(z) = ρ(x) − 1, then x′ → x. Suppose x′′ → x for

some x′′ 6= x′. It cannot be the case that x′′ ≤L z′, because otherwise x′ ≤L z′ and x′′ ≤L z′ means

that x = (x′ ∨L x′′) ≤L z′, a contradiction. Further, we have that x′′ ∈ K. Otherwise we would

have x′′ ∈ L \K, and since x′′ 6≤L z′ then (x′′ ∨L z′) = z. But then x′′ would be in Sz, violating

minimality of x. So x′′ ∈ K and x′′ 6≤L z′. Then there is a path from x′′ up to z that stays in

K. But since z is join irreducible in K, then such a path must pass through z′, implying that

x′′ ≤K z′. But then x′′ ≤L z′, a contradiction. Therefore x′ can be the only descendant of x, hence

x is join irreducible in L. Now if w ∈ Fx, then from the facts that x <L w and x <L z we get

x ≤L (w ∧L z). Since (w ∧L z) = (w ∧K z), then (w ∧L z) ∈ K, so we cannot have x = (w ∧L z).

Then x <L (w ∧L z). If (w ∧L z) <L z, then we would have x ≤L z′, which is not the case. So

(w ∧L z) = z, and hence z ≤L w. So z is the unique minimal element of Fx. That is, z = φ(x).

Our work in the preceding paragraphs shows that any join irreducible in K is the image under φ

of a join irreducible in L. That is, φ is surjective. Since |P | = |Q| (K and L have the same length),

then φ is therefore a bijection. Suppose that z = φ(x) 6= x for some x ∈ P and z ∈ Q. Let x′ be the

unique descendant of x in L, with x′ i→ x for some color i. Let z′ be the unique descendant of z in
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K, with z′
j→ z for some color j. Choose paths x′ = r0

i=i1−→ x = r1
i2→ r2

i3→ · · ·
ip−1→ rp−1

ip→ rp = z

and x = r′0
j1→ r′1

j2→ r′2
j3→ · · ·

jp−1→ z′ = r′p−1

j=jp−→ r′p = z from x′ up to z. One path goes

through x and the other through z′. In particular, Lemma 2.1 applies, so i = i1 = jp = j. Since

vertexcolorP (x) = i = j and vertexcolorQ(z) = j = i, it follows that φ preserves vertex colors.

To complete the proof of (2), we show that for u and v in P , u ≤P v implies that φ(u) ≤Q φ(v).

To see this, first note that u and v are join irreducible elements of L with u ≤L v. Consider Fu

and Fv. If w ∈ Fv, then w ∈ K and v ≤L w. Then u ≤L w as well, so w ∈ Fu. So Fu ⊇ Fv.

Therefore φ(u) ≤L φ(v). Since φ(u) and φ(v) are both in K, then we have φ(u) ≤K φ(v). Viewing

φ(u) and φ(v) as elements of Q, we then have φ(u) ≤Q φ(v).

To set up our next result we require some further notation. For elements s, t in any poset R,

the interval [s, t] is the set {x ∈ R | s ≤R x ≤R t} with partial order induced by R. One can check

that the Hasse diagram for [s, t] is just the induced subgraph of R on the vertices of [s, t]. Then

we can regard [s, t] as an edge-colored subposet of R in the induced order, if R is edge-colored. In

a diamond-colored modular lattice L, it is not hard to see that any interval [s, t] is naturally an

edge-colored sublattice of L. Our next result concerns the distributive lattice structure of certain

intervals in diamond-colored distributive lattices.

Proposition 2.7 Let L be a diamond-colored distributive lattice. Let t ∈ L. Let D be a

subset of the descendants of t. For any s ∈ D, let vertexcolorD(s) := edgecolorL(s → t). Let

r := ∧s ∈ D(s). Then [x, t] ∼= Mcolor(D) and D ⊆ [x, t] if and only if x = r. Similarly let A be

a subset of the ancestors of t. For any s ∈ A, let vertexcolorA(s) := edgecolorL(t → s). Let

u := ∨s ∈ A(s). Then [t,x] ∼= Jcolor(A) and A ⊆ [t,x] if and only if x = u.

Proof. In this proof we only address the claim concerning the set D since the proof for the

claim concerning A is entirely similar. In the notation of the proposition statement, suppose

[x, t] ∼= Mcolor(D) and D ⊆ [x, t]. Let φ : Mcolor(D)→ [x, t] be the edge and edge-color preserving

bijection. Since the unique maximal (resp. minimal) elements must correspond under the bijection

φ, then φ(∅) = t (resp. φ(D) = x). For any s ∈ D we have {s} → ∅ in Mcolor(D). Then φ({s})

must be covered by t. So φ(D) ⊆ D, and since φ is a bijection we have that φ(D) = D. Then

φ(D) = φ(∪s∈D(s)) = ∧s∈D(φ({s})), where the meet is computed in L. But since φ(D) = D, then

∧s∈D(φ({s})) = ∧s∈D(s), which is just r. That is, φ(D) = r. Then x = r.

For the converse, suppose that x = r. Now each s ∈ D is a descendant of t, so s ≤L t. By

the definition of r we have r ≤L s. So s ∈ [r, t]. That is, D ⊆ [r,x]. Note that since all elements
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of D are pairwise incomparable, then the filters from D are just the subsets of D. For a subset

S of D, it follows from the definitions that r ≤L ∧s∈S(s) ≤L t, so ∧s∈S(s) ∈ [r, t]. Now define

ψ : Mcolor(D) → [r, t] by the rule ψ(S) := ∧s∈S(s) for each subset S ⊆ D. Note that ψ(∅) = t

and ψ(D) = r. We claim that if S i→ T in Mcolor(D) then ψ(S) i→ ψ(T ) in [r, t]. Now S
i→ T in

Mcolor(D) if and only if |S| = |T |+ 1, S = T ∪ {s} for some s ∈ D, and vertexcolorD(s) = i. To

establish our claim we induct on the size of |S|. If |S| = 1 then S = {s} for some s ∈ D and T = ∅.

Then ψ(S) = s and ψ(T ) = t. Clearly s i→ t in this case. For our induction hypothesis we assume

that X i→ Y in Mcolor(D) implies ψ(X) i→ ψ(Y ) whenever X has no more than k elements, for some

positive integer k. Now suppose S i→ T with |S| = k + 1. So |S| = |T | + 1, S = T ∪ {s} for some

s ∈ D, and vertexcolorD(s) = i. Let Y := T \ {u} for some u ∈ T with vertexcolorD(u) = j,

and let X = S \{u}. Then Y = X \{s}. Then T
j→ Y , X i→ Y , and S

j→ X. Now by the induction

hypothesis, ψ(T )
j→ ψ(Y ) and ψ(X) i→ ψ(Y ). Then ψ(Y ) = (ψ(X) ∨ ψ(T )). We claim that

ψ(S) = (ψ(X) ∧ ψ(T )). Let z = ψ(Y ). Then ψ(X) = z ∧ s, ψ(T ) = z ∧ u, and ψ(S) = z ∧ (s ∧ u).

So ψ(S) = z∧ (s∧u) = (z∧ z)∧ (s∧u) = (z∧ s)∧ (z∧u) = (ψ(X)∧ψ(T )). Our diamond-colored

distributive lattice L can have no open vees, and since ψ(T )
j→ ψ(Y ) and ψ(X) i→ ψ(Y ) we must

therefore have ψ(S)
j→ ψ(X) and ψ(S) i→ ψ(T ). This completes the induction step, and the proof

of our claim.

Let d = |D|. Let D = S(0) → S(1) → S(2) → · · · → S(d−1) → S(d) = ∅ be a chain of maximal

length in Mcolor(D). Then r = ψ(D) → ψ(S(1)) → · · · → ψ(S(d−1)) → ψ(S(d)) = t, a chain

of maximal length in [r, t]. In particular, the length of [r, t] is d. In the paragraph preceding

the proposition it was noted that intervals in diamond-colored modular lattices are edge-colored

sublattices. We now invoke the distributivity hypothesis for L: in this setting we have that [r, t]

is a diamond-colored distributive lattice. Since [r, t] has length d as a ranked poset, it follows that

[r, t] must have precisely d meet irreducibles. But each s ∈ D is meet irreducible in [r, t], so the set

D must account for all meet irreducibles in [r, t]. Therefore, [r, t] ∼= Mcolor(D) by Theorem 2.3.

Note that any two descendants (respectively ancestors) of a given element of a poset are incom-

parable. It follows then that the intervals [r, t] and [t,u] of Proposition 2.7 are Boolean lattices,

cf. Example 2.2.

The next result concerns the structure of J-components of a diamond-colored modular lattice.

Proposition 2.8 Let L be a diamond-colored modular lattice with edge colors from a set I. If

t ∈ L and J ⊆ I, then compJ(t) is the Hasse diagram for a diamond-colored modular lattice.
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Moreover, compJ(t) is a sublattice of L, and a covering relation in compJ(t) is also a covering

relation in L. If L is a distributive lattice, then so is compJ(t).

Proof. Let K := compJ(t). Then K is a poset with partial order ≤K given as follows: For x

and y in K, x ≤K y if and only if there is a set {sq ∈ K | 0 ≤ q ≤ p} for which x = s0
i1→ s1

i2→

s2
i3→ · · ·

ip−1→ sp−1
ip→ sp = y is a sequence of edges in L with each iq ∈ J . To see that this is a

partial order, observe that x ≤K y implies that x ≤L y. It is also easy to see that the edges p
j→ q

in K are precisely the covering relations for this partial order.

To complete the proof, it suffices to show the following: x ∨L y and x ∧L y are in K whenever

x,y ∈ K. We actually make the stronger claim that any shortest path from x to y in K is also

a shortest path in L, and moreover x ∨L y ∈ K and x ∧L y ∈ K. Suppose distK(x,y) = p. By

exchanging a ‘valley’ for a ‘peak’, then any shortest path in K from x to y can be modified to be

‘single-peaked’ and to use the same multiset of edge colors as used in the original shortest path.

In particular, the resulting single-peaked path will be in K. So we may assume we have a shortest

path x = r0
i1→ r1

i2→ · · · iq→ rq
iq+1← rq+1

iq+2← · · · ip← rp = y from x to y in K. Clearly, then, we have

x ∨L y ≤L rq. So we can find a path from x up to rq that goes through x ∨L y. By Lemma 2.1, it

follows that this path will only use edges with colors from the set J . In other words, we get a path

from x up to x∨L y that stays in K. Similarly argue that there is a path from y up to x∨L y that

stays in K. Putting these two together we have a path from x to y that has length no more than p.

If x∨Ly <L rq, then we will have a path in K shorter than our given shortest path, a contradiction.

Therefore x ∨L y = rq ∈ K. It follows that the shortest path in K from x to y given originally is

also shortest in L, since we have distL(x,y) = [ρ(x∨Ly)−ρ(x)]+[ρ(x∨Ly)−ρ(y)] = distK(x,y).

A similar argument shows that x ∧L y is also in K, thus completing the proof.

§2.6 A first look at the M-structure property. Let R be a ranked poset whose Hasse

diagram edges are colored with colors taken from a totally ordered set In of cardinality n. For i ∈ In

and s in R, set mi(s) := ρi(s)− δi(s) = 2ρi(s)− li(s), where ρi, δi, and li are defined as in §2.3. Fix

an n-dimensional real vector space V with basis {ωi}i∈In . Define a mapping wtR : R → V by the

rule wtR(s) :=
∑

i∈In
mi(s)ωi, and call this vector the weight of s. Given a matrix M = (Mpq)p,q∈In ,

then for fixed i ∈ In let M (i) be the “ith row” vector
∑

j∈In
Mijωj . We say R has the M -structure

property if wtR(s) +M (i) = wtR(t) whenever s i→ t for some i ∈ In, that is, for all j ∈ In we have

mj(s) + Mij = mj(t) if s i→ t. We also say R is an M -structured poset. It can be easily shown

that if the edge color function edgecolorR : E(R) −→ In is surjective, then the all of the Mij ’s
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Figure 2.9: For each element t of the lattice L from Figure 2.1,
we compute wtL(t) = (m1(t),m2(t)).
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are uniquely determined integers and that Mii = 2 for all i ∈ In. One can check by hand that the

edge-colored distributive lattice of Figure 2.9 has the M -structure property for the matrix M =0@ 2 −1

−1 2

1A. The following result shows how the M -structure property interacts with some of our

usual poset operations.

Proposition 2.9 LetQ and R be ranked posets with edges colored by a set In. LetM = (Mij)i,j∈In

be a real matrix. Suppose Q and R have the M -structure property. (1) Then so do Q⊕R, Q×R,

and R∗. Let J ⊆ In, and let M ′ be the submatrix (Mij)i,j∈J of M . Then for each t ∈ R, the

J-component compJ(t) is a ranked poset with edges colored by J and with the M ′-structure

property. (2) Suppose now that M is nonsingular. Then for any nonnegative integer k,
∧k(R)

and Sk(R) have the M -structure property. Moreover, if R is connected and wtR(s) = wtR(t), then

ρ(s) = ρ(t).

Proof. For (1), thatQ⊕R has theM -structure property is an easy consequence of the definitions.

Now consider R∗. One can easily check that mj(x∗) = −mj(x) for all j ∈ In and x ∈ R. Suppose

t∗ i→ s∗ is an edge in R∗. Then s i→ t in R. So for any j ∈ In we have mj(s) + Mij = mj(t).

Then −mj(s∗) + Mij = −mj(t∗), whence mj(s∗) = mj(t∗) + Mij . So R∗ has the M -structure

22



property. Next consider Q × R. Let ρ×i , δ×i , and m×
i be the relevant color i functions for the

edge-colored ranked poset Q × R. For p ∈ Q and s ∈ R, one can easily check that the color i

component compi(p, s) of (p, s) in Q×R is edge-color isomorphic to compi(p)×compi(s). Then

ρ×i (p, s) = ρQ
i (p)+ρR

i (s) and δ×i (p, s) = δQ
i (p)+δR

i (s). It follows that m×
i (p, s) = mQ

i (p)+mR
i (s).

Now suppose (p, s) i→ (q, t) in Q×R. Then either p i→ q with s = t or s i→ t with p = q. Without

loss of generality, we assume that p i→ q with s = t. Then for any j ∈ In, m×
i (p, s) + Mij =

mQ
i (p) +Mij +mR

i (s) = mQ
i (q) +mR

i (t) = m×
i (q, t). So Q×R has the M -structure property.

Let C := compJ(t) for some fixed t ∈ R and J ⊆ In. Let x ∈ C be such that ρ(x) =

min{ρ(z) | z ∈ C}. Similarly let y ∈ C be such that ρ(y) = max{ρ(z) | z ∈ C}. Define ρ′ : C →

{0, . . . , ρ(y) − ρ(x)} by the rule ρ′(z) := ρ(z) − ρ(x). One can easily check now that ρ′ is a rank

function for C. For i ∈ J and p ∈ C, let ρ′i(p), δ′i(p), and m′
i(p) denote the respective color i

functions for the edge-colored ranked poset C. For any p ∈ C and i ∈ J , we have all vertices

and edges of compi(p) contained in C. So it follows that ρ′i(p) = ρi(p) and δ′i(p) = δi(p). Then

m′
i(p) = mi(p), where mi(p) is calculated in R. Then for i ∈ J and p i→ q in C, it now follows

that m′
j(p) +Mij = m′

j(q) for all j ∈ J . Then C has the M ′-structure property.

For (2), we suppose M is nonsingular. Suppose R is connected and wtR(s) = wtR(t). Since R

is connected it is possible to find a path P from s to t. For each i ∈ In, let

ai := |{p i→ q |p and q are successive elements in the path P with p before q}|

and let

di := |{p i→ q |q and p are successive elements in the path P with q before p}|.

Think of ai (resp. di) as counting ‘ascents’ (resp. ‘descents’) of color i in the path P. Then

wtR(s) +
∑
i∈In

(ai − di)M (i) = wtR(t),

which implies that
∑

i∈In
(ai − di)M (i) = 0. Since M is nonsingular, then the M (i)’s are linearly

independent. Then ai = di for each i ∈ In. Since we add one to the rank of s for each ascent in P

and subtract one for each descent as we move along P from s to t, it follows that ρ(s) = ρ(t).

Keeping the hypothesis that M is nonsingular, we will show that
∧k(R) has the M -structure

property. (Since the argument that Sk(R) is M -structured is similar to the the argument for the

kth exterior power, we omit the details of that proof.) We follow the notation of §2.3. For any

s ∈
∧k(R), define µi(s) :=

∑
vj∈smi(vj), where mi(vj) = ρi(vj) − δi(vj) is calculated in R for
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each vj . Then define µ(s) := (µi(s))i∈In . First, note that if s i→ t in
∧k(R), then (s − t, t −

s) = ({vp}, {vq}) with vp
i→ vq in R. Then mj(vp) + Mij = mj(vq) in R. It now follows that

µj(s)+Mij =
(∑

vr∈smj(vr)
)
+Mij = mj(vp)+Mij +

∑
vr 6=vp

mj(vr) = mj(vq)+
∑

vr 6=vp
mj(vr) =∑

vr∈tmj(vr) = µj(t). From this it follows that µ(s) +M (i) = µ(t).

Now suppose s = r0
i1→ r1

i2→ r2
i3→ · · · ip→ rp = s in

∧k(R). Then µ(s) = µ(s) +
∑

i∈In
aiM

(i),

where ai counts the number of times there is an edge of color i in our given path from s to itself.

So,
∑

i∈In
aiM

(i) = 0. Since M is nonsingular, then the M (i)’s are linearly independent. So each

ai = 0. Hence
∧k(R) is acyclic, so we may define a partial order on

∧k(R) in the following

way: s ≤ t if and only if there is an ‘ascending’ path s = r0
i1→ r1

i2→ r2
i3→ · · · ip→ rp = t

from s to t in
∧k(R). Suppose s i→ t and that s ≤ x ≤ t. So then we have an ascending

path s = r0
i1→ r1

i2→ · · ·
iq−1→ rq−1

iq→ rq = x
iq+1→ rq+1

iq+2→ · · · ip→ rp = t. In this case we get

M (i) =
∑

i∈In
aiM

(i), where ai is as before. Then aj = δij , from which we see that x = s or x = t.

Hence each s i→ t is a covering relation for the partial order on
∧k(R).

Finally, we show that
∧k(R) is ranked. It suffices to show this on each connected component

of
∧k(R). So let C be such a connected component. An ordered pair of elements (x,y) from∧k(R) is ascending of color i if x i→ y and descending of color i if y i→ x. For a path P =

(s = r0, r1, . . . , rp = t), let ai(P) count the number of ascending pairs of color i in the path P

and di(P) count the number of descending pairs of color i. Let σ(P) :=
∑

i∈In
(ai − di). Call this

quantity the signed length of the path P. Define a new relation <C on C by declaring s <C t if

and only if there is a path P from s to t such that σ(P) > 0. Then define ≤C by the rule that

s ≤C t if and only if s <C t or s = t. We claim that ≤C is a partial order on C. Clearly ≤C is

reflexive. Use concatenation of paths to see that ≤C is transitive. Finally, we check that ≤C is

asymmetric. Suppose s ≤C t and t ≤C s. If s 6= t, then s <C t and t <C s. So there is a path P

from s to t for which σ(P) > 0 and a path P ′ from t to s for which σ(P ′) > 0. But now we can

see that µ(s) +
∑

i∈In
(ai(P) − di(P))M (i) = µ(t) = µ(s) −

∑
i∈In

(ai(P ′) − di(P ′))M (i). By linear

independence of the M (i)’s we conclude that (ai(P)− di(P)) + (ai(P ′)− di(P ′)) = 0 for all i ∈ In.

But then σ(P) =
∑

i∈In
(ai(P)− di(P)) = −

∑
i∈In

(ai(P ′)− di(P ′)) = −σ(P ′). So σ(P) and σ(P ′)

cannot both be positive. From this contradiction we conclude that s = t. Then ≤C is a partial

order on C.

Now choose x to be a minimal element of C with respect to this partial order. For any s ∈ C,

we declare ρC(s) := σ(P), where P is any path from x to s. We claim that ρC(s) does not depend
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on the choice of path from x to s. To see this, suppose Q is another path from x to s. Then from

the facts that µ(x) +
∑

i∈In
(ai(P)− di(P))M (i) and µ(x) +

∑
i∈In

(ai(Q)− di(Q))M (i), we deduce

that ai(P) − di(P) = ai(Q) − di(Q) for all i ∈ In. Hence σ(P) = σ(Q). Since x is minimal with

respect to the partial order ≤C on C, it must be the case that ρC(s) = 0 for all s ∈ C. Finally,

suppose s i→ t is a covering relation in
∧k(R) for elements s and t in C. Then any path P from

x to s may be extended via s i→ t to a path Q from x to t. Then σ(Q) = σ(P) + 1, and hence

ρC(t) = ρC(s) + 1. Then ρC is a rank function for C. It follows that
∧k(R) is ranked.
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3. Weyl groups and Weyl characters

Much of the discussion of Weyl groups and Weyl characters in the following subsections is

borrowed from [Don6], [Don7], and [ADLMPPW] as well as standard treatments like [Hum1],

[Hum2], [Bour], and [BB].

§3.1 GCM graphs and Dynkin diagrams. Following [Don7] we take as our starting point

some given simple graph Γ on n nodes. In particular, Γ has no loops and no multiple edges.

Nodes {γi}i∈In for Γ are indexed by elements of some fixed totally ordered set In of size n (usually

In = {1 < 2 < · · · < n}). For each pair of adjacent nodes γi and γj in Γ, choose two negative

integers Mij and Mji. Extend this to an n × n matrix M = (Mij)i,j∈In where, in addition to the

negative integers Mij and Mji on edges of Γ, we have Mii := 2 for all i ∈ In and Mij := 0 if there

is no edge in Γ between nodes γi and γj . We call the pair (Γ,M) a GCM graph, since M is a

‘generalized Cartan matrix’ as in [Kac] and [Kum]. Such matrices are the starting point for the

study of Kac–Moody algebras. More importantly for us, these matrices also encode information

about certain geometric representations of Weyl groups. Such representations provide a suitable

environment for studying Weyl characters, which can be thought of as special multivariate Laurent

polynomials which exhibit symmetry under the actions of the Weyl groups.

We say a GCM graph (Γ,M) is connected if Γ is. We depict a generic connected two-node GCM

graph as r
γ1

r
γ2

- �
p q , where p = −M12 and q = −M21. We use special names and notation

to refer to two-node GCM graphs which have p = 1 and q = 1, 2, or 3 respectively:

A2r
γ1

r
γ2

- �
C2r

γ1
r
γ2

- ��
G2r

γ1
r
γ2

- ���

When p = 1 and q = 1 it is convenient to use the graph r
γ1

r
γ2

to represent the

GCM graph A2. A GCM graph (Γ,M) is a Dynkin diagram of finite type (or Dynkin diagram, for

short) if each ‘connected component’ of (Γ,M) (in the obvious sense, defined below) is one of the

graphs of Figure 3.1; in this case the matrix M is called a Cartan matrix. We number the nodes of

connected Dynkin diagrams of finite type as in §11.4 of [Hum1]. The special two-node GCM graphs

A2, C2, and G2 above are Dynkin diagrams with Cartan matrices

0@ 2 −1

−1 2

1A,

0@ 2 −1

−2 2

1A, and0@ 2 −1

−3 2

1A.

The following language concerning GCM graphs is sometimes useful. Given two GCM graphs

g1 = (Γ1, (Aij)i,j∈In) and g2 = (Γ2, (Bij)i,j∈Jm), the disjoint sum g1⊕ g2 is the GCM graph (Γ,M)



Figure 3.1: Connected Dynkin diagrams of finite type.

An (n ≥ 1) s s s s s s1 2 3 n − 2 n − 1 n

Bn (n ≥ 3) s s s s s s�--
1 2 3 n − 2 n − 1 n

Cn (n ≥ 2) s s s s s s��-
1 2 3 n − 2 n − 1 n

Dn (n ≥ 4) s s s s s s
s

������

XXXXXX

1 2 3 n − 3 n − 2

n − 1

n

E6 s s s
s

s s1

2

3 4 5 6

E7 s s s
s

s s s1

2

3 4 5 6 7

E8 s s s
s

s s s s1

2

3 4 5 6 7 8

F4
s s s s-- �
1 2 3 4

G2
s s- ���
1 2

with graph Γ = Γ1 ⊕ Γ2 (a disjoint sum of undirected graphs in the obvious way, analogous to

§2.1, and with nodes indexed by the disjoint union In ∪
q
Jm) and generalized Cartan matrix M =0@ P O

O′ Q

1A (a block diagonal matrix in the obvious sense, where O and O′ are a zero matrices

of appropriate size). These GCM graphs are isomorphic if there is a bijection σ : In → Jm with

respect to which Aij = Bσ(i),σ(j) for all i, j ∈ In. If I ′m is a subset of the index set In of a GCM

graph (Γ,M), then let Γ′ be the subgraph of Γ with nodes indexed I ′m and the induced set of edges,

and let M ′ be the corresponding submatrix of the generalized Cartan matrix M ; we call (Γ′,M ′)

a GCM subgraph of (Γ,M). (For example, in Figure 3.1 one can see that C3 is a GCM subgraph

of F4.) The GCM subgraph (Γ′,M ′) is a connected component if Γ′ is a connected component of

Γ. Given a one-to-one function σ : In → Jn, obtain a graph Γσ by recoloring the nodes of the

undirected graph Γ as in §2.1. Then the GCM graph gσ = (Γσ,Mσ) is the re-coloring of the GCM

graph g, where (Mσ)σ(i),σ(j) := Mi,j for all i, j ∈ In. We let gT := (Γ,MT), so that (gT)T = g.
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§3.2 Weyl groups and geometric representations. For the remainder of this chapter, let

g := (Γ,M) be a fixed GCM graph with index set In. The development in this subsection basically

follows [BB] and [Don7]. For i 6= j in In, declare

mij =

 kij if MijMji = 4 cos2(π/kij) for some integer kij ≥ 2

∞ if MijMji ≥ 4

We have mij = 2 (respectively 3, 4, 6) if MijMji = 0 (resp. 1, 2, 3). Let W := Wg be the group

generated by {si}i∈In subject to relations s2i = ε for all i ∈ In and (sisj)mij = ε for all i 6= j in In.

(Conventionally, mij = ∞ means there is no relation between generators si and sj .) Then W is

called a Weyl group, and it is a special kind of Coxeter group.

Let V be a real vector space freely generated by vectors {αi}i∈In . The αi
′s are called simple

roots. For each i ∈ In, define a linear transformation Si : V → V by setting Si(αj) = αj −Mjiαi

for each j ∈ In and extending linearly.∗ The next result follows from Proposition 3.13 of [Kac] or

Proposition 1.3.21 of [Kum] (see also §2 of [Don7]). Here GL(V ) is the group of invertible linear

transformations on V and Id denotes the identity transformation on V .

Lemma 3.1 For each i ∈ In, S2
i = Id. In particular, Si ∈ GL(V ). Now take i 6= j in In. If mij

is finite, then (SiSj)mij = Id. If mij = ∞, then the subgroup of GL(V ) generated by {Si, Sj} is

infinite.

The above lemma guarantees that the mapping si 7→ Si extends uniquely to a group homomor-

phism φ : W → GL(V ). Our next result, which is Theorem 4.2.7 of [BB], says that this mapping

is injective. In the language of group representations we state this as:

Theorem 3.2 The representation φ of W in the previous paragraph is faithful.

§3.3 Finiteness hypothesis. Of interest to us are GCM graphs whose corresponding Weyl

groups are finite. These have the following well-known classification (see e.g. [Hum1] or [Hum2]):

Theorem 3.3 The Weyl groupW is finite if and only if the connected components of g are Dynkin

diagrams of finite-type from Figure 3.1.

Two of the most famous Dynkin diagram classification results come from Lie theory: the Dynkin

diagrams of Figure 3.1 are in one-to-one correspondence with the finite-dimensional complex simple

Lie algebras and the finite-dimensional irreducible Kac-Moody algebras. For examples of other

Dynkin diagram classifications, see [HHSV], [Pro5], and [Pro6]. From here on, we restrict our
∗This ‘transpose’ of the usual definition (Si(αj) = αj −Mijαi) facilitates connections with certain results such as

the root system and weights results of Chapter III of [Hum1].
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attention to the finite cases unless stated otherwise. For connected Dynkin diagrams of finite type,

we have the following important observation: one can verify case-by-case that the associated Cartan

matrices are invertible.

§3.4 A Euclidean representation of the Weyl group. We would like to realize each

transformation Si as a reflection ‘with respect to’ αi. Such a geometric realization of the Weyl

group W will require an inner product 〈·, ·〉 on V . The derivation of the inner product in this

subsection is an interpretation of standard material. Assuming for the moment that such an inner

product exists, we investigate in this paragraph its interactions with the Cartan matrix M . Relative

to this inner product, the reflection S : V → V in the hyperplane orthogonal to some fixed nonzero

α will act on vectors v in V by the rule S(v) = v − 2 〈v,α〉
〈α,α〉α. Applied to the transformations Si

acting on vectors αj , we determine that Mji = 2 〈αj ,αi〉
〈αi,αi〉 . Symmetry of the inner product now gives

Mji〈αi, αi〉 = Mij〈αj , αj〉.(1)

If g is connected, fix the length of one of the end node simple roots. Then using the preceding

relation, the remaining simple root lengths can be computed in terms of the fixed simple root length

and entries from the Cartan matrix M . For A–D–E graphs, only one simple root length is possible.

Inspection of the other connected Dynkin diagrams of finite type (Bn,Cn,F4,G2) shows that each

has two root lengths. In the B–C–F cases, ‘long’ simple roots have squared length twice that of

‘short’ roots. For G2, the long simple root α2 has squared length three times that of the short

simple root α1. If g is not connected, then we must choose a squared length for short simple roots

in each connected component of g. With such a fixed choice of short simple root lengths for g, one

can now determine that

〈αj , αi〉 =
1
2
〈αi, αi〉Mji(2)

for all i, j ∈ In. So our hypothetical inner product is determined by the preceding relations

(1) and (2) together with the choices for short simple root lengths for connected components of

g. With this discussion in mind, now define a bilinear form B on V so that for each i ∈ In,

B(αi, αi) coincides with the choices for squared lengths of simple roots indicated above, and where

B(αi, αj) := 1
2B(αj , αj)Mij for all i, j ∈ In.

Theorem 3.4 The bilinear form B defined above is symmetric and nondegenerate. Moreover, the

Weyl groupW preserves B in the sense that B(w.v1, w.v2) = B(v1, v2) for all w ∈ W and v1, v2 ∈ V .

Finally, relative to the form B each Si is a reflection with respect to αi: Si(v) = v− 2 B(v,αi)
B(αi,αi)

αi for

all v ∈ V .
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It suffices to prove Theorem 3.4 for connected Dynkin diagrams. This can be done case by case.

From here on, we use 〈·, ·〉 to denote the inner product B of the preceding paragraph and theorem.

Given 〈·, ·〉, we call φ : W → GL(V, 〈·, ·〉) a Euclidean representation of W. Let O(V, 〈·, ·〉) be the

orthogonal group for the Euclidean space (V, 〈·, ·〉). A consequence of the preceding theorem is that

φ(W) ∼= W is actually a subgroup of O(V, 〈·, ·〉). From here on, we consider φ to be a Euclidean

representation for Wg with respect to some fixed choice of inner product.

Suppose g = (Γ1, A = (Aij)i,j∈In) and h = (Γ2, B = (Bij)i,j∈Jm) are connected Dynkin diagrams

with corresponding Weyl groups Wg = 〈si〉i∈In and Wh = 〈tj〉j∈Jm . Let φ : Wg → GL(V1, 〈·, ·〉1)

and ψ : Wh → GL(V2, 〈·, ·〉2) be Euclidean representations of Wg and Wh respectively, with V1 :=

spanR({αi}i∈In) and V2 := spanR({βj}j∈Jm) for simple roots {αi}i∈In and {βj}j∈Jm respectively.

We say φ and ψ are isomorphic if there is a bijection σ : In → Jm such that the mapping si 7→ tσ(i)

extends to a group isomorphism fromWg toWh and such that the linear transformation T : V1 → V2

induced by the set mapping αi 7→ βσ(i) is ‘angle-preserving’, i.e. for some fixed (necessarily positive)

real scalar κ we have 〈T (u), T (v)〉2 = κ〈u, v〉1 for all u, v ∈ V1. To emphasize the role of the bijection

σ we say that φ and ψ are isomorphic via σ. In particular, it follows that for any two choices of

inner products on V1 from Theorem 3.4, the corresponding Euclidean representations of Wg are

isomorphic. Some other results concerning isomorphic Euclidean representations are explored in

Lemma 3.6. The Euclidean representations corresponding to the connected Dynkin diagrams of

finite type are pairwise nonisomorphic (even though the corresponding Weyl groups are not all

distinct — in particular, WBn

∼=WCn
).

Now relax the connectedness hypothesis for g and h. Suppose a connected component g′ of g

has nodes indexed by a subset J ⊆ In. Let V ′
1 = spanR({αi}i∈J), so V ′

1 is a subspace of V with

the induced inner product 〈·, ·〉′1. It is easy to see that the mapping φ′ : Wg′ → GL(V ′
1 , 〈·, ·〉′1) is

a Euclidean representation of Wg′ . We say Euclidean representations φ and ψ of Wg and Wh are

isomorphic if there is some one-to-one correspondence g′ 7→ h′ of connected components of g and h

such that φ′ and ψ′ are isomorphic.

§3.5 Roots and root systems. Write w.v for φ(w)(v) whenever w ∈ W and v ∈ V . As

in [Hum2] and [BB], we define the root system R(g, φ, {αi}i∈In) to be the set φ(Wg)({αi}i∈In) =

{w.αi}i∈In,w∈W . Set Φ := R(g, φ, {αi}i∈In). Elements of Φ are roots. A root α =
∑
kiαi is positive

if each ki ≥ 0 and is negative if each ki ≤ 0. The sets Φ+ and Φ− of positive and negative roots

can be seen to partition Φ (see §3 of [Don7]). For any i, j ∈ In, by definition sj .αi = αi −Mijαj .
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Since any w ∈ W is a product of sj ’s, then by iterating the previous computation we see that

w.αi is an integral linear combination of simple roots. That is, when α =
∑
kiαi, then each

ki ∈ Z. Now, each w ∈ W permutes Φ. To see this, note that for any w ∈ W and α, β ∈ Φ, (1)

w.α ∈ Φ by definition so w(Φ) ⊆ Φ, (2) α = w.(w−1.α) so Φ ⊆ w(Φ), and (3) if w.α = w.β then

w−1.(w.α) = w−1.(w.β) so α = β. So we have an induced action of W on Φ. Two root systems

Φ := R(g, φ, {αi}i∈In) and Ψ := R(h, ψ, {βj}j∈Jm) are isomorphic (respectively, isomorphic via σ)

if the Euclidean representations φ and ψ are isomorphic (respectively, isomorphic via σ).

For any α ∈ Φ, define α∨ := 2
〈α,α〉α. Observe that 〈αi, α

∨
j 〉 = Mij for all i, j ∈ In. Let

Φ∨ := {α∨}α∈Φ. Based on the following lemma, we call Φ∨ the dual root system for Φ.

Lemma 3.5 We have Φ∨ = R(g, φ, {α∨i }i∈In) (an equality of sets), and moreover α∨ = w.α∨i for

w ∈ W if and only if α = w.αi.

Proof. To prove the lemma, it suffices to show that α∨ = w.α∨i for w ∈ W if and only if α = w.αi.

Suppose α = w.αi. Since 〈α, α〉 = 〈w.αi, wαi〉 = 〈αi, αi〉, then α∨ = 2
〈α,α〉α = 2

〈αi,αi〉w.αi = w.α∨i .

Conversely, suppose α∨ = w.α∨i . Then 〈α∨, α∨〉 = 〈w.α∨i , w.α∨i 〉 = 〈α∨i , α∨i 〉. Now for any β ∈ Φ,

〈β∨, β∨〉 = 4
〈β,β〉 . So from our previous calculation, it follows that 4

〈α,α〉 = 4
〈αi,αi〉 , and hence

〈α, α〉 = 〈αi, αi〉. Then from 2
〈α,α〉α = α∨ = w.α∨i = 2

〈αi,αi〉w.αi, we deduce that α = w.αi.

For this paragraph, assume that g is connected. According to the discussion of the previous

section, simple roots have two possible lengths, which we call long or short. (If only one simple root

length is possible i.e. in the A-D-E cases, the adjectives “short” and “long” are interchangeable.)

Note that if α ∈ Φ with α = w.αi for some w ∈ W and simple root αi, then 〈α, α〉 = 〈w.αi, w.αi〉 =

〈αi, αi〉. So α has the same length as αi. With this in mind, we let Φlong = {α ∈ Φ |α =

w.αi for w ∈ W and αi long} be the set of long roots, and analogously define the set Φshort of short

roots. We also have Φ+
long (the set of positive roots that are long) and Φ+

short (the set of positive

roots that are short).

Lemma 3.6 Suppose g = (Γ1, A = (Aij)i,j∈In) and h = (Γ2, B = (Bij)i,j∈Jm) are connected

Dynkin diagrams with corresponding Weyl groups Wg = 〈si〉i∈In and Wh = 〈tj〉j∈Jm . Let φ :

Wg → GL(V1, 〈·, ·〉1) and ψ : Wh → GL(V2, 〈·, ·〉2) be isomorphic Euclidean representations of

Wg and Wh respectively, with V1 := spanR({αi}i∈In) and V2 := spanR({βj}j∈Jm) for simple roots

{αi}i∈In and {βj}j∈Jm respectively. As in §3.4, let σ : In → Jm be the associated bijection and

T : V1 → V2 the associated angle-preserving linear transformation. Let Φ := R(g, φ, {αi}i∈In) and

Ψ := R(h, ψ, {βj}j∈Jm). Let (i1, i2, . . . , ip) be a sequence of elements from In. (1) For all i, j ∈ In,
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Aij = Bσ(i),σ(j). (2) For all v ∈ V1, T (si1si2 · · ·sip .v) = tσ(i1)tσ(i2)· · ·tσ(ip).T (v). (3) For j ∈ In, let

α := si1si2 · · ·sip .αj and β := tσ(i1)tσ(i2)· · ·tσ(ip).βσ(j). If α is positive in Φ (resp. long, short), then

β is positive in Ψ (resp. long, short).

Proof. For (1), Aij = 〈αi, α
∨
j 〉 = 2〈αi,αj〉1

〈αj ,αj〉1 = 2κ〈αi,αj〉1
κ〈αj ,αj〉1 = 2〈T (αi),T (αj)〉2

〈T (αj),T (αj)〉2 = 2〈βσ(i),βσ(j)〉2
〈βσ(j),βσ(j)〉2

=

〈βσ(i), β
∨
σ(j)〉2 = Bσ(i),σ(j). For (2), it suffices to show that T (si.αj) = tσ(i).βσ(j) for all i, j ∈ In.

To see this, observe that for any k ∈ In, 〈T (si.αj), β∨σ(j)〉2 = 2
κ〈αk,αk〉1κ〈si.αj , αk〉1 = 〈si.αj , α

∨
k 〉1 =

〈αj−Ajiαi, α
∨
k 〉1 = Ajk−AjiAik = Bσ(j),σ(k)−Bσ(j),σ(i)Bσ(i),σ(k) = 〈βσ(j)−Bσ(j),σ(i)βσ(i), β

∨
σ(k)〉2 =

〈tσ(i).βσ(j), β
∨
σ(k)〉2. Since this is true for all k ∈ In, then it must be the case that T (si.αj) =

tσ(i).βσ(j), as desired. For (3), let α and β be as in the lemma statement. Suppose α =
∑
kiαi ∈ Φ+.

Then T (α) =
∑
kiβσ(i). But by (2), T (α) = β. Hence β ∈ Ψ+. From (1), it follows that if

αj ∈ Φlong (resp. Φshort), then βσ(j) ∈ Ψlong (resp. Ψshort). Since α has the same length as αj and

β has the same length as βj , then α ∈ Φlong (resp. Φshort) implies that β ∈ Ψlong (resp. Ψshort).

For connected g, give Φ the following partial ordering: write α ≤ β for roots α and β if and only

if β − α =
∑
kiαi with each ki nonnegative. View Φ+, Φ+

long and Φ+
short as subposets of Φ in the

induced order. If α ∈ Φ+, write α =
∑
kiαi for nonnegative integers ki. The height of α, denoted

ht(α), is defined to be the quantity
∑
ki. The following facts can be understood by studying the

so-called ‘adjoint’ and ‘short adjoint’ representations of the finite-dimensional complex simple Lie

algebras.

Facts 3.7 Keep the notation of the previous paragraph as well as the assumption that g is

connected. The posets of roots Φ+ and Φ+
short are ranked, connected posets with (in each case)

rank function given by ρ(α) = ht(α) − 1. The minimal roots for Φ+ (respectively, Φ+
short) are the

simple roots (resp. short simple roots). Each has a unique maximal root.

In the setting of these results, the maximal root ω for Φ+ is called the highest long root. For

Φ+
short the maximal root ωshort is the highest short root.

The transpose representation and root system defined next are helpful in explicitly identifying

long and short roots. For this definition, however, g need not be connected. Let V T be the real

vector space freely generated by {αT
i }i∈In , and define φT : Wg → V T by the rule φT(si)(αT

j ) = αT
j −

MT
jiα

T
i . Give V T an inner product 〈·, ·〉

T
as in Theorem 3.4 above using the matrix MT. Then set

ΦT := R(g, φT, {αT
i }i∈In). (Evidently, the root systems R(g, φ, {αi}i∈In) and R(gT, φT, {αT

i }i∈In)

are isomorphic via the identity bijection on In.)
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Proposition 3.8 Let g be connected. For all w ∈ W and j ∈ In, it is the case that w.αj is positive

(resp. long, short) in Φ if and only if w.α∨j is positive (resp. short, long) in Φ∨ if and only if w.αT
j is

positive (resp. short, long) in ΦT. Moreover, Φ∨ = R(g, φ, {α∨i }i∈In) and ΦT = R(g, φT, {αT
i }i∈In)

are isomorphic via the identity bijection on In.

Proof. First we show that Φ∨ = R(g, φ, {α∨i }i∈In) and ΦT = R(g, φT, {αT
i }i∈In) are isomorphic

via the identity bijection. We have that 〈αT
i , α

T
j 〉T = 1

2〈α
T
j , α

T
j 〉TM

T
ij = 1

2〈α
T
j , α

T
j 〉TMji. On the

other hand, we have 〈α∨i , α∨j 〉 = 4
〈αi,αi〉〈αj ,αj〉〈αi, αj〉 = 2

〈αj ,αj〉Mji = 1
2〈α

∨
j , α

∨
j 〉Mji. So

〈αT
i ,αT

j 〉
T

〈α∨i ,α∨j 〉
=

〈αT
j ,αT

j 〉
T

〈α∨j ,α∨j 〉
. That the latter ratio is constant for all j ∈ In can be proved by checking cases. For

example, in the A–D–E cases, all αT
j ’s have the same length and all α∨j ’s have the same length.

From this result and Lemma 3.6, we conclude that w.α∨j is positive (resp. short, long) if and

only if w.αT
j is positive (resp. short, long). Now w.α∨j =

∑
kiα

∨
i if and only if w.αj =

∑ 〈αj ,αj〉
〈αi,αi〉 kiαi.

Then w.α∨j is positive if and only if w.αj is positive. It is easy to see that there are two distinct

root lengths in Φ if and only if there are two distinct root lengths in Φ∨. Therefore, to show that

w.αj is long (resp. short) if and only if w.α∨j is short (resp. long), it suffices to consider those cases

with two distinct root lengths. In such cases, if w.αj is long in Φ, then αj is long. Then there is

a simple root αk such that 〈αj , αj〉 > 〈αk, αk〉. Then 4
〈αj ,αj〉 <

4
〈αk,αk〉 , hence 〈α∨j , α∨j 〉 < 〈α∨k , α∨k 〉.

So, α∨j and w.α∨j are short. This argument is easily modified to show that if w.αj is short, then

w.α∨j is long. Similarly see that if w.α∨j is short (resp. long), then w.αj is long (resp. short).

§3.6 Weights. Some of the following recasts parts of §13 of [Hum1]. Using our inner product

〈·, ·〉 we obtain another special basis for V , the basis of ‘fundamental weights’. The following

proposition shows how this basis is obtained and uniquely characterized.

Proposition 3.9 Let A = (Ajk)j,k∈In be a real n × n matrix. Define ωj :=
∑

k∈In
Ajkαk. Then

Si(ωj) = ωj − δijαi for all i, j ∈ In if and only if A = M−1 if and only if 〈ωj , α
∨
i 〉 = δij for all

i, j ∈ In.

Proof. Suppose Si(ωj) = ωj − δijαi for all i, j ∈ In. Then for fixed i, j ∈ In we have

Si(ωj) = ωj − δijαi

=

∑
k∈In

Ajkαk

− δijαi

=

∑
k 6=i

Ajkαk

 + (Aji − δij)αi.
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But we also have

Si(ωj) =
∑
k∈In

AjkSi(αk)

=
∑
k∈In

Ajk(αk −Mkiαi)

=
∑
k∈In

(Ajkαk −AjkMkiαi)

=
∑
k 6=i

Ajkαk +

Aji −
∑
k∈In

AjkMki

αi.

Then
∑

k∈In
AjkMki = δij . Since this is true for all i, j ∈ In, we conclude that A = M−1.

Now suppose A = M−1. Fix i, j ∈ In. Then

〈ωj , α
∨
i 〉 =

∑
k∈In

Ajk〈αk, α
∨
i 〉 =

∑
k∈In

Ajk
2〈αk, αi〉
〈αi, αi〉

=
∑
k∈In

AjkMki = δij .

The crucial step in this calculation is our application of the identity (2) from §3.4.

Finally suppose 〈ωj , α
∨
i 〉 = δij for all i, j ∈ In. Then for fixed i, j ∈ In we have

Si(ωj) = Si

∑
k∈In

Ajkαk


=

∑
k∈In

Ajk(αk −Mkiαi)

= ωj −

∑
k∈In

AjkMki

αi

= ωj −

∑
k∈In

Ajk
2〈αk, αi〉
〈αi, αi〉

αi

= ωj −

∑
k∈In

Ajk〈αk, α
∨
i 〉

αi

= ωj − 〈ωj , α
∨
i 〉αi

= ωj − δijαi.

This completes the proof.

In view of this result, we define the basis of fundamental weights {ωi}i∈In to be the unique

basis for V satisfying the equivalent conditions of Proposition 3.9. As a consequence we see that

for each i ∈ In, αi =
∑

j∈In
Mijωj , i.e. the ith simple root is identified with the ith row of the

34



Cartan matrix relative to the basis of fundamental weights. Let Λ ⊂ V be the set of all vectors in

the integer linear span of {ωi}i∈In . Vectors in Λ are weights, and we call Λ the lattice of weights.

(Here ‘lattice’ is used in the sense of the Z-span of a basis.) A weight λ ∈ Λ is dominant (strongly

dominant) if λ =
∑
miωi with each mi nonnegative (positive). Denote by Λ+ the set of dominant

weights.

Lemma 3.10 We have Φ ⊂ Λ. Moreover each w ∈ W permutes Λ, and we have an induced action

of W on Λ.

Proof. Let i ∈ In. Since αi =
∑

j∈In
Mijωj , it follows that αi ∈ Λ. Since each α ∈ Φ is an

integral linear combination of αi’s, it follows that Φ ⊂ Λ. To complete the proof of the lemma, it

suffices to show that w permutes Λ for each w ∈ W. Let λ =
∑
miωi. Then w.λ =

∑
miw.ωi.

Now each sj .ωi = ωi − δijαj ∈ Λ. Since w is a product of sj ’s, then by iterating the previous

computation we see that w.ωi ∈ Λ for each i ∈ In. It follows that w.λ ∈ Λ. Now for any ν ∈ Λ, we

have ν = w.(w−1.ν). Since φ(w) ∈ GL(V ), it follows that φ(w) is one-to-one. So we have shown

that φ(w)|Λ : Λ→ Λ is a bijection. .

Given a subset J ⊆ In, letWJ be the subgroup ofW generated by {sj}j∈J . A dominant weight

λ is Jc-dominant if when we write λ =
∑

i∈In
miωi, then mj > 0 if and only if j 6∈ J . It can be

shown that the results of [Hum2] §5.13 extend to the setting of our geometric representation of

the Weyl group W. It follows that WJ is the stablizer of λ under the action of W on Λ. So, by

the ‘orbit-stablizer’ theorem, we have |W| = |Wλ||WJ |. When g is connected, we apply this to

the special cases of the sets Φlong and Φshort of long and short roots respectively. In §3.11 below

we show how one can use a game played on the Dynkin diagram g to determine the highest root

and highest short root. Using this technique one can determine that for An, ω = ω1 + ωn. For Bn,

ω = ω2 and ωshort = ω1. For Cn, ω = 2ω1 and ωshort = ω2. For Dn, ω = ω2. For E6, ω = ω2. For

E7, ω = ω2. For E8, ω = ω2. For F4, ω = ω1 and ωshort = ω4. For G2, ω = ω2 and ωshort = ω1.

Therefore, the highest long and short roots are dominant weights. In fact, it can be seen that

all roots of Φlong (resp. Φshort) are conjugate under the action of W.∗ We therefore obtain the

following result, which gives us a nice way to compute the order of the Weyl group.
∗Briefly, any two long (respectively, short) simple roots are connected by an ‘ON-path’, in the language of [Don7].

It follows from Theorem 3.2 of [Don7] that these simple roots are conjugate under the W-action. Applying Corollary

3.27 and Proposition 3.28, it follows that any long (resp. short) root is conjugate to some long (resp. short) simple

root. It then follows that any two long (resp. short) roots are conjugate under the W-action.
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Theorem 3.11 With g connected, we have ω (resp. ωshort) as the highest long (resp. short) root.

Then ω (resp. ωshort) is nonzero and dominant. Moreover, Wω = Φlong (resp. Wωshort = Φshort).

Suppose ω (resp. ωshort) is Jc-dominant. Then |W| = |Φlong||WJ | (resp. |W| = |Φshort||WJ |).

§3.7 The longest element of the Weyl group. The material in this section is standard, see

e.g. [Hum2] or [BB]. A finite Weyl group has a unique ‘longest’ element, where length is measured

as follows: In any Weyl group, an element w may be written as a product si1 · · ·sip . Any shortest

such expression is a reduced expression for w, and the length of w is `(w) := p. Thus if W is finite,

there is an upper bound on the lengths of group elements. The following result can be derived from

standard facts (see e.g. Exercise 5.6.2 of [Hum2]).

Proposition 3.12 In a finite Weyl group, there is exactly one longest element, denoted w0.

We have w2
0 = ε. Moreover, there is a permutation σ0 : In −→ In such that for each i ∈ In,

w0.αi = −ασ0(i).

Observe that since 〈αi, α
∨
j 〉 = Mij for all i, j ∈ In then 〈ασ0(i), α

∨
σ0(j)〉 = Mσ0(i),σ0(j). In par-

ticular, σ0 is a symmetry of the Dynkin diagram g in the sense that g ∼= gσ0 . Since w2
0 = ε in

W then σ2
0 is the identity permutation. It also follows from the proposition that when w0 acts on

Λ, then ωi 7→ −ωσ0(i) for each i ∈ In: 〈−w0.ωi, α
∨
j 〉 = 〈ωi,−w0.α

∨
j 〉 = 〈ωi, α

∨
σ0(j)〉 = δi,σ0(j), hence

w0.ωi = −ωσ0(i). Thus, w0.(
∑
miωi) = −

∑
miωσ0(i). So once the action of w0 on V is known (see

§3.11 below) then one can compute σ0. One finds that for connected Dynkin diagrams, σ0 is trivial

except in the cases An (n ≥ 2), D2k+1 (k ≥ 2), and E6; see Figure 3.2.

Figure 3.2: Action of the permutation σ0 when σ0 is not the identity.

An (n ≥ 2): r r r r r1 2 3 n − 1 n σ0−→ r r r r rn n − 1 n − 2 2 1

Dn (n odd): r r r r r
r!!!

aaa

1 2 3 n − 2 n − 1

n

σ0−→ r r r r r
r!!!

aaa

1 2 3 n − 2 n

n − 1

E6: r r r
r

r r1

2

3 4 5 6 σ0−→ r r r
r

r r6

2

5 4 3 1

If R is a ranked poset with edges colored by the set In, then the σ0-recolored dual R4 is the

edge-colored poset (Rσ0)∗ ∼= (R∗)σ0 . See Figure 3.3 for an example.

§3.8 The M-structure property (again). Let R be a ranked poset with edges colored

by the set In. We say R has the g-structure property if R has the M -structure property for

the Cartan matrix M associated to g with weight function wtR : R −→ Λ such that wtR(s) =∑
j∈In

mj(s)ωj . Thus R has the g-structure property if and only if for each simple root αi we have
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Figure 3.3: L4 for the edge-colored lattice L from Figure 2.1.
Here regard L to be edge-colored by the nodes of A2.
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wtR(s) + αi = wtR(t) whenever s i→ t in R. This condition depends not only on g (information

from the corresponding Dynkin diagram) but also on the combinatorics of R.

Let us temporarily assume only that (Γ,M) is a GCM graph with nodes indexed by In. If R

is a ranked poset with edges colored by the set In, then the edge-coloring function edgecolorR :

E(R) → In is sufficiently surjective if for each connected component of (Γ,M) there is a node γi

and an edge s→ t with edgecolorR(s→ t) = i. The following results are from [Don8].

Theorem 3.13 LetM = (Mi,j)i,j∈In be a real matrix. (1) If there is a diamond-colored distributive

lattice L with surjective edge-coloring function edgecolorL : E(L) → In and having the M -

structure property, then M must be a generalized Cartan matrix. (2) Suppose (Γ,M) is a GCM

graph with nodes indexed by In. Suppose R is a ranked poset with sufficiently surjective edge-

coloring function edgecolorR : E(R) → In. If R has the M -structure property, then edgecolorR

is surjective and (Γ,M) is a Dynkin diagram of finite type.

Since our proof of part (2) of this theorem applies results from [Don6] concerning the so-called

‘numbers game’, we defer the proof of part (2) until §3.11.

37



Proof of Theorem 3.13.1. For (1), let i ∈ In and choose an edge s i→ t in L. Then for any

j ∈ In we have mj(s) +Mij = mj(t). Since mj(s) and mj(t) are integers, it follows that Mij is an

integer. Since ρi(s) + 1 = ρi(t) and δi(s)− 1 = δi(t), then from mi(s) +Mii = mi(t) it follows that

Mii = 2.

Pick i, j ∈ In with i 6= j. First, suppose there is an {i, j}-component K in L which has at least

one edge of color i and at least one of color j. By Theorem 2.3 and Proposition 2.8 we may write

K = Jcolor(Q) for Q = jcolor(K). Let di count the number of color i vertices in Q. Similarly define

dj . Since K has both color i and color j edges, di and dj are both positive. Let x be the unique

maximal element of K and let y be the unique minimal element. Then

wtL(y) + diαi + djαj = wtL(x).

In particular

mi(y) + diMii + djMji = mi(x) and mj(y) + diMij + djMjj = mj(x).

Then djMji = (−mi(y) − di) + (mi(x) − di) and diMij = (mj(x) − dj) + (−mj(y) − dj). Since

mi(x) = li(x) ≤ di, mj(x) = lj(x) ≤ dj , −mi(y) = li(y) ≤ di, and −mj(y) = lj(y) ≤ dj , then we

see that (mi(x)− di)+ (−mi(y)− di) ≤ 0 and (mj(x)− dj)+ (−mj(y)− dj) ≤ 0. Hence djMji ≤ 0

and diMij ≤ 0. Since di and dj are both positive, then Mij ≤ 0 and Mji ≤ 0.

Suppose that in this situation, Mij = 0. Then (mj(x) − dj) + (−mj(y) − dj) = 0, and hence

mj(x) = dj = lj(x) and −mi(y) = dj = lj(y). In particular, starting at the order ideal y in L,

it is possible to add to y dj color j vertices to get an order ideal z that is a vertex in K. At

this point, z must be the minimum vertex of the color i component containing x, and further

we must be able to add di color i vertices to z to get x. In particular, mi(x) = di = li(x).

Similarly from x we can remove dj color j vertices to get an order ideal w in K that is the maximal

vertex in the i-component of y. In the same way as before we get −mi(y) = di = li(y). So

(−mi(y)− di) + (mi(x)− di) = 0 = djMji, so Mji = 0.

At this point we know that if there is an {i, j}-component in L that has edges of both colors

i and j, then Mij ≤ 0, Mji ≤ 0, and Mij = 0 if and only if Mji = 0. So now suppose that every

{i, j}-component in L uses at most one of the colors i or j. Pick an edge s i→ t in L. Since neither

s nor t has an incident edge of color j, then mj(t) = mj(s) = 0. But mj(t) = mj(s) + Mij , so

therefore Mij = 0. By looking at an edge of color j in L one can similarly conclude that Mji = 0.
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We thus conclude that M is a matrix of integers with Mii = 2 for all i ∈ In, Mij ≤ 0 for all

i 6= j in In, and Mij = 0 if and only if Mji = 0. That is, M is a generalized Cartan matrix.

Combining both parts of the previous theorem we obtain:

Corollary 3.14 Let M = (Mi,j)i,j∈In be a real matrix. If there is a diamond-colored distributive

lattice L with surjective edge-coloring function edgecolorL : E(L) → In and having the M -

structure property, then M must be a Cartan matrix.

It is important to note that the condition “M is a Cartan matrix” in this corollary is necessary

but not sufficient for there to be an M -structured diamond-colored distributive lattice.

Now return to the assumption that M is a Cartan matrix and g = (Γ,M) is a Dynkin diagram.

For a g-structured diamond-colored distributive lattice L, let λ be the weight of the unique maximal

vertex of L. We say L is a (g, λ)-structured distributive lattice. A concept to be introduced in

Chapter 3 (the ‘distributive core’) relates directly to the following question: For which Dynkin

diagrams g and weights λ is there a (g, λ)-structured distributive lattice? When a (g, λ)-structured

distributive lattice exists, we have the following result concerning its unique minimal element. As

this result can be demonstrated using facts about the ‘numbers game’ as in [Don6], we defer the

proof to §3.11.

Proposition 3.15 Let R be an M -structured poset with a unique maximal element of weight

λ, necessarily dominant. Then R has a minimal element of weight w0.λ. In particular, if L is a

(g, λ)-structured distributive lattice for some dominant weight λ, then the unique minimal element

of L has weight w0.λ.

§3.9 Weyl characters. See [Hum1], [FH], or [Stem3] for discussions of the basic theory

of Weyl characters, which we outline here without much reference to Lie representation theory.

Observe that Λ is an abelian subgroup of V . Let Z[Λ] be the group ring over Λ: that is, Z[Λ]

consists of finite integral linear combinations of elements of the basis {eµ |µ ∈ Λ}. Multiplication

in Z[Λ] is given by eµeν = eµ+ν . We sometimes use 1 to denote e0. The Weyl group W acts on

Z[Λ] by the rule w.eµ := ew.µ. The character ring Z[Λ]W for g is the ring of W-invariant elements

of Z[Λ]; elements of Z[Λ]W are characters for g. For any weight µ, let Aµ :=
∑
w∈W

det(φ(w))ew.µ.

Using the fact that Si = φ(si) is a reflection and hence det(Si) = −1, it follows that si.Aµ = −Aµ.

So, Aµ is not in the character ring. Let % := ω1 + · · · + ωn, the sum of the fundamental weights.

Part (1) of the following well-known theorem is the famous Weyl character formula, due to H. Weyl.
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Theorem 3.16 (Weyl) (1) For each dominant λ ∈ Λ+, there exists a unique χ
λ
∈ Z[Λ] such

that A%χλ
= A%+λ, and moreover χ

λ
∈ Z[Λ]W . (2) The characters {χ

λ
}λ∈Λ+ are a basis for the

character ring Z[Λ]W . (3) The characters {χωi
}i∈In are an algebraic basis for the character ring

Z[Λ]W .

Weyl characters are nonnegative integral linear combinations of the characters {χ
λ
}λ∈Λ+ . Ele-

ments of the basis {χ
λ
}λ∈Λ+ for the character ring are irreducible Weyl characters, and elements of

{χωi
}i∈In are fundamental characters. At times we use the nomenclature ‘g-character’ to emphasize

the connection to the Dynkin diagram g. For each i ∈ In, set zi := eωi . If µ =
∑
miωi ∈ Λ, set

zµ := zm1
1 · · · zmn

n . Then for any λ ∈ Λ+ we can write χ
λ

=
∑
µ∈Λ

cλ,µz
µ for some cλ,µ ∈ Z. So we can

think of an irreducible Weyl character as a Laurent polynomial in the variables {zi}i∈In . At times

we will emphasize this viewpoint by writing charg(λ; z1, . . . , zn) in place of χ
λ
. The following facts

about irreducible Weyl characters can be proved using the representation theory of semisimple Lie

algebras. We record these here for future use.

Facts 3.17 Keep the notation of the previous paragraph. (1) Each coefficient cλ,µ is nonnegative.

(2) Moreover, cλ,λ = 1 and cλ,w0.λ = 1. (3) Partially order the set Π(λ) := {µ ∈ Λ | cλ,µ 6= 0} by

the rule µ ≤ ν if and only if ν − µ =
∑
kiαi with each ki ≥ 0. Then Π(λ) is a connected ranked

poset with unique maximal element λ and unique minimal element w0.λ. (4) Moreover, µ → ν in

Π(λ) if and only if µ+ αi = ν for some simple root αi. Therefore by giving each such edge µ→ ν

the color i ∈ In of the appropriate simple root αi, Π(λ) is a g-structured poset.

For example, to see that each coefficient cλ,µ is nonnegative, one observes that cλ,µ counts the

dimension of a certain subspace of the highest weight λ irreducible representation of the corre-

sponding semisimple Lie algebra. Subsequently one can see that if we evaluate charg(λ; z1, . . . , zn)

at z1 = · · · = zn = 1 we obtain the number
∑

µ∈Λ cλ,µ, which is the dimension of the representing

space. For this reason we will refer to the nonnegative integer charg(λ; z1, . . . , zn)|z1=···=zn=1 as

the dimension of χ
λ
. More generally, the dimension of a Weyl character χ =

∑
λ∈Λ+ mλχλ

is the

nonnegative integer
∑

λ∈Λ+ mλcharg(λ; z1, . . . , zn)|z1=···=zn=1.

Example 3.18: Adjoint characters. Assume g is connected. The highest long root ω and

the highest short root ωshort are dominant weights. From [Don5] (for example) it follows that

χω = n e0+
∑

α∈Φ eα and that χωshort
= me0+

∑
α∈Φshort

eα, where m is the number of short simple

roots. To see that these are both in the character ring, it suffices to observe that W permutes Φ

(resp. Φshort). We call χω and χωshort
the adjoint and short adjoint characters, respectively.
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§3.10 Our main goal: ‘splitting posets’ as combinatorial models for Weyl characters.

Let R be a ranked poset with edges colored by the set In. We say R is a splitting poset for a Weyl

character χ if (1) R has the g-structure property and (2) the weight-generating function on R is

the Weyl character χ in the following sense: χ =
∑
t∈R

zwtR(t). If R is a diamond-colored distributive

lattice, then we say R is a splitting distributive lattice or SDL. The following is from Lemma 2.2 of

[ADLMPPW].

Lemma 3.19 Let λ =
∑
miωi be dominant in the lattice of weights for g. Suppose R is a

splitting poset for χ
λ
. Then the dual R∗ is a splitting poset for the irreducible g-Weyl character

χ−w0.λ
. Given a one-to-one function σ : In → In, the recolored poset Rσ is a splitting poset for the

irreducible gσ-Weyl character χP
miωσ(i)

. The σ0-recolored dual R4 is also a splitting poset for the

irreducible g-Weyl character χ
λ
.

If R is a connected splitting poset for an irreducible Weyl character χ
λ
, then by Facts 3.17, R

has a unique vertex max (respectively min) of maximal (resp. minimal) rank, and moreover we

have wtR(max) = λ and wtR(min) = w0.λ. Set %∨ :=
∑n

i=1
2ωi

〈αi,αi〉 . Observe that 〈αi, %
∨〉 = 1 for

1 ≤ i ≤ n. Using the vertices max and min, one now sees that the length of R is 〈wtR(max) −

wtR(min), %∨〉 = 〈λ−w0.λ, %
∨〉. This observation helps explain the appearance of the scaling factor

q−〈w0.λ,%∨〉 in the next proposition, which shows how the rank generating function RGF (R, q) for

such a splitting poset R is obtained as a specialization of the irreducible Weyl character χ
λ
.

Proposition 3.20 Let R be a connected splitting poset for the irreducible Weyl character χ
λ
.

Then its rank generating function RGF (R, q) can be obtained by specializing the Weyl character

as follows:

RGF (R, q) = q−〈w0.λ,%∨〉charg(λ; z1, . . . , zn)|
zi:=q〈ωi,%∨〉 .

Proof. We use the notation of the paragraph preceding the proposition statement. Let t ∈ R.

Since R is connected, there is a path P from min to t in R. By applying the M -structure property

along the edges of P, we obtain that ρ(t) = 〈wtR(t) − wtR(min), %∨〉. In the computations that

follow we use the fact that wtR(min) = w0.λ.

RGF (R, q) =
∑
t∈R

qρ(t) =
∑
t∈R

q〈wtR(t)−wtR(min),%∨〉

= q−〈w0.λ,%∨〉
∑
t∈R

q〈wtR(t),%∨〉

= q−〈w0.λ,%∨〉
∑
t∈R

qm1(t)qm2(t) · · · qmn(t)
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= q−〈w0.λ,%∨〉
∑
t∈R

(q〈ω1,%∨〉)m1(t)(q〈ω2,%∨〉)m2(t) · · · (q〈ωn,%∨〉)mn(t)

= q−〈w0.λ,%∨〉charg(λ; z1, . . . , zn)|
zi:=q〈ωi,%∨〉 .

This completes the proof.

In view of this result, we will use `(λ) to denote the length 〈λ − w0.λ, %
∨〉 of any connected

splitting poset for χ
λ
. The following result (appearing as Proposition 2.4 in [ADLMPPW], based

on Proctor’s work in Section 6 of [Pro3] with the M -structure poset context contributed by Don-

nelly) shows that connected splitting posets for irreducible Weyl characters have certain salient

combinatorial features.

Theorem 3.21 Let R be a connected splitting poset for the irreducible Weyl character χ
λ
. Then

R is rank symmetric, rank unimodal, and has rank generating function

RGF (R, q) =
∏

α∈Φ+

1− q〈λ+%,α∨〉

1− q〈%,α∨〉

Letting q → 1 in the above expression gives:

Corollary 3.22 (Weyl Dimension Formula) The dimension of χ
λ

is∏
α∈Φ+

〈λ+ %, α∨〉
〈%, α∨〉

Calculating the difference of the degrees of the numerator and denominator polynomials in

Theorem 3.21 gives:

Corollary 3.23 The length of any connected splitting poset for χ
λ

is

`(λ) =
∑

α∈Φ+

〈λ, α∨〉.

A crucial question at this point is: How does one obtain splitting posets? At present there

are three general strategies. (1) Impose ‘natural’ partial orders on combinatorial objects known to

generate Weyl characters. For example, the ‘Littelmann’ family of G2-lattices shown in [Mc] to be

SDL’s for the irreducible G2-characters were discovered by Donnelly by imposing a natural partial

order on Littelmann’s G2 tableaux [Lit]. (2) Apply Stembridge’s product construction [Stem3]. For

a given dominant weight λ, any resulting ‘admissible system’ is a ‘minimal’ splitting poset in the

sense that it will not contain as a proper edge-colored subgraph a splitting poset for χ
λ
. Further,

one can sometimes show a given M -structure poset R is a splitting poset for χ
λ

by locating an

admissible system inside R as an edge-colored subgraph. This method is being employed right
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now by Alverson, Donnelly, Lewis, and Pervine to give another proof that the ‘semistandard’

lattices of [ADLMPPW] are SDL’s for the irreducible Weyl characters for A2, C2, and G2. (3)

Show that a given g-structured poset is a ‘supporting graph’ (cf. [Don4]) for a representation of the

corresponding semisimple Lie algebra. This method has been used in [Don3], [Don4], [Don5], and

[DLP1] to produce/study many families of SDL’s.

Example 3.24: The maximal splitting poset. Given an irreducible Weyl character χ
λ
, consider

the set of weights Π(λ). By Facts 3.17, we may regard Π(λ) as a ranked poset with edges colored

by In, where µ i→ ν if and only if µ+αi = ν. We use Π(λ) as the foundation for a new edge-colored

ranked posetM(λ). As a set, we have

M(λ) :=
⋃

µ∈Π(λ)

{
µ(1), . . . , µ(cλ,µ)

}
,

where we have essentially extended each weight µ in Π(λ) to a multiset of elements with weight

µ using the coefficients cλ,µ. For µ(p) and ν(q) in M(λ), write µ(p) i→ ν(q) if and only if µ i→ ν in

Π(λ). In [Don4] it is observed thatM(λ) is a supporting graph for the highest weight λ irreducible

representation of the corresponding semisimple Lie algebra. In particular,M(λ) is a splitting poset

for χ
λ
. But this latter fact is easy enough to see directly from the definitions and Facts 3.17. It

can be seen that M(λ) contains an isomorphic image of any other splitting poset R for χ
λ

as a

weak subposet. In effect, such an R has the same vertices as M(λ) but only a subset of its edges.

We call M(λ) the maximal splitting poset for χ
λ
.

Example 3.25: Splitting posets for adjoint characters. Let g be connected. Define A

to be the set {(i, j)|〈αi, α
∨
j 〉 < 0}i,j∈In modulo the equivalence (i, j) ≡ (j, i). For k ∈ In set

A(k) := A ∪ {(k, k)}, so |A(k)| = n. Let L(k) be the set Φ+ ∪ A(k) ∪ Φ−. Place directed edges

with colors from the set In between the elements of L(k) as follows: Write α i→ β if α and β are

both roots in Φ+ (or are both in Φ−) and α + αi = β. For each pair (i, j) in A(k), include edges

−αr
r→ (i, j) r→ αr if and only if r = i or r = j. It is a consequence of Facts 3.7 that L(k) is the

Hasse diagram for a ranked poset. We call A(k) the middle rank of L(k). For reasons explained by

Theorem 1.2 of [Don5], we call L(k) the kth extremal splitting poset for the adjoint character χω

for g. In that paper it is shown in Proposition 6.1 that the L(k)′s are precisely the modular lattice

supporting graphs for graphs for the adjoint representation of the simple Lie algebra g. It follows

that each L(k) is a splitting modular lattice for the adjoint character χω for g (cf. Example 3.18).

In [Don5] Corollary 6.2, it is also observed that an extremal splitting poset L(k) is a distributive

lattice if and only if g is one of An, Bn, Cn, F4, or G2 and γk is one of the end nodes for g.
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There are similar objects for the short adjoint characters χωshort
, cf. Example 3.18, [Don5].

Modify the constructions of the previous paragraph using only Φshort. This results in splitting

modular lattices L(k)
short for the short adjoint character, where each index k ∈ In is such that αk

is short. As with the extremal splitting posets for the adjoint characters, we see that L(k)
short is a

distributive lattice if and only if g is one of An, Bn, Cn, F4, or G2 and αk is a short simple root with

at most one adjacent short simple root in the Dynkin diagram g.

§3.11 The numbers game and computations related to Weyl groups and roots

systems. This subsection applies recent results of [Don6] in studying the combinatorial ‘numbers

game’ of Mozes [Moz] and Eriksson [Erik1], [Erik2], [Erik3].

For the next two paragraphs, temporarily relax the finiteness hypothesis for W = Wg. For

the game we describe next, a position λ is an assignment of numbers (λi)i∈In to the nodes of the

GCM graph g = (Γ,M). As with weights, say the position λ is dominant (respectively, strongly

dominant) if λi ≥ 0 (respectively λi > 0) for all i ∈ In; λ is nonzero if at least one λi 6= 0. Given a

position λ on a GCM graph (Γ,M), to fire a node γi is to change the number at each node γj of Γ

by the transformation

λj 7−→ λj −Mijλi,

provided the number at node γi is positive; otherwise node γi is not allowed to be fired. The

numbers game is the one-player game on a GCM graph (Γ,M) in which the player (1) Assigns an

initial position to the nodes of Γ; (2) Chooses a node with a positive number and fires the node to

obtain a new position; and (3) Repeats step (2) for the new position if there is at least one node

with a positive number.

Consider the GCM graph C2. As we can see in Figure 3.4, the numbers game terminates in

a finite number of steps for any initial position and any legal sequence of node firings, if it is

understood that the player will continue to fire as long as there is at least one node with a positive

number. In general, given a position λ, a game sequence for λ is the (possibly empty, possibly

infinite) sequence (γi1 , γi2 , . . .), where γij is the jth node that is fired in some numbers game with

initial position λ. More generally, a firing sequence from some position λ is an initial portion of

some game sequence played from λ; the phrase legal firing sequence is used to emphasize that all

node firings in the sequence are known or assumed to be possible. Note that a game sequence

(γi1 , γi2 , . . . , γil) is of finite length l (possibly with l = 0) if the number is nonpositive at each node

after the lth firing; in this case we say the game sequence is convergent and the resulting position is
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Figure 3.4: The numbers game for the Dynkin diagram C2.r
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the terminal position for the game sequence. We say a connected GCM graph (Γ,M) is admissible

if there exists a nonzero dominant initial position with a convergent game sequence. Theorem

6.1 of [Don6] shows that a connected GCM graph is admissible if and only if it is a connected

Dynkin diagram of finite type. In these cases, for any given initial position every game sequence

will converge to the same terminal position in the same finite number of steps.

Return now to the assumption that W = Wg is finite. The moves of the numbers game relate

directly to the Euclidean representation φ :Wg → GL(V, 〈·, ·〉), cf. §3.5. To see this, view a position

λ = (λi)i∈In on g as the weight
∑
λiωi. Now observe that firing node γi from weight λ on g results

in position φ(si)(λ): At each j ∈ In, 〈si.λ, α
∨
j 〉 =

∑
λk〈ωk, α

∨
j 〉−λi〈αi, α

∨
j 〉 = λj−Mijλi. It follows

from Eriksson’s Reduced Word Result (see Theorem 2.8 of [Don6]) that (γi1 , γi2 , . . . , γil) is a game

sequence for a numbers game played on g from any given strongly dominant initial position if and

only if sil · · ·si2si1 is a reduced expression for w0, the longest element of W. For the rest of this

subsection, let silsil−1
· · ·si1 be a fixed reduced expression for w0. The next result is an immediate

application of Theorem 5.2 of [Don6] concerning the positive roots Φ+.

Theorem 3.26 For 1 ≤ j ≤ l, set βj := si1si2 · · ·sij−1 .αij . Then |{βj}lj=1| = l and {βj} = Φ+.

Corollary 3.27 Keep the notation of Theorem 3.26. Let λ =
∑
λiωi ∈ Λ+. For 1 ≤ j ≤ l let cj

be the number at the ijth node when we play the legal firing sequence (γi1 , γi2 , . . . , γij−1) from the
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initial position (λi + 1)i∈In on the Dynkin diagram g. Then 〈λ+ %, β∨j 〉 = cj . Moreover,

∏
α∈Φ+

(1− q〈λ+%,α∨〉) =
l∏

j=1

(1− qcj ) and
∏

α∈Φ+

〈λ+ %, α∨〉 =
l∏

j=1

cj .

Proof. It follows from Lemma 3.5 above that β∨j = si1si2 · · ·sij−1 .α
∨
ij

. We now have 〈λ +

%, β∨j 〉 = 〈λ + %, si1si2 · · ·sij−1 .α
∨
ij
〉 = 〈sij−1 · · ·si2si1 .(λ + %), α∨ij 〉, which is the ijth coordinate of

sij−1 · · ·si2si1 .(λ+ %). That is, 〈λ+ %, β∨j 〉 = cj . By the preceding theorem, for each positive root α

there is one and only one j such that α = βj . Then we can index the products over the positive

roots using j = 1, . . . , l instead, which completes the proof.

Proposition 3.28 Keep the notation of Theorem 3.26. Assume g is connected. Consider the trans-

pose Euclidean representation φT : Wg → GL(V T, 〈·, ·〉
T

) as in §3.5, with simple roots {αT
i }i∈In

and fundamental weights {ωT
i }i∈In . Suppose βj = si1si2 · · ·sij−1 .αij =

∑
kiαi ∈ Φ+ is short (resp.

long). Let βT
j := si1si2 · · ·sij−1 .α

T
i , a root in ΦT, with (βT

j )∨ = si1si2 · · ·sij−1 .(α
T
i )∨ the correspond-

ing root in (ΦT)∨, cf. Lemma 3.5. (1) Then (βT
j )∨ is positive and short (resp. long). (2) For a

strongly dominant weight µ =
∑
µiω

T
i , let dj denote the number at the ijth node after playing the

legal sequence (γi1 , γi2 , . . . , γij−1) from initial position (µi)i∈In on the transpose graph gT. Then

〈µ, (βT
j )∨〉

T
= dj =

∑
kiµi.

Proof. By Proposition 3.8, R(g, φT, {(αT
i )∨}i∈In) is isomorphic to R(g, (φT)T, {(αT

i )T}i∈In)

via the identity bijection on In, which in turn is isomorphic to R(g, φ, {αi}i∈In) via the iden-

tity bijection on In. So given βj =
∑
kiαi, it follows that (βT

j )∨ =
∑
ki(αT

i )∨. We see that

(βT
j )∨ is positive. From Proposition 3.8, it follows that (βT

j )∨ is also short (resp. long). Now

〈sij−1 · · ·si2si1 .µ, (α
T
ij

)∨〉
T

= 〈µ, (βT
j )∨〉

T
= 〈

∑
µiω

T
i ,

∑
ki(αT

i )∨〉
T

=
∑
kiµi. From the paragraph

preceding Theorem 3.26, we see that sij−1 · · ·si2si1 .µ is the position resulting from the firing se-

quence (γi1 , γi2 , . . . , γij−1) played from initial position (µi)i∈In on the transpose graph gT. Then

dj = 〈sij−1 · · ·si2si1 .µ, (α
T
ij

)∨〉
T

is the number at the ijth node.

Remark 3.29 In view of the preceding results, the numbers game gives us simple iterative pro-

cedures for producing data concerning roots and Weyl group actions needed for example for the

following computations. To compute the rank generating function of Theorem 3.21 above, ob-

serve that by Corollary 3.27 the exponents of the numerator and denominator in that formula are

numbers appearing in a numbers game played from initial positions (λi + 1)i∈In and (1)i∈In on g

respectively. In combination, Theorem 3.26 and Proposition 3.28 show that if we play a numbers

game on gT from a generic strongly dominant position (µi)i∈In , then any positive root β =
∑
kiαi
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in Φ will appear exactly once as the expression
∑
kiµi at node γij when it is fired. By Proposition

3.8, β will be short (resp. long) if and only if αT
ij

is long (resp. short) if and only if αij is short

(resp. long). Finally, to compute the action of w0 on V , start with a generic strongly dominant

weight λ =
∑
λiωi as an initial position on g and play the game sequence (γi1 , γi2 , . . . , γil). The

terminal position is sil · · ·si2si1 .λ = w0.λ. But since w0.λ = −
∑
λiωσ0(i), one can now deduce how

σ0 permutes the elements of In. These techniques are applied to G2 in the next subsection.

We close this subsection with proofs of two results stated in §3.8.

Proof of Theorem 3.13.2. First assume (Γ,M) is connected. In this case it is only required that

R has at lease one edge. Choose a vertex t0 for which λ(0) := wtR(t0) is dominant. (For example,

take t0 to be any element of highest rank in R.) Since R has at least one edge, λ(0) is nonzero. Let

(γi1 , γi2 , . . .) be any game sequence played from initial position λ(0) on (Γ,M). For each p ≥ 1, λ(p)

is the position in the sequence just after node γip is fired. Next, we define by induction a special

sequence of elements from R. For any p ≥ 1, suppose we have a sequence t0, t1, . . . , tp−1 for which

wtR(tq) = λ(q) and ρ(tq) < ρ(tq−1) for all 1 ≤ q ≤ p − 1. We wish to show that we can extend

this sequence by an element tp so that wtR(tp) = λ(p) and ρ(tp) < ρ(tp−1). Take tp to be any

element of compip(tp−1) for which ρip(tp) = lip(tp−1)−ρip(tp−1). Since firing node γip in the given

numbers game is legal from position λ(p−1), then λ
(p−1)
ip

> 0. But λ(p−1)
ip

= 2ρip(tp−1) − lip(tp−1).

So, ρip(tp) = lip(tp−1) − ρip(tp−1) < ρip(tp−1). It follows that ρ(tp) < ρ(tp−1). Since R satisfies

the M -structure condition, then wtR(tp) = wtR(tp−1) − λ(p−1)
ip

αip . But λ(p−1) = wtR(tp−1) and

λ(p) = λ(p−1) − λ(p−1)
ip

αip . In other words, wtR(tp) = λ(p). So we have extended our sequence as

desired. But since R is finite, any such sequence must also be finite. Hence the game sequence

(γi1 , γi2 , . . .) is convergent. Then by Theorem 6.1 of [Don6], (Γ,M) must be a Dynkin diagram of

finite type. Since every node must be fired in a convergent game sequence for a numbers game

played on a connected GCM graph (Lemma 2.6 of [Don6]), then it follows that edgecolorR is

surjective.

In the general case, pick a connected component (Γ′,M ′) of (Γ,M), and let J := {x ∈ In}γx∈Γ′ .

Now pick a J-component C of R such that C contains at least one edge whose color is from J . The

previous paragraph implies that (Γ′,M ′) is a connected Dynkin diagram of finite type and that for

every color in J there is an edge in C having that color. Applying this reasoning to each connected

component of (Γ,M), we see that (Γ,M) is a Dynkin diagram of finite type and that edgecolorR

is surjective.
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Proof of Proposition 3.15. The second assertion of the proposition, which concerns (g, λ)-

structured distributive lattices, is an immediate consequence of the first assertion concerning M -

structured posets with unique maximal elements. So we only need to prove the first assertion. Then

let R be as in the first assertion of the proposition statement. Let t0 be the unique maximal element

of R. Then wtR(t0) = λ is dominant. If λ is the trivial zero weight, then R = {t0}, an equality of

sets. That is, t0 is also the unique minimal element of R. Note that then w0.λ = λ = wtR(t0), so

the proposition statement is true in this case.

Now suppose λ is nonzero. Proceeding exactly as in the previous proof, we can construct a

sequence of elements of R and their associated weights corresponding to a numbers game played

on g from initial position λ. We get a game sequence (γi1 , γi2 , . . . , γip) such that the corresponding

numbers game positions are λ(0) = λ, λ(1), . . . , λ(p). We also have these positions as weights of

certain vertices t0, t1, . . . , tp from R: wtL(tq) = λ(q) for 1 ≤ q ≤ p.

We now invoke results from §3 of [Don6]. Let λ be Jc-dominant, for J ⊆ In. We write (w0)J

for the longest element of WJ (the subgroup of W generated by {sj}j∈J), and (w0)
J

denotes the

minimal length coset representative of w0, cf. §3 of [Don6]. Then by Corollary 3.4 of [Don6], we

must have (w0)
J

= sip · · ·si2si1 . So the terminal position must be (w0)
J
.λ. But (w0)J stablizes λ,

so w0.λ = (w0)
J
(w0)J .λ = (w0)

J
.λ is the terminal position for the game. That is, λ(p) = wtR(tp) =

w0.λ.

Let Π(R) := {wtR(s) | s ∈ R}. We claim that Π(R) ⊆ Π(λ). That is, we claim that for all s ∈ R,

wtR(s) ∈ Π(λ). (For a definition and some results about Π(λ), see Facts 3.17 above and Chapter

13 of [Hum1].) We prove our claim by induction on the depth of elements in R. When δ(s) = 0,

then s = t0. Then wtR(s) = λ ∈ Π(λ). For our induction hypothesis, assume that for some positive

integer k and for all x ∈ R with δ(x) < k, it is the case that wtR(x) ∈ Π(λ). If δ(s) = k, then

s is not maximal in R, so s i→ t for some t ∈ R. Let u ∈ compi(s) such that δi(u) = 0. Let

µ := wtR(u). We have 0 < δi(s) ≤ li(s), and wtR(s) = µ − δi(s)αi. By the induction hypothesis,

µ ∈ Π(λ). Now 〈µ, α∨i 〉 = ρi(u)− δi(u) = ρ(u) = li(u) = li(s). By Chapter 13 of [Hum1], we know

that Π(λ) is ‘saturated’. In particular, this means that µ − pαi ∈ Π(λ) for all 0 ≤ p ≤ li(s). So

wtR(s) ∈ Π(λ). This completes the induction step, and the proof of our claim.

So now if s i→ tp for some s ∈ R, then wtR(s) = wtR(tp)− αi = w0.λ− αi. But Π(R) ⊆ Π(λ),

in which case wtR(s) < w0.λ in the partial order on Π(λ). But by Facts 3.17, w0.λ is the unique
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minimal element in Π(λ). So there can be no such s. In particular, tp is a minimal element of R

with weight w0.λ, as desired.

§3.12 An extended example: G2. We now illustrate the main ideas of the preceding

subsections with an example. We work with g = G2, which has Cartan matrix

0@ 2 −1

−3 2

1A with

inverse

0@ 2 1

3 2

1A.

§3.2 The Weyl group W is 〈s1, s2 | s21 = s22 = (s1s2)6 = (s2s1)6 = ε〉. This is easily seen to

be the 12-element dihedral group. Its elements are {ε, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2,

s2s1s2s1, s1s2s1s2s1, s2s1s2s1s2, s1s2s1s2s1s2 = s2s1s2s1s2s1}.

§3.4 Let α1 and α2 be simple roots for the W-module V = spanR(α1, α2). We have si.αj =

αj −Mjiαi for i, j = 1, 2. Set 〈α1, α1〉 = 2. Then 〈α2, α2〉 = M21
M12
〈α1, α1〉 = 3 · 2 = 6. So α1 is short

and α2 is long. Also, 〈α1, α2〉 = 1
2〈α2, α2〉M12 = 1

2 · 6 · (−1) = −3. Similarly see that 〈α2, α1〉 = −3

as well. Then relative to the basis {α1, α2} for V , the inner product 〈·, ·〉 is represented by the

matrix

0@ 2 −3

−3 6

1A.

§3.5 Using gT, we compute the short and long roots in Φ+. For the game sequence (γ1,

γ2, γ1, γ2, γ1, γ2) played in Figure 3.5 from a generic strongly dominant initial position (a, b)

on gT, observe that the numbers at the fired nodes are a, 3a + b, 2a + b, 3a + 2b, a + b, and b

respectively. Using Remark 3.29, it follows that Φ+ = {α1, 3α1+α2, 2α1+α2, 3α1+2α2, α1+α2, α2},

Φ+
short = {α1, 2α1 +α2, α1 +α2}, and Φ+

long = {3α1 +α2, 3α1 +2α2, α2}. Recall that α1 corresponds

to the first row of the Cartan matrix and α2 corresponds to the second, relative to the basis of

fundamental weights. That is, α1 = 2ω1 − ω2 and α2 = −3ω1 + 2ω2. Note that 3α1 + 2α2 = ω2 is

the highest root ω, and that 2α1 + α2 = ω1 is the highest short root ωshort. (Alternatively, these

calculations are easily confirmed by directly computing the actions of the 12 elements of W on the

simple roots α1 and α2.)

§3.6 At this point, we could use Theorem 3.11 to confirm that |W| = 12, if we did not already

know this by other means. The highest short root ωshort = ω1 is Jc-dominant for J = {2}. Then

we have |Φshort| = 2|Φ+
short| = 2 · 3 = 6, and |WJ | = |W{2}| = 2. Then |W| = 6 · 2 = 12.

§3.7 From the numbers game played on gT from the generic strongly dominant position (a, b),

we see in Figure 3.5 that the terminal position is (−a,−b). That is, w0.(aωT
1 +bωT

2 ) = −aωT
1 −bωT

2 .

Since gT ∼= g, we obtain that w0.(aω1 + bω2) = −aω1 − bω2 for a generic strongly dominant weight
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Figure 3.5: The game sequence (γ1, γ2, γ1, γ2, γ1, γ2) played on GT
2

from a generic strongly dominant position (a, b).r
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r
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--- �a b

?r
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r
γ2

--- �−a 3a + b
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γ1

r
γ2

--- �2a + b −3a − b

?r
γ1

r
γ2

--- �−2a − b 3a + 2b

?r
γ1

r
γ2

--- �a + b −3a − 2b

?r
γ1

r
γ2

--- �−a − b b

?r
γ1

r
γ2

--- �−a −b

aω1 + bω2. Then w0.ω1 = −ω1 and w0.ω2 = −ω2. In particular, the symmetry σ0 of the Dynkin

diagram g is the identity.

§3.9 From Proposition 3.9 it follows that s1.ω1 = ω1−α1 = −ω1 +ω2, s1.ω2 = ω2, s2.ω1 = ω1,

and s2.ω2 = ω2 − α2 = 3ω1 − ω2. Let z1 and z2 denote the elements eω1 and eω2 of the group ring

Z[Λ]. In this notation, s1.z1 = z−1
1 z2, s1.z2 = z2, s2.z1 = z1, and s2.z2 = z3

1z
−1
2 .

Following Example 3.18 the adjoint and short adjoint characters are:

χω = χω2
= char(ω2; z1, z2) = z2 + z3

1z
−1
2 + z1 + z−1

1 z2 + z−3
1 z2

2 + z2
1z

−1
2

+2 + z−2
1 z2 + z3

1z
−2
2 + z1z

−1
2 + z−1

1 + z−3
1 z2 + z−1

2

χωshort
= χω1

= char(ω1; z1, z2) = z1 + z−1
1 z2 + z2

1z
−1
2 + 1 + z−2

1 z2 + z1z
−1
2 + z−1

1
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One can verify by hand that these polynomials are W-invariant by using the prescribed action to

see that s1 and s2 preserve each polynomial. For example,

s2.χωshort
= s2.χω1

= s2.(z1 + z−1
1 z2 + z2

1z
−1
2 + 1 + z−2

1 z2 + z1z
−1
2 + z−1

1 )

= z1 + z−1
1 (z3

1z
−1
2 ) + z2

1(z
3
1z

−1
2 )−1 + z−2

1 (z3
1z

−1
2 ) + z1(z3

1z
−1
2 )−1 + z−1

1

= z1 + z2
1z

−1
2 + z−1

1 z2 + 1 + z1z
−1
2 + z−2

1 z2 + z−1
1

We note for the record that the alternating sums A% and A%+λ can be written down directly

using the definitions since the Weyl group W is small for G2:

A% = z1z2 − z−1
1 z2

2 − z4
1z

−1
2 + z−4

1 z3
2 + z5

1z
−2
2 − z

−5
1 z3

2 − z5
1z

−3
2 + z−5

1 z2
2 + z4

1z
−3
2

−z−4
1 z2 − z1z−2

2 + z−1
1 z−1

2

A%+λ = za+1
1 zb+1

2 − z−(a+1)
1 za+b+2

2 − za+3b+4
1 z

−(b+1)
2 + z

−(a+3b+4)
1 za+2b+3

2

+z2a+3b+5
1 z

−(a+b+2)
2 − z−(2a+3b+5)

1 za+2b+3
2 − z2a+3b+5

1 z
−(a+2b+3)
2

+z−(2a+3b+5)
1 za+b+2

2 + za+3b+4
1 z

−(a+2b+3)
2 − z−(a+3b+4)

1 zb+1
2

−za+1
1 z

−(a+b+2)
2 + z

−(a+1)
1 z

−(b+1)
2

At this point, one could use a computer algebra system to quickly confirm that A%χωi
= A%+ωi for

each i = 1, 2.

§3.10 We can compute the q-specialization of Proposition 3.20 for an irreducible g-character

χ
λ

as follows. Take λ = aω1 + bω2 ∈ Λ+. Note that 〈ω1, %
∨〉 = 〈2α1 + α2, %

∨〉 = 3 and 〈ω2, %
∨〉 =

〈3α1 + 2α2, %
∨〉 = 5. Also, −〈w0.λ, %

∨〉 = −〈−aω1 − bω2, %
∨〉 = 3a + 5b. Then for any connected

splitting poset for χ
λ

we have

RGF (R, q) = q3a+5bcharg(λ; z1, z2)|z1=q3,z2=q5

In the case of λ = ω2, we have

RGF (R, q) = q5
(
q5 + q9q−5 + q3 + q−3q5 + q−9q10 + q6q−5

+2 + q−6q5 + q9q−10 + q3q−5 + q−3 + q−9q5 + q−5

)
= q10 + q9 + q8 + q7 + 2q6 + 2q5 + 2q4 + q3 + q2 + q + 1

In the case of λ = ω1, we have

RGF (R, q) = q3(q3 + q−3q5 + q6q−5 + 1 + q−6q5 + q3q−5 + q−3)

= q6 + q5 + q4 + q3 + q2 + q + 1
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Now on g play the numbers game from initial position (a+1, b+1), where a and b are nonnegative.

For the game sequence (γ1, γ2, γ1, γ2, γ1, γ2) played from this position, the numbers at the fired nodes

are a+1, a+b+2, 2a+3b+5, a+2b+3, a+3b+4, and b+1 respectively. See Figure 3.6. Then using

Remark 3.29 together with Theorem 3.21, we have the following formula for the rank generating

function for any connected splitting poset R for the g-character χ
λ

with λ = aω1 + bω2 ∈ Λ+:

RGF (R, q) =
(1− q2a+3b+5)(1− qa+3b+4)(1− qa+2b+3)(1− qa+b+2)(1− qb+1)(1− qa+1)

(1− q5)(1− q4)(1− q3)(1− q2)(1− q)(1− q)

It follows from Corollary 3.22 that the dimension of χ
λ

is

(2a+ 3b+ 5)(a+ 3b+ 4)(a+ 2b+ 3)(a+ b+ 2)(b+ 1)(a+ 1)
5 · 4 · 3 · 2 · 1 · 1

and from Corollary 3.23 that the length of R is

`(λ) = (2a+ 3b) + (a+ 3b) + (a+ 2b) + (a+ b) + a+ b = 6a+ 10b.

Now consider the short adjoint character, which is the fundamental character χω1
. In this case,

note from our computation above that each coefficient cω1,µ in the character polynomial is unity.

From Facts 3.17 and Example 3.24 it follows that the maximal splitting posetM(ω1) coincides with

Π(ω1), as depicted in Figure 3.7. Check that in this case, no edges can be removed from M(ω1)

without violating the g-structure property. Thus M(ω1) is the unique splitting poset for χω1
. In

particular, M(ω1) coincides with the SDL built from Φshort in Example 3.25. The vertex-colored

poset of irreducibles Pω1 is also depicted in Figure 3.7. Next we consider the adjoint character χω2
.

In this case, we can build two SDL’s using Example 3.25. These are depicted in Figures 3.8 and

3.9, along with their vertex-colored posets of irreducibles. The poset of irreducibles depicted in

Figure 3.8 is designated as Pω2 for reasons explained in the next paragraph.

Certain distributive lattice orderings of Littelmann’s G2-tableaux [Lit] were found by Donnelly.

The main result of [Mc] was to confirm Donnelly’s conjecture that these lattices are SDL’s for

the irreducible g-characters. Using ideas related to [DW], these G2 lattices are constructed in

[ADLMPPW] by ‘stacking’ the posets of irreducibles denoted Pω1 and Pω2 . For a dominant weight

λ = aω1 + bω2, one ‘stacks’ a copies of Pω1 ‘on top of’ b copies of Pω2 , or alternatively one stacks b

copies of Pω2 on top of a copies of Pω1 . (See Figures 3.10 and 3.11 for the a = 2, b = 2 cases.) These

are posets of irreducibles for two ‘G2-semistandard’ lattices denoted Lβα

G2
(λ) and Lαβ

G2
(λ). These

SDL’s for χ
λ

are related by the recolored dual: Lαβ

G2
(λ) ∼= (Lβα

G2
(λ))4.
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Figure 3.6: The game sequence (γ1, γ2, γ1, γ2, γ1, γ2) played on G2

from a position (a+ 1, b+ 1) with a and b nonnegative.r
γ1

r
γ2

- ���a + 1 b + 1

?r
γ1

r
γ2

- ���−a − 1 a + b + 2

?r
γ1

r
γ2

- ���2a + 3b + 5 −a − b − 2

?r
γ1

r
γ2

- ���−2a − 3b − 5 a + 2b + 3

?r
γ1

r
γ2

- ���a + 3b + 4 −a − 2b − 3

?r
γ1

r
γ2

- ���−a − 3b − 4 b + 1

?r
γ1

r
γ2

- ���−a − 1 −b − 1
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Figure 3.7: M(ω1) = Π(ω1) is edge-color isomorphic to Jcolor(Pω1).
Order ideals are notated as in Figure 2.7. A weight pω1 + qω2 is denoted (p, q).

Vertex t0 t1 t2 t3 t4 t5 t6

Weight (1, 0) (1,−1) (−2, 1) (0, 0) (2,−1) (−1, 1) (−1, 0)

Root 2α1 + α2 α1 + α2 α1 NA −α1 −α1 − α2 −2α1 − α2

s
s
s
s
s
s
s

t6

t5

t4

t3
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∅
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v3
s 1
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v1
s 1
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@
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@

@
@

@
@

@
@

@
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Figure 3.8: An SDL for χω2
identified as Jcolor(Pω2) for a vertex-colored poset Pω2 .

Order ideals are notated as in Figure 2.7. A weight pω1 + qω2 is denoted (p, q).

Vertex t0 t1 t2 t3 t4 t5 t6

Weight (0, 1) (3,−1) (1, 0) (−1, 1) (−3, 2) (2,−1) (0, 0)

Root 3α1 + 2α2 3α1 + α2 2α1 + α2 α1 + α2 α2 α1 NA

Vertex t7 t8 t9 t10 t11 t12 t13

Weight (0, 0) (3,−2) (−2, 1) (1,−1) (−1, 0) (−2, 1) (0,−1)

Root NA −α2 −α1 −α1 − α2 −2α1 − α2 −3α1 − α2 −3α1 − 2α2
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s

s

s
s
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s

s
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s
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s
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Figure 3.9: An SDL for χω2
identified as Jcolor(Q) for a vertex-colored poset Q.

Order ideals are notated as in Figure 2.7. A weight pω1 + qω2 is denoted (p, q).

Vertex t0 t1 t2 t3 t4 t5 t6

Weight (0, 1) (3,−1) (1, 0) (−1, 1) (−3, 2) (2,−1) (0, 0)

Root 3α1 + 2α2 3α1 + α2 2α1 + α2 α1 + α2 α2 α1 NA

Vertex t7 t8 t9 t10 t11 t12 t13

Weight (0, 0) (3,−2) (−2, 1) (1,−1) (−1, 0) (−2, 1) (0,−1)

Root NA −α2 −α1 −α1 − α2 −2α1 − α2 −3α1 − α2 −3α1 − 2α2
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Figure 3.10: The stacking P := Pω2 / Pω2 / Pω1 / Pω1 of fundamental posets Pω1 and Pω2 .
Theorem 5.3 of [ADLMPPW] shows that Jcolor(P ) is an SDL for the G2-character χ2ω1+2ω2

.
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Figure 3.11: The stacking Q := Pω1 / Pω1 / Pω2 / Pω2 of fundamental posets Pω1 and Pω2 .
Theorem 5.3 of [ADLMPPW] shows that Jcolor(Q) is an SDL for the G2-character χ2ω1+2ω2

.
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