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ABSTRACT

The two known families of supporting graphs for the Gelfand-Tsetlin bases for the irre-

ducible representations of the rank two simple Lie algebra A2 are presented as a guide

for producing analogous distributive lattice supports for the irreducible representations of

shape λ of the simple Lie algebra G2. Littelmann produced a set of tableaux of shape

“6× λ” that had the correct numbers of elements; i.e., the number of elements in his set of

tableaux equaled the dimension of the corresponding representation of the Lie algebra G2.

A translation of these objects into tableaux of shape λ is made and a method of constructing

distributive lattices with several important combinatorial qualities from these translated G2

tableaux of shape λ is presented. Strong evidence is provided to support the claim that

these Littelmann lattices are indeed supporting graphs for the irreducible representations

of the Lie algebra G2.
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Chapter 1

Introduction

There are several technical words in the title of this thesis that warrant an explanation

at the outset. For now, it is safe to think of a “representation of a simple Lie algebra” as a

collection of square matrices, or better yet as a collection of linear operators acting on some

vector space (henceforth, the vector space being acted on will be referred to as a representing

space). The goal of the program introduced in [Don] is to find the “nicest” possible bases

for presenting the actions of the elements of simple Lie algebras on representing spaces. The

approach is combinatorial and visual: the idea is to associate a certain directed graph with

colored edges to each basis for the representing space.

These pictures have connections with many well-known combinatorial problems. In [Pr],

for instance, Proctor shows how Erdős’ “subset sum problem” can be solved by analyzing

pictures for certain representations of the odd orthogonal Lie algebra so(2n+ 1,C). Erdős’

subset sum problem can be described as follows: Find a set of n positive numbers that

has the most subsets having the same sum. For example, {1, 2, 3, 4, 5} has three subsets

whose sum is 7, and it can be shown that there is not another set of five numbers that will

have more than three subsets with the same sum. More generally, it can be shown that

{1, 2, . . . , n} is an “optimal” set in this same sense: no other set of n positive numbers has

more subsets which have the same sum. So pictures of representations of Lie algebras have

intrinsic combinatorial, as well as algebraic, interest.
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In this thesis, we will be primarily interested in representations of two “small” Lie

algebras, the rank two Lie algebras A2 and G2. (These Lie algebras are small in the sense

that the dimension of A2 is 8 and the dimension of G2 is 14.) For A2, “nice” pictures

for its representations are known, and these will be presented in this thesis. The main

problem we will address is to produce similarly “nice” pictures for representations of G2.

There are two phases of this problem: the first phase is to produce pictures which could

possibly be used to picture representations of G2, and the second phase is to confirm that

these pictures actually do arise from the action of G2 on certain vector spaces. This thesis

(mostly) completes the first phase by producing a family of pictures which satisfy some rare

necessary conditions, thus making them good candidates for picturing the representations

of G2. In completing the first phase, we provide a suitably nice combinatorial environment

for addressing the second phase of this problem.

The thesis is organized as follows: In the next chapter, we will provide some combina-

torial background to our problem. We will present several definitions of terms that appear

throughout the text, along with some results that are applied to our main problem later in

this thesis. In Chapter 3, we will look at the algebraic context of our problem. Therein,

we will formally define what a Lie algebra is and then describe in some detail the four

“classical Lie algebras.” We will also look at substructures of Lie algebras and homomor-

phisms between Lie algebras, and then make some comparisons between these ideas and

their analogous counterparts for more familiar algebraic structures like groups and rings.

In Section 3.4, we define the main algebraic object of interest to our problem. We will say

what a representation of a Lie algebra is and then examine some representations of a specific

Lie algebra. In Chapter 4, we will link the two settings together; that is, we will make a
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connection between the algebraic world of representations and the combinatorial world of

partially ordered sets and directed graphs. There we will learn how to produce a graph

from a Lie algebra representation and how we can know that these graphs are the kind for

which we are looking. In Chapter 5, we will describe the “nice” pictures that are known

for the irreducible representations for the simple Lie algebra A2. Those pictures will serve

as a guide for the main problem we address in this thesis: In the final chapter, we offer a

construction for what we believe to be “nice” pictures for the irreducible representations of

the rank two simple Lie algebra G2 that are analogous to those that are known for A2. We

will end this thesis by providing strong evidence for our claim about the G2 pictures.



Chapter 2

Combinatorics Background

This section can be skipped on the first reading, and consulted for definitions as needed.

However, results 2.2.2 and 2.2.3 will be referred to in later sections. For more on these

definitions, see [Sta].

2.1 Posets and Directed Graphs. A partially ordered set (or poset) P is a set

together with a partial order, ≤, that satisfies these three axioms:

(1) x ≤ x for all x ∈ P (reflexive property),

(2) x ≤ y and y ≤ x⇒ x = y for x, y ∈ P (antisymmetric property),

(3) x ≤ y and y ≤ z ⇒ x ≤ z for x, y ∈ P (transitive property).

Let P be a poset and let s and t be elements of P . We write s→ t if s is covered by t

in P (i.e. s ≤ r ≤ t in P implies that s = r or r = t). The order diagram of a poset P is

the directed graph whose nodes or vertices are the elements of P and whose directed edges

are given by the covering relations in P . We will not usually distinguish a poset from its

order diagram. When we depict the order diagram for a poset, arrows on the edges will

not be drawn; the direction of these edges is taken to be “up.” An element t in a poset P

is maximal (respectively, minimal) if there are no elements above (respectively, below) t in

the order diagram for P . We will only be using finite posets and directed graphs, and we

will allow directed graphs to have at most one edge between any two vertices. A chain C

in a poset P is a totally ordered subset; i.e., it is a subset for which any two elements are
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comparable, so if s and t are in C, then s ≤ t or s ≥ t. An antichain in P is a subset of P

whose elements are pairwise incomparable.

A path P from s to t in a directed graph P is a sequence P = (s = s0, s1, . . . , sp = t)

such that either sj−1 → sj or sj → sj−1 for 1 ≤ j ≤ p. A directed graph (or poset) P is

connected if any two elements in P can be joined by a path.

We can “color” the edges of a directed graph (or poset) P with elements from a set I

by assigning an element of I to each edge of P . We call P an edge-colored directed graph

(with edges colored by the set I). Now fix an edge color i. An i-component of P is a

connected component that is leftover whenever all edges of colors other than i are removed.

Two edge-colored directed graphs are isomorphic if there is a bijection between them that

preserves edges and edge colors. The dual P ∗ is the set {t∗}t∈P together with colored edges

t∗ i→ s∗ (i ∈ I) if and only if s i→ t in P . A poset P is self-dual if P and P ∗ are isomorphic

as directed graphs.

For a directed graph (or poset) P , a rank function is a surjective function ρ : P −→

{0, . . . , l} (where l ≥ 0) with the property that if s → t in P , then ρ(s) + 1 = ρ(t). We

call l the length of P with respect to ρ, and the set ρ−1(i) is the ith rank of P . (Not every

directed graph, or even every poset, has a rank function, as rrr
r r

@@

��






J
J shows.) If a directed

graph P has a rank function ρ, the directed graph is the order diagram for some poset (in

which case we call P a ranked poset).

A ranked poset P is rank symmetric if |ρ−1(i)| = |ρ−1(l − i)| for 0 ≤ i ≤ l. A ranked

poset is rank unimodal if there is an m such that |ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(m)| ≥
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|ρ−1(m+ 1)| ≥ · · · ≥ |ρ−1(l)|. It is strongly Sperner if for every k ≥ 1, the largest union of

k antichains is no larger than the largest union of k ranks.

2.2 Lattices. The posets that are the main focus in this thesis are actually distributive

lattices. A lattice L is a poset in which any two elements x and y of L have a unique least

upper bound (called the join or sup of x and y, and denoted x ∨ y) and a unique greatest

lower bound (called the meet or inf of x and y, and denoted x ∧ y).

A distributive lattice L is a lattice in which the meets and joins satisfy the “distributive

laws”:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.

These technical conditions imply (among other things) that distributive lattices are built up

out of “diamonds” rr r r��

@@
@@

��
. It can be shown that any distributive lattice is a ranked poset.

Any totally ordered set is easily seen to be a distributive lattice. But perhaps the most

canonical example of a distributive lattice is the Boolean lattice Bn. As a set Bn consists

of all 2n subsets of the n-element set {1, 2, . . . , n}. The partial order is set containment.

The meet (respectively, join) of two elements in Bn is just their intersection (respectively,

union). By the well-known fact that set intersection distributes over set union, we see that

Bn is a distributive lattice. As an example, the Boolean lattice B3 is shown below in Figure

2.2.1. Note that the set B3 consists of the eight subsets of {1, 2, 3}.
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{1, 2, 3}

Figure 2.2.1 The Boolean Lattice B3

Proposition 2.2.2 The dual of a distributive lattice is distributive.

Proof. For any u, v in a distributive lattice, let u∗, v∗ be their respective vertices in

the dual of that distributive lattice. Note that u ∨ v = u∗ ∧ v∗ and u ∧ v = u∗ ∨ v∗. Then

for any x, y, z in the distributive lattice, x∧ (y ∨ z) = x∗ ∨ (y∗ ∧ z∗) and (x∧ y)∨ (x∧ z) =

(x∗ ∨ y∗) ∧ (x∗ ∨ z∗). Since we know that the left sides of those two equations are equal,

we can equate the right sides. Thus, x∗ ∨ (y∗ ∧ z∗) = (x∗ ∨ y∗) ∧ (x∗ ∨ z∗). Similarly,

x ∨ (y ∧ z) = x∗ ∧ (y∗ ∨ z∗) and (x ∨ y) ∧ (x ∨ z) = (x∗ ∧ y∗) ∨ (x∗ ∧ z∗). This means

that x∗ ∧ (y∗ ∨ z∗) = (x∗ ∧ y∗) ∨ (x∗ ∧ z∗). Thus, the dual of a distributive lattice is

distributive. 2

Lemma 2.2.3 Let Pi be a distributive lattice for each i (1 ≤ i ≤ k), and let L ⊆

P1 × · · · × Pk. Suppose L is closed under component-wise max and component-wise min.

(That is, for s = (s1, . . . , sk) and t = (t1, . . . , tk) in L, both (s1 ∨ t1, . . . , sk ∨ tk) and

(s1 ∧ t1, . . . , sk ∧ tk) are in L.) Then L is a distributive lattice.
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Proof. Let P1, . . . , Pk be distributive lattices and let L ⊆ P1 × · · · × Pk. Let s =

(s1, . . . , sk) ∈ L and t = (t1, . . . , tk) ∈ L. Set x := (s1 ∨ t1, . . . , sk ∨ tk) and y := (s1 ∧

t1, . . . , st ∧ tk). First, we need to show that x is the least upper bound (or sup) in L for s

and t, and that y is the greatest lower bound (or inf) in L for s and t.

To show that x is the least upper bound in L for s and t, we first need to show that x

is an upper bound of s and t. Since xi = si ∨ ti for i = 1, . . . , k, xi is an upper bound for s

and t in each coordinate i = 1, . . . , k. So x is an upper bound for s and t.

Now, we need to show that x is the least upper bound for s and t. Suppose w is an

upper bound of s and t in L. Since s ≤ w and t ≤ w (in component-wise ordering), we

see that si ≤ wi and ti ≤ wi for i = 1, . . . , k. Thus, si ∨ ti ≤ wi. But by the definition of

x, xi = si ∨ ti. Thus, xi ≤ wi for each i = 1, . . . , k. Hence, x is the least upper bound of s

and t in L. (A similar argument can be made to show that y = s∧ t = (s1 ∧ t1, . . . , sk ∧ tk)

is the greatest lower bound in L for s and t.) In particular, L is a lattice.

Finally, we need to show that for a, b, c ∈ L, a∨ (b∧ c) = (a∨ b)∧ (a∨ c) and a∧ (b∨ c) =

(a ∧ b) ∨ (a ∧ c). Let a = (a1, . . . , ak), b = (b1, . . . , bk), and c = (c1, . . . , ck). To show that

these distributive laws hold, we need to show that they hold in each coordinate ai, bi, and

ci for i = 1, . . . k. Since ai, bi, ci ∈ Pi (a distributive lattice), these equalities hold for each

i = 1, . . . k. Thus, they hold for a, b, c ∈ L. Therefore, L is a distributive lattice. 2



Chapter 3

Introduction to Lie Algebras and

Their Representations

3.1 Preliminaries. Much of the exposition in this chapter follows from [Hum], but our

goal is to present those aspects of the theory that are needed to understand the connections

between the combinatorial results of this thesis and the algebraic setting which gives context

to these results.

Abstractly, a Lie algebra is just a vector space equipped with a certain non-associative

multiplication. Lie algebras were originally invented in the late nineteenth and early twen-

tieth centuries to provide a purely algebraic tool for studying Lie groups and their represen-

tations. Lie algebras have since become objects of mathematical interest in their own right

because of close connections to other branches of mathematics including combinatorics, the

theory of finite simple groups, and knot theory. The goal of Lie algebra representation the-

ory is to see how Lie algebras arise as vector spaces of linear transformations. Concretely,

this just means we hope to identify each element of the Lie algebra with a matrix.

Definition 3.1.1 A vector space L over an arbitrary field F, with an operation

L × L → L defined by (x, y) 7→ [xy] and called the bracket or commutator of x and y, is

called a Lie algebra over F if it satisfies the following axioms:

(L1) The bracket is bilinear.
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(L2) [xx] = 0 for every x ∈ L.

(L3) [x[yz]] + [y[zx]] + [z[xy]] = 0 for every x, y, z ∈ L (Jacobi identity).

One very natural and familiar example of a Lie algebra is (R3,×); that is, the set of

vectors in Euclidean 3-space having the operation of cross product of vectors. One can

easily check that the cross product on R3 satisfies (L1), (L2), and (L3).

Let V be a complex, n-dimensional vector space. Consider the set End V (actually

a vector space) of all linear transformations V → V (they are all endomorphisms). For

x and y in End V, define the operation [x, y] = xy − yx, where the operation xy on the

right side of the equation just means composition of linear transformations. With this

bracket operation, the set of all linear transformations is a Lie algebra over C. Viewed as

a Lie algebra, the set of all linear transformations is called the general linear algebra and is

denoted by gl(V ). If we fix a basis for V, gl(V ) can be thought of as the set of all n × n

matrices with complex entries, denoted gl(n,C). Then the bracket operation on gl(n,C)

would be [S, T ] = ST − TS, where S, T are n × n matrices (and the product ST is just

matrix multiplication).

Definition 3.1.2 A subspace K of a Lie algebra L is a Lie subalgebra if K is closed

under the bracket operation. That is, we have [xy] ∈ K whenever x, y ∈ K.

In particular, if x ∈ K, then kx ∈ K for an arbitrary constant k and if x, y ∈ K, then

x + y ∈ K. Note also that K is a Lie algebra relative to the bracket operation inherited

from L. The definition and notion of a Lie subalgebra is analogous to that of a subgroup

in group theory and that of a subring in ring theory.
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3.2 The Classical Lie Algebras. There are four families of matrix algebras called

the classical algebras, and these are indexed by “type”: An(n ≥ 1), Bn(n ≥ 3), Cn(n ≥ 2),

and Dn(n ≥ 4). These are arguably the most important Lie algebras, so we will take some

time to describe each of these families.

Type An: Let V be an (n+ 1)-dimensional complex vector space. Let sl(n+ 1,C) denote

the set of all linear transformations V → V (endomorphisms) that have trace 0 or equiv-

alently, the set of all (n + 1) × (n + 1) matrices with zero trace. Recall that the trace of

a matrix, Tr(M), is the sum of all entries on the main diagonal of any matrix for T. Note

that for any matrices, S and T , Tr(ST ) = Tr(TS) and Tr(S) + Tr(T ) = Tr(S + T ). Note

also that sl(n + 1,C) is a vector subspace of gl(n + 1,C). Let S, T ∈ sl(n + 1,C). Then

Tr([S, T ]) = Tr(ST − TS) = Tr(ST ) − Tr(TS) = 0. Thus, sl(n + 1,C) is closed under

the bracket operation. Therefore, sl(n+ 1,C) is a Lie subalgebra of gl(n+ 1,C). This Lie

subalgebra is called the special linear algebra, and its dimension is (n+ 1)2 − 1.

Type Cn: Let dim V = 2n. Define the matrix B =

 0 In

−In 0

, where In is an n × n

identity matrix and 0 is an n× n zero matrix. Define a map f : V × V → R by f(v, w) =

vTBw. (Think of the vectors v and w as 2n × 1 column vectors.) Using the properties of

matrices, we can see that this is a bilinear map: f(u+v, w) = (u+v)TBw = (uT +vT )Bw =

uTBw + vTBw = f(u,w) + f(v, w) and f(kv, w) = (kv)TBw = kvTBw = kf(v, w), where

k is an arbitrary constant. The map f is linear in the second variable since f is also skew-

symmetric: f(v, w) = vTBw = −vTBTw = −vTBT (wT )T = −(wTBv)T = −wTBv =

−f(w, v). So f is a skew-symmetric, non-degenerate bilinear form on V .
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Define sp(2n,C) = {2n × 2n matrices X|f(X(v), w) = −f(v,X(w))}. Using the fact

that f(v, w) = vTBw, we can see that (Xv)TBw = −vTBXw, which means vTXTBw =

vT (−BX)w for all v, w , and it follows that XTB = −BX.

Lemma 3.2.1 sp(2n,C) is a Lie subalgebra of gl(2n,C).

Proof. We first need to check that sp(2n,C) is a vector subspace of gl(2n,C). Let

X,Y ∈ sp(2n,C), and let k be any complex constant. Consider kX. Then f(kX(v), w) =

(kX(v))TBw = kvTXTBw = kvT (−BX)w = −vTBkXw = −f(v, kX(w)). Thus, kX is in

sp(2n,C). Now, consider X + Y . Note that since X ∈ sp(2n,C), XTB = −BX and Y ∈

sp(2n,C) implies that Y TB = −BY . Then f((X +Y )(v), w) = [(X +Y )(v)]TBw = (Xv+

Y v)TBw = [(Xv)T + (Y v)T ]Bw = vTXTBw + vTY TBw = vT (−BX)w + vT (−BY )w =

−vTB(Xw + Y w) = −vTB(X + Y )(w) = −f(v, (X + Y )(w)), so X + Y is in sp(2n,C).

Thus, sp(2n,C) is a subspace of gl(2n,C).

Now, to finish showing sp(2n,C) is a subalgebra of gl(2n,C), we need to show that

it is closed under the bracket operation. That is, if X,Y ∈ sp(2n,C), then [XY ] =

XY −Y X ∈ sp(2n,C). Consider f((XY −Y X)(v), w) = [(XY −Y X)(v)]TBw = [XY v−

Y Xv]TBw = [(XY v)T − (Y Xv)T ]Bw = (vTY TXT − vTXTY T )Bw = vTY TXTBw −

vTXTY TBw = −vT (XTY TBw − Y TXTBw) = −vT (XT (−BY )w − Y T (−BX)w) =

−vT (BXY w − BYXw) = −vTB[XY w − Y Xw] = −vTB(XY − Y X)(w) = −f(v, (XY −

Y X)(w)). Thus, sp(2n,C) is closed under the bracket operation. Therefore, sp(2n,C) is a

Lie subalgebra of gl(2n,C). 2
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For X =

 M N

P Q

 (each block M,N,P,Q is an n × n matrix), we need to have

−BX = XTB. Recall that B =

 0 In

−In 0

. Consider

−BX = −

 0 In

−In 0


 M N

P Q

 = −

 P Q

−M −N

 =

 −P −Q

M N

 and

XTB =

 M N

P Q


T  0 In

−In 0

 =

 MT P T

NT QT


 0 In

−In 0

 =

 −P T MT

−QT NT

.

Now, equating these two matrices, we have that P = P T , −Q = MT , and N = NT .

Note that −Q = MT and M = −QT are equivalent conditions. See Appendix A for the C2

matrices.

Lemma 3.2.2 dim sp(2n,C) = 2n2 + n.

Proof. Let X =

 M N

P Q

 ∈ sp(2n,C). Above, we determined that the following rela-

tions must hold: P = P T ,−Q = MT , and N = NT . Consider the block P . Since the matrix

P is an n×n matrix, there are n choices on the diagonal. Now we can just consider the upper

triangular part of P for counting the remaining possible choices, since the lower triangular

part is determined because of the relation P = P T . In the upper triangular part, on the ith

row there are n− i choices. So there are (n− 1) + (n− 2) + · · ·+ (1) =
(
n
2

)
= n(n−1)

2 total

choices in the upper triangular part. This means that there are n+ n(n−1)
2 possible matrices

P . The basis for all such matrices P is {en+i,i}ni=1∪{en+i,j +en+j,i}i<j . Since the matrix N

has the same condition as P , the same counting arguments apply. So there are n+ n(n−1)
2

such matrices N . The basis for all such matrices N is {ei,n+i}ni=1 ∪{ej,n+i + ei,n+j}i<j . For



14

the blocks M and Q, they must satisfy −Q = MT or Q = −MT . There are no conditions

placed on the entries of M itself, so there are n2 possible matrices for block M . Once a ma-

trix M is chosen, Q is determined. Now counting up the total possible choices in the matrix

X, we have n+ n(n−1)
2 +n+ n(n−1)

2 +n2 = 2n+n(n− 1) +n2 = 2n+n2−n+n2 = 2n2 +n.

Thus, dim sp(2n,C) = 2n2 + n. 2

Type Bn: Let dim V = 2n + 1. Define the matrix B =


1 0 0

0 0 In

0 In 0

, where In is an

n× n identity matrix and all the other entries, except the (1, 1)-entry, are 0. As in the Cn

case, we define the bilinear form f by the rule f(v, w) = vTBw, for v, w ∈ V . Analogous to

the form for type Cn, this map is bilinear and symmetric.

Define so(2n+ 1,C) = {(2n+ 1)× (2n+ 1) matrices X|f(X(v), w) = −f(v,X(w))}, the

same requirement on X as for sp(2n,C). So we have the same equality, XTB = −BX.

Lemma 3.2.3 so(2n+ 1,C) is a Lie subalgebra of gl(2n+ 1,C).

Proof. This proof is analogous to the proof for the Cn case. 2

The algebra so(2n+1,C) is called the odd orthogonal algebra. For X =


R S1 S2

T1 M N

T2 P Q

,

we have XTB = −BX. Consider −BX = −


1 0 0

0 0 In

0 In 0




R S1 S2

T1 M N

T2 P Q

 =
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−


R S1 S2

T2 P Q

T1 M N

 =


−R −S1 −S2

−T2 −P −Q

−T1 −M −N

 andXTB =


R S1 S2

T1 M N

T2 P Q



T 
1 0 0

0 0 In

0 In 0

 =


RT T1

T T2
T

S1
T MT P T

S2
T NT QT




1 0 0

0 0 In

0 In 0

 =


RT T2

T T1
T

S1
T P T MT

S2
T QT NT

.

Then if we equate these two matrices, and thus their corresponding entries, we have

−R = RT ,−S1 = T2
T (equivalently, −T2 = S1

T ),−S2 = T1
T (equivalently, −T1 =

S2
T ),−P = P T ,−Q = MT (equivalently, QT = −M), and −N = NT . Since R is ac-

tually a 1×1 matrix (and thus, just a complex number), −R = RT implies that R = 0. See

Appendix A for the B2 matrices.

Lemma 3.2.4 dim so(2n+ 1,C) = 2n2 + n.

Proof. A similar counting argument to the one described in detail for the Cn case can

be applied. 2

Type Dn: Let dim V = 2n. Define the matrix B =

 0 In

In 0

, where In is an n × n

identity matrix. Define the map f as before, with f(v, w) = vTBw. Define so(2n,C) =

{2n× 2n matrices X|f(X(v), w) = −f(v,X(w))}.

Lemma 3.2.5 so(2n,C) is a Lie subalgebra of gl(2n,C).

Proof. This proof is analogous to the proof for the Cn case. 2
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The Lie algebra so(2n,C) is the even orthogonal algebra. For X =

 M N

P Q

, it must

also be true that XTB = −BX. So XTB =

 M N

P Q


T  0 In

In 0

 =

 MT P T

NT QT


 0 In

In 0

 =

 P T MT

QT NT

 and −BX = −

 0 In

In 0


 M N

P Q

 =

−

 P Q

M N

 =

 −P −Q

−M −N

.

By equating these matrices and their corresponding entries, we have P T = −P,MT =

−Q, and −N = NT .

Lemma 3.2.6 dim so(2n,C) = 2n2 − n.

Proof. A counting argument similar to the one described in detail in the Cn case can

be applied. 2

3.3 Ideals, Homomorphisms, and Classifications. As with other algebraic objects

(like finite groups, vector spaces, or rings), we would like to understand the substructures

of a given Lie algebra as well as homomorphisms between Lie algebras. We would also like

to know if it is possible to classify Lie algebras (or some large set of Lie algebras) in the

same way that finite simple groups have been classified, for example.

Definition 3.3.1 Let L1 and L2 be Lie algebras over C. A linear map ψ : L1 → L2

is a Lie algebra homomorphism if ψ([x, y]L1) = [ψ(x), ψ(y)]L2 .
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We can see that this definition is very analogous to that for group homomorphisms and

rings homomorphisms. The idea of a homomorphism is the same, but for Lie algebras, we

require that the map preserves the bracket operation.

Definition 3.3.2 A subspace I of a Lie algebra L is an ideal if [x, y] ∈ I, whenever

x ∈ L, y ∈ I.

Note that the axioms (L1) and (L2) in the definition of a Lie algebra imply that the

bracket operation is anticommutative; i.e., [x, y] = −[y, x]. Then for a Lie algebra ideal,

it would be equivalent to say that [y, x] ∈ I, whenever x ∈ L, y ∈ I. So an ideal of a Lie

algebra is analogous to a two-sided ideal of a ring.

In group theory, a normal subgroup arises as the kernel of some group homomorphism.

In ring theory, an ideal arises as the kernel of some ring homomorphism, and every kernel

is an ideal. The same is true for Lie algebras. For a Lie algebra L, I is an ideal of L

if and only if I is the kernel of some Lie algebra homomorphism. One can construct a

“factor Lie algebra” via the mapping L → L/I, in the same way we form a factor ring

R → R/I, or a factor group G → G/N . The usual homomorphism theorems apply to

quotients of Lie algebras. Table 3.3.4 compares and contrasts substructure relationships,

quotients, and classification results for finite groups, rings, finite dimensional vector spaces,

and Lie algebras.

A group that has no nontrivial normal subgroups is called a simple group. This inspires

the following definition for Lie algebras.

Definition 3.3.3 A Lie algebra L is simple if it has no nontrivial ideals.
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Table 3.3.4 Comparisons and Contrasts Between Algebraic Structures

Finite Groups Rings Finite dimensional

vector spaces

Lie algebras

subgroups subrings subalgebras

Substructure
normal subgroups two-sided

ideal

subspace ideal

Quotients G/N , N Normal R/I V/W L/I

Any finite abelian

group is isomor-

phic to Zn1×Zn2×

· · · × Znk
.

For each positive

integer n, there is

a unique (up to

isomorphism) vec-

tor space of dimen-

sion n.

The finite dimen-

sional simple Lie al-

gebras over C are of

types:

An, Bn, Cn, Dn (the

classical Lie alge-

bras)

Classification

All finite simple

groups have been

classified (in-

cluded in the list

are Zp (p prime)

and An(n ≥ 5)).

E6, E7, E8, F4, G2

(the exceptional

Lie algebras)
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If L is simple and finite dimensional, then [Hum] Section 10 tells us how to associate an

“irreducible root system” to L. An irreducible root system is a finite spanning set of vectors

that sit inside a Euclidean space. There is a certain symmetry to the arrangement of the

vectors, and there are rigid restrictions on the possible angles the vectors can make. In [Hum]

Chapter 3, Section 11, the irreducible root systems are classified, resulting in the following

(irredundant) list: An (n ≥ 1), Bn (n ≥ 3), Cn (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4, G2.

There is a one-to-one correspondence between irreducible root systems and the “Cartan

matrices” on page 59 of [Hum]. The number of rows in the Cartan matrix is called the

Lie rank of the simple Lie algebra. This procedure of associating a matrix to a simple Lie

algebra is due to Cartan and other late nineteenth century researchers in this field. Their

results can be summarized as follows:

Theorem 3.3.5 (Cartan’s Theorem)

(a) Cartan’s procedure associates a Cartan matrix M to each simple Lie algebra.

(b) Distinct simple Lie algebras have distinct Cartan matrices.

(c) The Cartan matrices are classified on page 59 of [Hum].

So the question remains: Is there a simple Lie algebra associated to any given Cartan

matrix on this list? A remarkable theorem due to Serre tells us how to start with a Cartan

matrix and build a simple Lie algebra from it. Let M be an n× n Cartan matrix from the

list on page 59 of [Hum]. Let {xi, yi, hi}ni=1 be a set of generators, and impose the following

relations:

(S1) [hihj ] = 0, (1 ≤ i, j ≤ n).

(S2) [xiyi] = hi, [xiyj ] = 0 if i 6= j.
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(S3) [hixj ] = mjixj , [hiyj ] = −mjiyj .

(S+
ij ) (adxi)−mji+1(xj) = 0, (i 6= j).

(S−ij ) (adyi)−mji+1(yj) = 0, (i 6= j).

The ad notation used in relations (S+
ij ) and (S−ij ) is used to represent repeated bracket

operations on the same object. For example, (ad xi)3(xj) = [xi[xi[xixj ]]]. Note that it is

known that mji is a non-positive integer for i 6= j.

Theorem 3.3.6 (Serre’s Theorem) Let M be a Cartan matrix and build a Lie

algebra L out of it in the manner prescribed above. Then the resulting Lie algebra L will be

(finite dimensional and) simple. Moreover, the Cartan matrix M ′ associated to this simple

Lie algebra by Cartan’s Theorem is the same as the matrix M here. Finally, the generators

{xi, yi, hi}ni=1 form a linearly independent (though not always spanning) set of vectors.

3.4 Representations. The next two definitions define the main algebraic objects we

will be interested in. After we define these objects, we will consider some examples and

then we will describe the connection to the combinatorial results of this thesis.

Definition 3.4.1 A representation of a Lie algebra L is a Lie algebra homomorphism

φ : L → gl(V ), whose target set is a general linear Lie algebra. If n=dim V and if we fix

a basis for V , we get a homomorphism φ : L → gl(n,C), which we refer to as a matrix

representation. We call n the dimension of the representation. For a matrix representation

φ : L → gl(n,C), if there exists a change of basis in the representation space so that the

representation matrices for the elements of L are all block diagonal and the corresponding

blocks are the same size, then φ is a reducible matrix representation. (We assume there

are at least two such blocks for each matrix, and that each is at least 1 × 1.) A matrix
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representation that is not reducible is said to be irreducible. (Notice, for example, that any

one-dimensional representation is irreducible.) So, a matrix representation is a mapping

that identifies each element of a Lie algebra with a matrix. The irreducible representations

of a Lie algebra literally form the building blocks for all other reducible representations.

Example 3.4.2 We will look at an example of a representation using the Lie algebra

A1, which is associated to the 1× 1 Cartan matrix [2]. Let A1 denote the Lie algebra with

generators x, y, h satisfying the relations [xy] = h, [hx] = 2x, and [hy] = −2y. Since these

generators are independent (cf. Serre’s Theorem), it suffices to say where the generators

are mapped when describing a representation.

Define a map φ : A1 → sl(2,C) by the following: x 7→ X =

 0 1

0 0

, y 7→ Y =

 0 0

1 0

, h 7→ H =

 1 0

0 −1

 and extend φ linearly. This linear map is well-defined

since x, y and h are independent.

To see that φ is indeed a homomorphism of Lie algebras, it suffices now to check that

X,Y,H ∈ sl(2,C) mirror the relations of x, y, h ∈ A1; that is, [XY ] = H, [HX] = 2X, and

[HY ] = −2Y . It is easy to check by hand that these relations do indeed hold, which means

that φ is a Lie algebra homomorphism.

Moreover, we would like to show that φ maps A1 onto sl(2,C). Recall that sl(2,C) is

the set of 2× 2 matrices, with complex entries, having trace 0. Consider any such matrix, c a

b −c

. Note that

 c a

b −c

 can be written as the linear combination aX + bY + cH.

So X,Y,H span sl(2,C). Since φ takes x, y, h to X,Y,H, respectively, we also have that
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any matrix in sl(2,C) can be written as the image of a linear combination of x, y, h. Thus,

φ maps A1 onto sl(2,C).

By applying Serre’s Theorem, we have that A1 is simple. Since A1 is a simple Lie

algebra, it has no nontrivial ideals. So the only possible ideals of A1 are A1 and {0}. Then

ker φ = A1 or ker φ = {0}. If ker φ = A1, that would mean that every element in A1

gets mapped to the zero element in sl(2,C). We know that φ is onto and that sl(2,C) is

3-dimensional, so every element in A1 cannot be mapped to only one element in sl(2,C).

So ker φ 6= A1. Thus, ker φ = {0}, which means φ is injective, making φ an isomorphism.

Note that the diagonal entries for X,Y are the respective eigenvalues for each matrix,

since they are both triangular. Therefore, if there were a change of basis that would make

X,Y into a block matrices, it would make them both into the zero matrix. We know that

X,Y cannot be zero matrices since they do not annihilate all column vectors. Since there

is not a change of basis that would make X,Y into block diagonal matrices, we conclude

that φ : A1 → sl(2,C) is an irreducible representation. 2

Example 3.4.3 Let us now consider representations of A1 in gl(4,C). Consider the

mapping θ : A1 → gl(4,C) defined by the following: x 7→ X =



0 3 0 0

0 0 2 0

0 0 0 1

0 0 0 0


, y 7→ Y =
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

0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0


, and h 7→ H =



3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


. For reasons similar to those given for

φ : A1 → sl(2,C), this representation is irreducible. This is not the only representation of

A1 in gl(4,C), however.

Define a mapping ψ : A1 → gl(4,C) by x 7→ X =



0 0 0 0

1
2 0 −3

2 0

0 0 0 0

−1 0 1 0


, y 7→ Y =



−2 −1 3 −3
2

5
2 2 −3

2
3
2

−1 −1 0 −1
2

−1 −2 −3 0


, and h 7→ H =



−1 0 0 0

1 1 3 0

0 0 −1 0

2 0 −6 1


.

Is this representation also irreducible? If we apply the change of basis matrix P =

0 1
2 0 −1

−1
2 −1 −1

2
1
2

0 1
2 0 0

0 1 1 1


to each of X,Y,H, we have the following results: X → XP =
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

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


, Y → YP =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


, and H → HP =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


. (Recall

that the change of basis is done by multiplying the matrices in this manner: P−1XP =

XP .) Clearly, XP , YP , and HP are block diagonal matrices. Therefore, the representation

ψ : A1 → gl(4,C) is reducible. 2

3.5 Weights. Given a representation φ : L → gl(V ), where L is a simple Lie algebra

and V is a complex n-dimensional vector space, it is a nontrivial major result that there

is a basis {v1, v2, . . . , vd} for V consisting of eigenvectors for the H ′is; i.e., Hi.vt = m
(t)
i vt,

where m(t)
i is a constant. This means that each Hi is a diagonal matrix with respect to the

basis {v1, v2, . . . , vd}. Such a basis is called a weight basis. The weight of the basis vector vt

is (m(t)
1 ,m

(t)
2 , . . . ,m

(t)
n ), which is an n-tuple of numbers, possibly complex. It can be shown

that each of these eigenvalues m(t)
i is actually an integer.

Thus, each weight is an n-tuple of eigenvalues, and there is one eigenvalue for each

operator Hi. To say that a vector v has weight µ = (m1,m2, . . . ,mn), then, is to say that

when Hi acts on the vector v, it simply multiplies it by the scalar mi. So a vector of weight

µ is really just an eigenvector common to all of the Hi’s, and a weight could be thought of

as a “generalized eigenvalue.”

Given a representation φ : L → gl(V ) of a simple Lie algebra L, the set of all vectors in

the representing space V with the same weight µ forms a vector subspace of V . The dimen-

sion of this subspace is called the weight number dV (µ). Since the sum of the dimensions of
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all such subspaces must equal the (finite) dimension of V , there can only be a finite number

of weights that have any associated nonzero weight vectors.

For a simple Lie algebra L of rank n, let λ = (a1, a2, . . . , an) be a shape for L (i.e.

ai is a non-negative integer, and λ has ai columns of length i). There is an irreducible

representation “corresponding to” λ, which we will call L(λ). That is, there is a map

φλ : L → gl(L(λ)), but for brevity we will often just refer to this representation by referring

to the representing space L(λ). The dimension numbers for L(λ) are denoted dλ(µ). There

is a beautiful formula that can be used to compute the dimension of L(λ), which is called

the Weyl dimension formula (see [Hum] Chapter 24, Section 3). This formula is expressed

as a quotient of products.

One remarkable thing is that the weights for an irreducible representation of a simple

Lie algebra can all be determined without ever having a basis in hand, and the correspond-

ing weight numbers can be determined by a formula (called the Freudenthal’s multiplicity

formula).



Chapter 4

Connection to Combinatorics

One of our goals is to find an appropriate combinatorial setting for constructing and

understanding representations. One approach is as follows.

4.1 Supporting Graphs and Representations. Begin with a simple Lie algebra

L and a representation φ : L → gl(V ) with weight basis {vt}t∈P . (Here P is just an index

set, e.g., the integers {1, 2, . . . , α}.) From this, we will build a picture, which will be an

edge-colored directed graph.

Each basis vector vt will be a vertex in the picture associated with the representation.

We will place colored, directed edges between these vertices as follows:

(1) for a basis vector vs, if Xi.vs = u =
∑
r∈P

cr,svr with ct,s 6= 0, place an edge color i

from vs to vt; i.e., vs
i→ vt.

(2) for a basis vector vt, if Yi.vt = w =
∑
r∈P

cr,tvr with cs,t 6= 0, place an edge color i

from vt to vs; i.e., vt
i→ vs.

Now attach the two coefficients cs,t and ct,s to the edge vs
i→ vt. Note that the coefficient

ct,s (the “X-coefficient”) is attached to the up direction and the coefficient cs,t (the “Y -

coefficient) is attached to the down direction of the edge between the vertices vs and vt.

The resulting picture (an edge colored directed graph with the coefficients attached to each

edge) is called a representation diagram for the representation φ : L → gl(V ) with weight
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basis {vt}. If we remove the edge coefficients, the underlying edge-colored directed graph

is called a supporting graph for the representation φ : L → gl(V ).

Example 4.1.1 We will now construct a representation diagram for each of the

representations for A1 presented in Example 3.4.3. The definition above suggests we should

start by looking at the matrices for X and Y , and then use them as “instructions” for

building the pictures. We will actually work in the reverse direction: we will start with

some pictures and then attach coefficients in order to obtain matrices for X and Y . For

both of the representations given, the weight basis is {e1, e2, e3, e4}. Using these basis

vectors as vertices, we will look at two different supporting graphs:

s

s

s

s

s

s

s

s

e4

e3

e2

e1

e2

e1

e4

e3

On chains, it is known that for the “X-coefficients”, we can start at one on the bottom

edge and number each edge in increments of one as we go up the chain. For the “Y -

coefficients”, we then number the top edge directed down as one and number each “down-

directed” edge in increments of one as we move down the chain. So for our two sets of

vertices and edges, we now have:



28

s

s

s

s

s

s

s

s

6

6

6

?

?

?

e4

e3

e2

e1

1

2

3

3

2

1

6 6

? ?

e2

e1

e4

e3

11 11

To determine matrices for X and Y from these representation diagrams, recall that X.ei

is the ith column in the X-matrix (similarly, for Y ). For the matrix H, we use the relation

H = XY − Y X. Doing this, we see that

s

s

s

s

6

6

6

?

?

?

e4

e3

e2

e1

1

2

3

3

2

1

is just a representation diagram for the representation θ : A1 → gl(4,C) described in

Example 3.4.3. Similarly, one can see that
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s

s

s

s
6 6

? ?

e2

e1

e4

e3

11 1 1

is a representation diagram for the representation ψ : A1 → gl(4,C). 2

How can we produce good candidates for representation diagrams for irreducible rep-

resentations L(λ) of a simple Lie algebra L? There are certain conditions that must be

satisfied by any representation diagram, so these conditions limit the scope of our search

somewhat. Let P be an edge-colored ranked poset with edge colors from {1, . . . , n}. (Here,

n is the Lie rank of the Lie algebra–not to be confused with poset rank–which corresponds

to the number of x, y, and h generators for L.) Attach two coefficients (denoted ct,s and

cs,t) to each s i→ t in P . For any t in P , let li(t) denote the length of the i-component

containing t, and let ρi(t) be the rank of t within this i-component. For any t ∈ P , let the

weight of t be the n-tuple wtP (t) = (2ρ1(t) − l1(t), . . . , 2ρn(t) − ln(t)). We call this the

“combinatorial weight rule” for P . Let V [P ] be the complex vector space with basis vectors

{vt}t∈P , and for 1 ≤ i ≤ n define linear maps Xi and Yi on V [P ] by Xi.vs =
∑

t:s
i→t

ct,svs

and Yi.vt =
∑

s:s
i→t

ct,svt and set Hi = XiYi − YiXi. The proof of the following proposition

can be found in [Don].

Proposition 4.1.2 Keeping the notation of the previous paragraph, suppose that

(1) XiYj = YjXi (equivalently, [XiYj ] = 0) for i 6= j;

(2) Hi.vt = (2ρi(t)− li(t))vt for 1 ≤ i ≤ n and for each t ∈ P (that is, [XiYi] = Hi);

and
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(3) for 1 ≤ i ≤ n, we have 2ρi(s)− li(s) +mji = 2ρi(t)− li(t) whenever s
j−→ t with

i 6= j.

Then the linear map φ : L → gl(V [P ]) determined by xi 7→ Xi, yi 7→ Yi, and hi 7→ Hi is a

representation of L, and P is a representation diagram for φ.

4.2 Identifying Supporting Graphs. Next we ask: How can we identify supporting

graphs for an irreducible representation? For any irreducible representation, one can see

that for L(λ), there is at least one and at most a finite number of supporting graphs. See

[Don] for the proof of the following proposition.

Proposition 4.2.1 Any supporting graph P for the irreducible representation L(λ)

must satisfy the following three necessary conditions:

(1) The number of vertices of P is equal to the dimension of the representation L(λ).

(2) The picture P is a rank symmetric, rank unimodal, and strongly Sperner poset.

(3) The combinatorial weight rule for P , denoted wtP , is well-defined; i.e., for any

weight µ, we have that the weight number dλ(µ) = |{t ∈ P : wtP (t) = µ}|.

It is important to remember that these conditions for a support P are necessary, but

are not sufficient for proving that a graph is a support. In addition, it can be shown that

P must have a1r1 + · · · + anrn + 1 ranks, where ri is the length of any supporting graph

for the fundamental representation L(λi) (where λi = (0, . . . , ai, . . . , 0) and ai = 1). The

numbers ri are easily computed for each simple Lie algebra λ. In fact, it can be shown that

ri is twice the sum of the entries in the ith row of the inverse of the Cartan matrix for L.



Chapter 5

The Lie Algebra A2

The Lie algebra A2 is the simple Lie algebra whose Cartan matrix is

 2 −1

−1 2

.

Since A2 is a “rank two” Lie algebra (it has two x’s, two y’s, and two h’s in its generating

set), a shape for A2 has the form λ = (a, b), where a is the number of columns in λ that

have only one box and b is the number of columns in λ with two boxes. It is known

by the Weyl dimension formula that the dimension of the representing space for A2(λ) is

1
2(a+ 1)(b+ 1)(a+ b+ 2) (see [Hum] p. 140). It follows that this is the number of vertices

in any supporting graph for A2(λ).

There are two distinguished families of representation diagrams for the Lie algebra A2.

We will present combinatorial objects from which the pictures can be constructed, we will

say how the objects are ordered and how the edges are colored. We will also investigate the

combinatorics of the associated supporting graphs.

Actually, these supports are just as easy to describe for An, where n ≥ 1, so we will be

working in the general rank n case at the outset. Later in this section, and in all of our

examples, we will specialize to the case n = 2. We call the supporting graphs underlying

these representation diagrams Gelfand-Tsetlin supports because it can be proved that they

are supporting graphs for the Gelfand-Tsetlin bases for the irreducible representations An(λ)

(see [Don]). The Gelfand-Tsetlin bases were first produced in 1950 [GT], but have been
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reproduced many times (e.g. [Mol2]). For examples of the Gelfand-Tsetlin supports for

A2(λ) with λ = (2, 1), see Figure B.1 in Appendix B.

5.1 Family 1 of Gelfand-Tsetlin Supports for A2(λ). The vertices for one of

these pictures will be the semi-standard tableaux of shape λ = (a1, a2, . . . , an), where ai is

the number of columns of length i boxes. A tableau of shape λ is a filling of the boxes of λ

with entries from the set {1, 2, . . . n+ 1}. A tableau t is semi-standard if the entries weakly

increase left to right across rows of t, and if the entries strictly increase down the columns

of t.

To build a picture out of these objects, we order them by “reverse component-wise

comparison”. Thus, for example,
3
1 2 is less than

2
1 1 in this partial order on semi-

standard tableaux of shape λ = (1, 1). Now let s and t be semi-standard tableaux of shape

λ, and suppose t covers s in this partial order. We attach the color i to the edge s → t,

and we write s i−→ t, if an entry in s is changed from an i+ 1 to an i to form t. We denote

the resulting edge-colored directed graphs by LGT−leftA (n, λ).

Theorem 5.1.1 LGT−leftA (n, λ) is (the order diagram for) a distributive lattice.

Proof. For S, T ∈ LGT−leftA (n, λ), let min(S, T ) denote the component-wise max of

S, T (since we order LGT−leftA (n, λ) by reverse component-wise comparison). That is, the

(i, j)-entry of min(S, T ) is si,j ∨ ti,j (where si,j , ti,j is the i, jth entry of S, T , respectively)

for every i, j in shape λ. There are three things about min(S, T ) that need to be checked:

(1)min(S, T ) is a semi-standard tableau, (2) that min(S, T ) ≤ S and min(S, T ) ≤ T , and

(3) if R ≤ S,R ≤ T , then R ≤ min(S, T ). If so, we can write min(S, T ) = S ∧ T .
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(1) Let Q = min(S, T ). Consider the entry qi,j ∈ Q. Then qi,j ≥ si,j and qi,j ≥ ti,j . Also,

qi,j+1 ≥ si,j+1 and qi,j+1 ≥ ti,j+1. Then, since S, T are semi-standard tableaux, si,j+1 ≥ si,j

and ti,j+1 ≥ ti,j . Note that si,j+1 ≥ qi,j and ti,j+1 ≥ qi,j . Thus, qi,j+1 ≥ si,j+1 ≥ qi,j and

qi,j+1 ≥ ti,j+1 ≥ qi,j . Hence, qi,j+1 ≥ qi,j for every i, j.

Now consider entry qi+1,j . By definition of Q, qi+1,j ≥ si+1,j and qi+1,j ≥ ti+1,j . Note

that si+1,j > si,j and ti+1,j > ti,j . Then note that si+1,j > qi,j and ti+1,j > qi,j . So

qi+1,j ≥ si+1,j > qi,j and qi+1,j ≥ ti+1,j > ti,j . Thus, qi+1,j > qi,j for all i, j. Therefore,

Q = min(S, T ) is a semi-standard tableau. By the way Q is defined (in terms of component-

wise maximums of S, T ), we have that Q ∈ LGT−leftA (n, λ).

(2) Since Q = min(S, T ) and qi,j = max(si,j , ti,j) for every i, jth entry of λ, qi,j ≥ si,j

and qi,j ≥ ti,j for every i, j. Then in the reverse component-wise comparison ordering on

LGT−leftA (n, λ), Q ≤ S and Q ≤ T .

(3) Suppose R ≤ S and R ≤ T . Then ri,j ≥ si,j and ri,j ≥ ti,j since this is ordered by

reverse component-wise comparison. So ri,j ≥ max(si,j , ti,j) = qi,j . Thus, R ≤ min(S, T ).

A similar argument for S ∨ T can be done for the three analogous criteria. Therefore,

LGT−leftA (n, λ) is a distributive lattice. 2

Corollary 5.1.2 LGT−leftA (2, λ) is a distributive lattice. 2

For a proof of the following theorem and more on the history of these lattices, see [Don]

and the references therein.

Theorem 5.1.3 LGT−leftA (n, λ) is a supporting graph for the irreducible representation

An(λ).
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Corollary 5.1.4 LGT−leftA (2, λ) is a supporting graph for the irreducible representation

of A2(λ).

5.2 Family 2 of Gelfand-Tsetlin Supports for A2(λ). For the second family

of lattices in the Lie algebra An, we have two versions. The first version is constructed

directly from LGT−leftA (n, λ). The second version is built independently of LGT−leftA (n, λ),

but it is related to that family of lattices and the method of building them is similar to the

one for the first family of Gelfand-Tsetlin lattices.

Version 1: One way to construct the second family of lattices for An is to take the poset

dual of LGT−leftA (n, λ) and then recolor the edges by switching the colors on all edges (i.e.,

change all edges of color 1 to color n, color 2 to color n− 1, etc.). We will call this family

of lattices LGT−rightA (n, λ).

Alternatively, we can use the same objects (the semi-standard tableaux of shape λ with

entries from the set {1, 2, . . . n + 1}) that were used in the first family of lattices, order

them by component-wise comparison and color the edges according to the following rule: if

a vertex t is obtained from a vertex s by changing an (i + 1)-entry to an i, then place an

edge of color (n+ 1− i) between them.

For a particular λ, it is not hard to see that each of these methods will produce the

same lattice LGT−rightA (n, λ).

Version 2: For the second version of the second family of Gelfand-Tsetlin supports for the

Lie algebra An, the objects are semi-standard tableaux of shape λsym = (an, an−1, . . . , a1) .

The tableaux λsym are filled with entries from the set {1, 2, . . . , n+ 1}, so that they satisfy
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the semi-standard condition. To construct the lattice from these tableaux, we order them

by reverse component-wise comparison and color the edges according to the following rule:

if t is obtained from s by changing an i+ 1 to an i, then place an edge of color (n+ 1− i)

between them. We will call this version KGT−right
A (n, λ).

Theorem 5.2.1 For the second family of Gelfand-Tsetlin supports in the An case,

version one and version two produce the same (edge-colored) distributive lattice.

Proof. For a shape λ, take the dual of the LGT−leftA (n, λ) lattice. Since LGT−leftA (n, λ)

is distributive, the dual LGT−rightA (n, λ) is also distributive, by Proposition 2.2.2 . (We

disregard edge colors here.) Now we need to establish a bijection between the two versions.

For t in LGT−rightA (n, λ), extend the shape down so that there are n + 1 rows in each

column that is in λ. Fill the empty boxes of each column in the new shape with numbers

from {1, 2, . . . , n + 1} \ {m|m is in the filling of that column in t}. Then each column in

the “extended shape” has each of 1, 2, . . . , n + 1, and the extended part of the new shape

strictly decreases down the columns and weakly decreases across the rows from left to right.

Remove t from the new shape and rotate the newly filled part 180◦. Call this t′. (See

Example 5.2.2 below.) The mapping φ : LGT−rightA (n, λ) → KGT−right
A (n, λ), which takes

each vertex t to the vertex t′ in the dual, is a clear bijection. Thus, for any shape λ, version

one and version two produce the same distributive lattice in the second family of the A2

lattices. 2

Example 5.2.2 Consider LGT−rightA (2, λ) (version one), where λ = (2, 1). Let t =

3
1 2 3

. Then the mapping φ in the proof of Theorem 5.2.1 acts as follows:
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t = 3
1 2 3

→
3
1 2 3

→
3
1 2 3

3 2
2 1 1 → 2 1 1

3 2

→ 2
1 1

3
2

= t′.

Note that t has shape λ = (2, 1) and t′ has shape λsym = (1, 2), and that t′ is an element

of the set of KGT−right
A (2, λ). 2



Chapter 6

The Lie Algebra G2

We would like to find supporting graphs for irreducible representations of G2 that are

analogous to the supports we presented for A2. Ideally, we would like to find distributive

lattice supports that can be built easily from tableaux. We have some partial results

in this direction. We have found one family of distributive lattices (cf. Theorem 6.2.2

below) analogous to LGT−leftA (2, λ) that are good candidates for supporting graphs for the

irreducible representations of G2 (cf. Conjecture 6.2.3 below). It remains an open problem

to find a second family of distributive lattices for G2 that will be analogous to the lattices

LGT−rightA (2, λ). (However, recent work of Donnelly, Lewis, and Pervine can be used to

show that certain lattices defined by Reiner and Stanton in [RS] actually become supporting

graphs for the irreducible representations G2(λ) where λ = (a, 0). These supporting graphs

are distributive lattices distinct from those presented here.)

The Lie algebra G2 has Cartan matrix

 2 −1

−3 2

. It is a rank 2 Lie algebra, so a

shape for G2 has the form λ = (a, b), where a is the number of columns of λ with one box

and b is the number of columns of λ with two boxes. If a picture P is a support for the

representation G2(λ), where λ = (a, b), we know from the Weyl dimension formula (see

[Hum], p. 140) that P will have

1
5!(a+ 1)(b+ 1)(a+ b+ 2)(a+ 3b+ 4)(2a+ 3b+ 5)

vertices.
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6.1 Lattices from Littelmann’s 6 × λ tableaux. Littelmann produced a set of

objects with the right number of elements, and he produced a weight rule for these objects.

To form one of Littelmann’s objects, each column in the shape λ should be thought of

as a “block” of six columns. These “expanded” blocks are then filled with numbers from

the set {1, 2, 3, 4, 5, 6}, so that the semi-standard condition (weakly increasing across rows,

strictly increasing down columns) is satisfied. Also, with his construction, only certain

fillings of these six-column blocks are “admissible”. The set of admissible blocks can be

found in [Lit], page 348-9 (reflected through the line y = −x) and are reproduced here

in Figure B.2 in Appendix B. (An example of an admissible tableau for shape λ = (1, 1)

is
1 1 2 3 3 3
3 3 4 5 5 5

3 3 3 4 4 4

.) We will call the set of admissible blocks for a shape λ,

“Littelmann’s 6×λ tableaux.” We order Littelmann’s 6×λ tableaux by reverse component-

wise comparison. We will call the poset of Littelmann’s tableaux KLit
G (2, 6×λ). See Figure

B.2 in Appendix B for the order diagram for KLit
G (2, 6× ) and Figure B.3 for the order

diagram for KLit
G (2, 6× ) .

Observation 6.1.1 Suppose that r, s, and t are “expanded” blocks from KLit
G (2, 6× )

or KLit
G (2, 6× ) . Suppose that semi-standardness allows s to follow r (so, of course, if r

appears in KLit
G (2, 6× ) we cannot have s appearing in KLit

G (2, 6× ) ). Suppose further

that s ≤ t (in particular, we assume s and t appear in the same picture KLit
G (2, 6× ) or

KLit
G (2, 6× ) ). Then semi-standardness allows t to follow r. 2

For his set of tableaux, Littelmann formulated a “well-defined” weight rule wtLit based

on the entries of the blocks. That is, the number of Littelmann’s 6×λ tableaux with weight

µ is equal to the weight number dλ(µ). Define ci(t) to be the number of entries of i in one
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of these extended blocks. Now define Littelmann’s weight rule for a block t in his set of

tableaux to be

wtLit(t) = (1
6 [c1(t)− c2(t) + 2c3(t)− 2c4(t) + c5(t)− c6(t)], 1

6 [c2(t)− c3(t) + c4(t)− c5(t)]).

We have computed the weights for the tableaux in KLit
G (2, 6× ) and KLit

G (2, 6× )

in Figure B.2 and Figure B.3. For any shape λ for G2 and any t ∈ KLit
G (2, 6 × λ) , we

may write t = (t1, . . . , tk), where each ti corresponds to one of the “expanded” blocks of 6

columns which form the tableau t. (Here, k is the number of such blocks, or equivalently,

the number of columns in the shape λ.)

Lemma 6.1.2 Littelmann’s weight rule is “additive”. That is, in the notation of

the preceding paragraph, if t = (t1, . . . , tk) ∈ KLit
G (2, 6 × λ) for some shape λ for G2, then

wtLit(t) = wtLit(t1) + · · ·+ wtLit(tk).

Proof. Let c : KLit
G (2, 6× λ) → Z6 be the function defined by c(t) = (c1(t), . . . , c6(t)).

Clearly, the function c is additive, so c(t) = c(t1) + · · ·+ c(tk). Now let φ : Z6 → Z2 be the

function given by

φ(a1, . . . , a6) = (1
6 [a1 − a2 + 2a3 − 2a4 + a5 − a6], 1

6 [a2 − a3 + a4 − a5]).

Observe that φ is Z-linear. Then we see that

wtLit(t) = φ(c(t)) = φ(c(t1) + · · ·+ c(tk))

= φ(c(t1)) + · · ·+ φ(c(tk))

= wtLit(t1) + · · ·+ wtLit(tk).

2
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Remark 6.1.3 We know that wtLit is integer-valued (despite the appearance of the

fraction 1
6) because weights are vectors with integer coordinates, and Littelmann’s weight

rule is well-defined. This fact can also be deduced from the previous result together with

the observation that wtLit is integer-valued when t ∈ KLit
G (2, 6× ) or KLit

G (2, 6× ) . 2

Now let s = (s1, . . . , sk) and t = (t1, . . . , tk) ∈ KLit
G (2, 6 × λ) , where sl and tl are in

KLit
G (2, 6× ) or KLit

G (2, 6× ) . If sl = tl for l 6= j with sj → tj , then one can easily see

that s→ t in KLit
G (2, 6×λ) . Conversely, suppose that s→ t in KLit

G (2, 6×λ) . Now clearly

sl ≤ tl for 1 ≤ l ≤ k. Let j be the smallest index for which sj < tj . Suppose now that there

is another l1 > j such that sl1 < tl1 . Construct a tableau u by setting ul = sl for l < l1 and

ul = tl for l ≥ l1. Does semi-standardness allow tl1 to follow sl1−1? Yes, by Observation

6.1.1. Thus, u ∈ KLit
G (2, 6 × λ) and s < u < t. This contradicts the fact that s → t, so

it must be the case that sj+1 = tj+1, . . . , sk = tk. Next, we claim that sj → tj . If not, let

sj < uj < tj . Then construct a tableau u by ul = sl = tl for l 6= j. Does semi-standardness

allow uj to follow sj−1, and tj+1 to follow uj? Yes, again by Observation 6.1.1. Then we

see that s < u < t in KLit
G (2, 6 × λ) , which contradicts our assumption that s → t. We

summarize this in the following lemma:

Lemma 6.1.4 Let s = (s1, . . . , sk) and t = (t1, . . . , tk) be in KLit
G (2, 6 × λ) , where

each sl and tl is in KLit
G (2, 6× ) or KLit

G (2, 6× ) . Then s→ t in KLit
G (2, 6× λ) if and

only if sl = tl for l 6= j with sj → tj.

One can check by hand in the pictures KLit
G (2, 6× ) and KLit

G (2, 6× ) , if s→ t, then

wtLit(s) + αi = wtLit(t), where αi is the ith row of the Cartan matrix

 2 −1

−3 2

 for G2

(so i = 1 or i = 2). We have depicted this in Figures B.2 and B.3 by placing the “colors”
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1 and 2 on the edges of KLit
G (2, 6× ) and KLit

G (2, 6× ) . In light of Lemma 6.1.4 above,

we get that if s→ t in KLit
G (2, 6× λ) , then wtLit + αi = wtLit(t) for i = 1 or i = 2. So we

make the following definition.

Definition 6.1.5 Let s and t be in KLit
G (2, 6× λ) , and suppose s→ t. Then we give

this edge color i(i = 1 or i = 2) if wtLit(s) + αi = wtLit(t), where αi is the ith row of the

Cartan matrix for G2,

 2 −1

−3 2

.

6.2 Lattices from Littelmann’s G2 tableaux of shape λ. Littelmann’s expanded

blocks are a bit cumbersome to work with on bigger shapes. We would like to translate his

objects into tableaux analogous to the A2 case, where λ is the actual shape of the tableaux.

Figure B.4 shows the translation of Littelmann’s 6 × λ tableaux into what we will call

“Littelmann’s G2 tableaux of shape λ” when the shape λ is a single column.

By inspection, one can check (by comparing Figures B.2 and B.3 to Figure B.4) that

the semi-standard condition which determines when an “expanded” block s can be followed

by another “expanded” block t results in the restrictions on our “translated” tableaux

recorded in Table B.5. Then, given a shape λ for G2, a Littelmann G2 tableau t of shape

λ is a semi-standard filling of the boxes of λ with entries from {1, 2, 3, 4, 5, 6, 7} so that the

columns of t come from Figure B.4 and successive columns in t satisfy the restrictions of

Table B.5. So our example tableau for λ = (1, 1) from page 38 becomes
1

6

4

.

To construct the order diagram of these tableaux, we order them by reverse component-

wise comparison. We will call the poset constructed from these tableaux LLitG (2, λ).
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An edge in LLitG (2, λ) gets the same color as the corresponding edge in KLit
G (2, 6 × λ) .

But now if we take advantage of Lemma 6.1.4, we see that the rule for coloring the edges

of LLitG (2, λ) is greatly simplified. For s, t ∈ LLitG (2, λ) and s→ t:

(1) If an entry of s changes from a 3 to a 2 or from a 6 to a 5 to form t, we give the

edge s→ t color 2,

(2) For any other change in an entry of s to form t, we give the edge s→ t color 1.

Lemma 6.2.1 LLitG (2, ), LLitG (2, ), and LLitG (2, ) are distributive lattices.

(Here, the order is reverse component-wise comparison.)

Proof. The lemma was verified using Stembridge’s poset package for Maple. (See

[Stem].) It is possible to confirm this by hand by applying the Fundamental Theorem of

Finite Distributive Lattices (see [Sta]). Begin by identifying the “poset of join irreducibles”

in each case, and then checking that the distributive lattice of order ideals for each poset

of join irreducibles gives you back the picture with which you started. 2

Theorem 6.2.2 LLitG (2, λ) is a distributive lattice for any shape λ.

Proof. Let λ = (a, b) be a shape with a columns of length one box and b columns

of length two boxes. Let P1 = P2 = · · · = Pb = LLitG (2, ). Let Pb+1 = Pb+2 = · · · =

Pb+a = LLitG (2, ). Then LLitG (2, λ) ⊆ P1 × P2 × · · · × Pa+b. Then for t ∈ LLitG (2, λ), let

t = (t1, . . . , ta+b), where ti is the ith column of t. Let s be another tableau in LLitG (2, λ),

and write s = (s1, . . . , sa+b). In particular, (si, si+1) and (ti, ti+1) (for 1 ≤ i ≤ a + b − 1)

are in LLitG (2, µ), where µ = , , or .

Then, by the previous lemma, we have that (si ∨ ti, si+1 ∨ ti+1) ∈ LLitG (2, µ) and (si ∧

ti, si+1 ∧ ti+1) ∈ LLitG (2, µ), for 1 ≤ i ≤ a + b − 1 and µ = , , or . Therefore,
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(s1∨ t1, s2∨ t2, . . . , sa+b∨ ta+b) ∈ LLitG (2, λ) and (s1∧ t1, s2∧ t2, . . . , sa+b∧ ta+b) ∈ LLitG (2, λ).

So LLitG (2, λ) is closed under the component-wise max and component-wise min operations.

By Lemma 2.2.3, LLitG (2, λ) is a distributive lattice for any shape λ. 2

Conjecture 6.2.3 LLitG (2, λ) is a support for G2(λ).

We will look at some theorems, their implications, and other evidence that will provide

some support for this conjecture. Since the Littelmann G2 tableaux of shape λ are in one

to one correspondence with Littelmann’s 6× λ tableaux, from [Lit] we get:

Theorem 6.2.4 (Littelmann) The number of vertices in LLitG (2, λ) is equal to the

dimension of G2(λ).

We say a tableau t in LLitG (2, λ) is i-maximal (respectively, i-minimal) if it is a maximal

(respectively, minimal) element of the i-component that contains it. The next proposition

allows us to easily locate the i-maximal and i-minimal elements of LLitG (2, λ) .

Proposition 6.2.5 Let t be i-maximal in LLitG (2, λ) . Then each column of t is i-

maximal in LLitG (2, ) or LLitG (2, ) . Similarly, when s is i-minimal in LLitG (2, λ) , then

each column of s is i-minimal in LLitG (2, ) or LLitG (2, ) .

Proof. Let t be any tableau in LLitG (2, λ) , where λ = (a, b). Write t = (t1, . . . , ta+b).

We will first consider the maximal case. Suppose that t1, . . . , tj−1 are all i-maximal in

LLitG (2, ) or LLitG (2, ) (that is, they are all at the top of their respective i-components).

If the column tj is not i-maximal, we want to show that it can be made i-maximal.

First, we need to consider the possible fillings of the column tj−1. By supposition, tj−1

is i-maximal, so the set of possibilities for tj−1 are the i-maximal elements in LLitG (2, ) and

LLitG (2, ) that are allowed to precede tj by the semi-standardness of t and by the filling
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restrictions (which can be found in Table B.5 in Appendix B). The set of possible fillings

for column tj+1 are just the fillings allowed to follow tj by the semi-standard condition and

by the filling restrictions .

Now, if tj
i−→ u in LLitG (2, ) or LLitG (2, ) , change the jth column of t to u. If u is

i-maximal, the jth column of t is now i-maximal. If u is not i-maximal, then there exists a

v such that u i−→ v in LLitG (2, ) or LLitG (2, ) . Now change the jth column of t from the

filling of u to that of v. Continue in this process until the jth column of t is i-maximal.

As we change the filling of tj , the numerical value of the entry in each box weakly

decreases, so note that its values will always be less than the values in the column tj+1.

We have verified by hand for every possibility for tj−1 and tj that the process described

in the previous paragraph never violates the semi-standard condition between the (j − 1)st

and jth columns of t. Thus, changing tj to maximal does not violate the semi-standard

condition of t. It can also be verified by hand (by considering each filling of tj together with

the set of possibilities for the fillings of tj−1 and tj+1), that making tj i-maximal does not

violate any of the filling restrictions. We show how we went about verifying these claims by

hand in Example 6.2.6 below. One observation that should be noted is that as we change

the filling of tj to i-maximal (“move up” an i-component), the new filling will not have any

restrictions that the previous filling did not have, but could possibly have fewer (this can

be seen by analyzing the covering relations in any i-component of tj in Figure B.4 along

with the filling restrictions listed in Table B.4).

Now we will consider the minimal case. Let s be any tableau in LLitG (2, λ) , where

λ = (a, b). Write s = (s1, . . . , sa+b). Suppose that sj+1, . . . , sa+b−1, sa+b are all i-minimal.
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If the column sj is not i-minimal, it can be made i-minimal with a process similar to that

for the maximal case.

If r i−→ sj in LLitG (2, ) or LLitG (2, ) , change the filling of column sj to that of r.

Continue this process of “walking down” the i-component until sj is i-minimal. 2

We will now consider an example that will illustrate how to make a column in a tableau

i-maximal and i-minimal.

Example 6.2.6 In the notation of the proof above, suppose tj =
4

7 . To change

the filling of the jth column of t to make it 1-maximal, we need to consider the possible

fillings of tj−1 and tj+1. Since tj−1 is assumed to be 1-maximal, we must have tj−1 ∈ {
1

2 ,
1

3 ,
1

6 ,
3

6 }, since those are the 1-maximal elements allowed to precede tj by the

semi-standard condition and the filling restrictions. Similarly, tj+1 ∈ {
5

7 ,
6

7 , 5 , 6

, 7 }. Now, since
4

7
1−→

3

7 , change tj to
3

7 . Observe that
3

7 will not produce any

violations on either side of tj . Also, note that
3

7 is not 1-maximal. But since
3

7 1−→
3

6

, change tj to
3

6 . Note that
3

6 is 1-maximal and that it does not produce any violations.

So
4

7 can be made 1-maximal by changing
4

7 to
3

7 to
3

6 .

Now let sj = tj =
4

7 . To force sj to be 1-minimal, note that by supposition, sj+1 is

1-minimal, so sj+1 ∈ {
5

7 ,
6

7 , 5 , 7 } . Also, sj−1 ∈ {
1

2 ,
1

3 ,
1

4 ,
1

5 ,
1

6 ,
2

5

,
2

6 ,
3

6 }. We can “walk
4

7 down” its 1-component to
5

7 , which is 1-minimal. So we

can change sj from
4

7 to
5

7 and not cause any filling violation.

Note that
4

7 is its own 2-component, so it is already 2-maximal and 2-minimal. 2

Corollary 6.2.7 Let t ∈LLitG (2, λ) , where λ = (a, b). Write t = (t1, . . . , ta+b). Then

li(t) = li(t1) + · · ·+ li(ta+b) and ρi(t) = ρi(t1) + · · ·+ ρi(ta+b).
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Proof. The previous proposition tells us how to form the max element tmax in the

i-component of t and the min element tmin in the i-component of t. To form tmax, we take

the max element in the i-component of each tl (1 ≤ l ≤ a+ b). Then, we put these columns

together (in the same order as their respective columns in t) into a tableau, forming tmax.

Similarly, form tmin.

Now we ask: How many steps are there from tmin to tmax? In the proof of the previous

proposition, we saw that we could take each column (tmin)l (which is i-minimal in LLitG (2,

) or LLitG (2, ) ) of tmin and in successive steps change it to (tmax)l. We do this for each

column of tmin, starting with column l = 1 and working our way left to right across the

tableau, completing the process for column l = a+ b. (Similarly, we could take each column

(tmax)l in tmax, starting with column l = a + b and then successively change each column

working left to column l = 1 ending up with tmin.) Thus, there are li(t1)+li(t2)+· · ·+li(ta+b)

steps between tmin and tmax. Therefore, li(t) = li(t1) + li(t2) + · · ·+ li(ta+b).

Next we ask: How many steps are there from tmin to t? In the first column, there are

ρi(t1) steps, in the second column ρi(t2), etc. So there are ρi(t1) + ρi(t2) + · · · + ρi(ta+b)

steps between tmin and t. Hence, ρi(t) = ρi(t1) + ρi(t2) + · · ·+ ρi(ta+b). 2

The next result is the main result of this thesis. It says, in effect, that the lattices

LLitG (2, λ) provide a good combinatorial setting for studying the irreducible representations

of G2.

Theorem 6.2.8 Let t ∈ LLitG (2, λ) , where λ = (a, b). Then, wtP (t) = wtLit(t).
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Proof. Let t ∈ LLitG (2, λ) , where λ = (a, b). Since LLitG (2, λ) is a distributive lattice

(cf. Corollary 6.2.2), LLitG (2, λ) has a unique maximal element. (In fact, any lattice has a

unique maximal element.)

Note that for a shape λ = (a, b), m ∈ LLitG (2, λ) is the (unique) maximal element if all

the entries in the first row are 1 and all the entries in the second row (if b 6= 0) are 2. (The

element m is maximal since there is not an entry that we can decrease without violating

the semi-standard condition.) That is, m has b columns of
1

2 and a columns of 1 .

Since λ = (a, b), then it can be observed that the 1-component of the maximal element

m ∈ LLitG (2, λ) is a chain of length a, and the 2-component of m is a chain of length b.

Thus, wtP (m) = (a, b).

To compute the weight of m using Littelmann’s weight rule, we will need to consider

Littelmann’s 6 × λ tableaux. That is, 1 = 1 1 1 1 1 1 ∈ KLit
G (2, 6× ) and

1

2 =
1 1 1 1 1 1
2 2 2 2 2 2 ∈ KLit

G (2, 6× ) . Thus,

wtLit( 1 ) = (1
6 [6], 1

6 [0]) = (1, 0) and

wtLit(
1

2 ) = (1
6 [6− 6], 1

6 [6]) = (0, 1).

Now, we will use the fact that Littelmann’s weight rule is additive (cf. Lemma 6.1.2).

That is, for t = (t1, . . . , ta+b) ∈ LLitG (2, λ) , wtLit(t) = wtLit(t1) + · · · + wtLit(ta+b). Since

m has b columns of
1

2 and a columns of 1 , the corresponding Littelmann 6× λ tableau

would have 6b columns of
1

2 and 6a columns of 1 . Thus, for Littelmann’s weight rule,

c1(m) = 6a+ 6b = 6(a+ b) and c2(m) = 6b. Hence,

wtLit(m) = (1
6 [6(a+ b)− 6b], 1

6 [6b])

= (1
6 [6a+ 6b− 6b], b)
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= (a, b).

Therefore, for the maximal element m ∈ LLitG (2, λ) , wtP (m) = wtLit(m).

Now suppose s i−→ t is any edge in LLitG (2, λ) . We will show that wtP (s)+αi = wtP (t),

where αi is the ith row of the Cartan matrix for G2,

 2 −1

−3 2

.

Since s, t are in the same i-component and ρi(s) + 1 = ρi(t), we have 2ρi(s)− li(s) + 2 =

2ρi(t)− li(t). If i = 1, then s, t are in the same 1-component and we can add 2 to the first

coordinate of wtP (s) to obtain the first coordinate of wtP (t). Similarly, if i = 2, we can

add 2 to the second coordinate of wtP (s) to obtain the second coordinate of wtP (t).

Now we will analyze the second coordinate of wtP (s) and wtP (t) for i = 1. Let s =

(s1, . . . , sj , . . . , sa+b) and t = (t1, . . . , tj , . . . , ta+b), where sl = tl (l 6= j) and sj
1−→ tj in

LLitG (2, ) or LLitG (2, ) . The previous corollary tells us that

l2(s) = l2(s1) + · · ·+ l2(sj) + · · ·+ l2(sa+b),

l2(t) = l2(t1) + · · ·+ l2(tj) + · · ·+ l2(st+b),

ρ2(s) = ρ2(s1) + · · ·+ ρ2(sj) + · · ·+ ρ2(sa+b), and

ρ2(t) = ρ2(t1) + · · ·+ ρ2(tj) + · · ·+ ρ2(ta+b).

But since sl = tl (l 6= j),

2ρ2(t)− l2(t)− (2ρ2(s)− l2(s)) = 2ρ2(tj)− l2(tj)− (2ρ2(sj)− l2(sj)).

(Recall that sj , tj are in LLitG (2, ) or LLitG (2, ) .)

Below we will consider the possibilities for sj
1−→ tj in LLitG (2, ) and LLitG (2, ) and

show that for each possibility the difference 2ρ2(tj)− l2(tj)− (2ρ2(sj)− l2(sj)) is −1.
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sj
1−→ tj ρ2(tj)− l2(tj) 2ρ2(sj)− l2(sj) Difference

2 1−→ 1 0 1 -1

4 1−→ 3 -1 0 -1

5 1−→ 4 0 1 -1

7 1−→ 6 -1 0 -1

1

4
1−→

1

3 -1 0 -1

1

5 1−→
1

4 0 1 -1

2

5
1−→

1

5 1 2 -1

2

6 1−→
1

6 -1 0 -1

2

7 1−→
2

6 0 1 -1

1

7
1−→

1

6 -1 0 -1

2

7 1−→
1

7 0 1 -1

3

7
1−→

3

6 -2 -1 -1

4

7 1−→
3

7 -1 0 -1

5

7 1−→
4

7 0 1 -1

Thus, for i = 1, we can add −1 to the second coordinate of wtP (s) to obtain the second

coordinate of wtP (t). Therefore, if s 1−→ t, wtP (s) + α1 = wtP (t).

Now for i = 2, we still need to analyze the first coordinate of wtP (s) and wtP (t). Now,

s = (s1, . . . , sj , . . . , sa+b) and t = (t1, . . . , tj , . . . , ta+b), where sl = tl(l 6= j) and sj
2−→ tj in

LLitG (2, ) or LLitG (2, ) . By the previous corollary, we have
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2ρ1(t)− l1(t)− (2ρ1(s)− l1(s)) = 2ρ1(tj)− l1(tj)− (2ρ1(sj)− l1(sj)).

Below we will consider the possibilities for sj
2−→ tj in LLitG (2, ) and LLitG (2, ) and

show that for each, the difference 2ρ1(tj)− l1(tj)− (2ρ1(sj)− l1(sj)) is −3.

sj
2−→ tj ρ1(tj)− l1(tj) 2ρ1(sj)− l1(sj) Difference

3 2−→ 2 -1 2 -3

6 2−→ 5 -2 1 -3

1

3 2−→
1

2 0 3 -3

1

6 2−→
1

5 -1 2 -3

2

6
2−→

2

5 -3 0 -3

3

6 2−→
2

6 0 3 -3

3

7
2−→

2

7 -2 1 -3

6

7 2−→
5

7 -3 0 -3

Thus, if s 2−→ t, wtP (s) + α2 = wtP (t).

Therefore, if s i−→ t in LLitG (2, λ) , we have wtP (s) + αi = wtP (t), where αi is the ith

row of the Cartan matrix

 2 −1

−3 2

.

Thus, since wtP (m) = wtLit(m), where m is the maximal element of LLitG (2, λ) , if

r i−→m, we can subtract αi from each of wtP (m) and wtLit(m), and then we’ll have that

wtP (r) = wtLit(r). We can continue this process of subtracting αi as we “work down” the

lattice. Thus, for any t ∈ LLitG (2, λ) , wtP (t) = wtLit(t). 2
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6.3 Conclusions. We should now make some remarks about Conjecture 6.2.3. If

LLitG (2, λ) is to be a support for G2(λ), LLitG (2, λ) must satisfy the conditions listed in

Proposition 4.2.1. We know from Theorem 6.2.4 that the number of vertices in LLitG (2, λ)

equals the dimension of G2(λ), so the first necessary condition is satisfied. Although we

will not prove it in this thesis, it actually follows as a consequence of Theorem 6.2.8 that

LLitG (2, λ) is a rank symmetric and rank unimodal poset. It can also be seen from LLitG (2,

) and LLitG (2, ) in Figure B.4 (the fundamental representations of G2(λ)) that r1 = 6

and r2 = 10. In light of Theorem 6.2.2 and the description of covering relations on page

42, one can easily see that for a shape λ = (a, b), LLitG (2, λ) has 6a + 10b + 1 ranks. So

we have established (most of) necessary condition (2) of Proposition 4.2.1 for LLitG (2, λ)

. By Theorem 6.2.8, for t ∈ LLitG (2, λ) , wtP (t) = wtLit(t), so since Littelmann’s weight

rule, wtLit is well-defined, the combinatorial weight rule, wtP , is also well-defined, and

thus, LLitG (2, λ) satisfies condition (3). Therefore, we have good evidence to support the

conjecture, and we can say with some confidence that LLitG (2, λ) is a good candidate for

being a supporting graph for the representation G2(λ).

We did not find a second family of lattices to analogize the supporting graphs LGT−rightA (2, λ)

for A2. In [Mol1] and [Mol2], Molev constructs the irreducible representations of the simple

rank two Lie algebra C2 in two ways. It is possible that the supporting graphs for these con-

structions are the “right” analogs of the Gelfand-Tsetlin supports, and their existence may

shed some light on the possibility of finding a second family of supports for representations

of G2.



Appendix A

Basis Matrices for the Lie Algebras C2 and B2

Type C2: The basis matrices for so(2n+ 1,C) in the case n = 2 are shown here.

For sp(4,C), B =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


. The matrices X =

 0 N

0 0

 with N = NT

are


0

1 0

0 0

0 0

,


0

0 0

0 1

0 0

, and


0

0 1

1 0

0 0

. The matrices X =

 0 0

P 0



with P = P T are


0 0

1 0

0 0

0

,


0 0

0 0

0 1
0

,


0 0

0 1

1 0
0

. The matrices X =

 M 0

0 Q

 with MT = −Q (Q = −MT ) are



1 0

0 0
0

0
−1 0

0 0


,



0 0

0 1
0

0
0 0

0 −1


,



0 1

0 0
0

0
0 0

−1 0


, and



0 0

1 0
0

0
0 −1

0 0


. Note that the set of these matrices is a

basis and spans sp(4,C). Thus, sp(4,C) is a 10-dimensional Lie subalgebra of gl(4,C).
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Type B2: The basis matrices for sp(2n,C) for n = 2 are worked out here as an example.

For so(5,C), B =



1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0


. For n = 2, the matrix X =


0 0 0

0 0 N

0 0 0

 with

−N = NT is



0 0 0 0 0

0

0
0

0 1

−1 0

0

0
0 0


. The matrix X =


0 0 0

0 0 0

0 P 0

 with −P = P T is



0 0 0 0 0

0

0
0 0

0

0

0 −1

1 0
0


. The matrices X =


0 0 0

0 M 0

0 0 Q

 with Q = −MT are



0 0 0 0 0

0

0

0 1

0 0
0

0

0
0

0 0

−1 0


,



0 0 0 0 0

0

0

0 0

1 0
0

0

0
0

0 −1

0 0


,



0 0 0 0 0

0

0

1 0

0 0
0

0

0
0

−1 0

0 0


, and
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

0 0 0 0 0

0

0

0 0

0 1
0

0

0
0

0 0

0 −1


. The matrices X =


0 0 S2

T1 0 0

0 0 0

 where −S2 = T1
T are



0 0 0 1 0

−1

0
0 0

0

0
0 0


and



0 0 0 0 1

0

−1
0 0

0

0
0 0


. The matrices X =


0 S1 0

0 0 0

T2 0 0



where −S1 = T2
T are



0 1 0 0 0

0

0
0 0

0

−1
0 0


and



0 0 1 0 0

0

0
0 0

0

−1
0 0


. This set of

matrices forms a basis and spans so(5,C). Thus, we have that so(5,C) is a 10-dimensional

Lie subalgebra of gl(5,C).



Appendix B

Lattices for A2(λ) and G2(λ)

Figure B.1 Gelfand-Tsetlin supports for A2(λ) with λ = (2, 1).
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Figure B.2 Lattice of Littelmann’s 6× λ tableaux for λ = (1, 0).
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Figure B.3 Lattice of Littelmann’s 6× λ tableaux for λ = (0, 1).
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Figure B.4 Lattices of Littelmann’s G2 tableaux of shapes λ = (1, 0) and λ = (0, 1).
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Table B.5 Filling Restrictions for Littelmann’s G2 tableaux

Filling Cannot be followed by a column with a

4 4

1

4 1

1

5 1

1

6 1 or 2

1

7 1 , 2 , 3 , or 4

2

6 2

2

7 2 , 3 , or 4

3

7 3 or 4

4

7 4
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Figure B.6 Lattice of Littelmann’s G2 tableaux for shape λ = (2, 0).
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Figure B.7 Lattice of Littelmann’s G2 tableaux for λ = (0, 2).
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