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It is possible to use purely mathematical reasoning to prove that planets have elliptical orbits. This
can be done by solving a sequence of simple problems. In what follows, r(t) is a smooth, arbitrary
speed curve, v(t) := r′(t), and a(t) := r′′(t). The assertions in #1 through #7 below make no
reference to physics whatsoever, but it still might be helpful to think of r(t) as the curve traced out
in space by the orbit of a planet. Although r(t), v(t), and a(t) are functions of time and depend
on t, we will sometimes omit t and just write r, v, or a when referring to these vector functions.

1. Suppose that the acceleration a(t) is parallel to r(t) for all time t. Prove that the torsion τ(t)
is zero for all t (and hence the curve lies in a plane).
discussion: A curve r(t) lies in a plane if and only if its torsion τ(t) is identically zero for all time t (cf.
Exercise #43 (d) from §13.3.) Now by Exercise #45 (d) from §13.3, we have

τ(t) =
(r′(t) × r′′(t)) · r′′′(t)

|r′(t) × r′′(t)|2

We have a(t) = r′′(t) = λ(t)r(t) for some scalar function λ(t) since a is parallel to r at any time t. Thus,
r′′′(t) = a′(t) = d

dt
(λ(t)r(t)) = λ′(t)r(t) + λ(t)r′(t). So we have:

τ(t) =
(r′ × λr) · (λ′r + λr′)

|r′ × λr|2

Why does it follow that τ(t) = 0 for all time t?

2. Under these same assumptions, show that r(t)× v(t) is some constant vector c.
discussion: Using the product rule for derivatives of cross products, we have

d

dt
(r(t) × v(t)) = v × v + r× a

Why are both of the cross products on the right-hand side of this identity equal to 0 (the zero vector)? Once

this has been established, it follows that the derivative of r(t)× v(t) is 0, whence r(t)× v(t) is some constant

vector c.

3. If r and a are parallel for all time t, prove that

d

dt

(
v × (r× v)

)
= a× (r× v).

discussion: Using the product rule for derivatives of cross products, we have

d

dt

(
v × (r× v)

)
= a× (r× v) + v ×

(
d

dt
(r× v)

)
Why is

d

dt
(r× v) = 0?

4. If a = − k

r3
r (where k is some constant and r = r(t) = |r(t)|), show that

a× (r× v) =
d

dt

(k

r
r
)
.



discussion: On the right-hand side, we see that
d

dt

(
k

r
r
)

= −k r′

r2
r +

k

r
r′. An identity from Theorem 8 of

§12.4 says that a × (r × v) = (a · v)r − (a · r)v. So it must be shown that a · v = − k r′

r2 and that a · r = − k
r
.

The last identity is easy, since a · r = − k
r3 r · r = − k

r3 r2 = − k
r
. So why does a · v = − k r′

r2 ? hint: Start with

the identity r2 = r · r and differentiate both sides with respect to t.

5. Again assume that a = − k

r3
r. Show that there exists a constant vector b such that:

v × (r× v) =
k

r
r + b.

discussion: By #3 and #4, we see that the vector functions v(t) × (r(t) × v(t)) and
k

r(t)
r(t) have the same

derivative. Then they must differ by a constant, i.e. there is a constant vector b such that v(t)×(r(t)×v(t)) =
k

r(t)
r(t) + b for all time t.

6. Show that the (polar coordinates) function r =
p

1 + e cos θ
is an ellipse. (Here, p and e are

constants, but e isn’t meant to be confused with the base of the natural exponential function.)

discussion: It’s worth trying to work this out by hand on one’s own. For brevity, however, I’ll just refer you

to Theorem 6 of §10.7.

7. Now again assume that a = − k

r3
r. Show that r(t) moves along an ellipse with equation (in

polar coordinates) r =
p

1 + e cos θ
, where p = ‖c‖2

k and e = ‖b‖
k .

discussion: Let P be the plane through the origin that is orthogonal to the vector c. Since r(t)×v(t) = c for
all time t, it follows that r(t) lies in P . Also, v(t)× c is orthogonal to c for all time t, so v(t) lies in P . Since
b = v× c− k

r
r, then b · c = 0, so b is in P . Let θ = θ(t) be the angle in the plane P between the vectors r(t)

and b as r(t) sweeps through space. Then:

c · c = (r× v) · c
= r · (v × c) (Why?) (See Theorem 8 §12.4)

= r · (k

r
r + b)

=
k

r
r · r + r · b

=
k

r
r2 + |r||b| cos θ

So we see that |c|2 = kr + r|b| cos θ. Solve for r to get r =
p

1 + e cos θ
, where p = ‖c‖2

k
and e = ‖b‖

k
.

8. Application to celestial mechanics: Let r(t) be the space curve describing the orbit of a
planet moving through the gravitational field of the sun. Prove that the orbit is elliptical by
putting together Newton’s Second Law of motion (F = ma) with Newton’s Universal Law of

Gravitation (F = −GMm

r2
u). (In this last equation, G is the universal gravitational constant,

M is the mass of the sun, m is the mass of the planet, and u is a unit vector in the direction
of r.)

discussion: All we need to do now is show that a = − k

r3
r for some constant k, and then we can invoke

#7. Notice that in Newton’s Universal Law of Gravitation, u = 1
r
r. Now set ma = −GMm

r2 u = −GMm
r2

1
r
r =

−GMm
r3 r.


