On Kepler's Laws of Planetary Motion Rob Donnelly From Murray State University's Calculus III, Spring 2004

NOTE: All section references are to the text <u>Calculus with Early Transcendentals</u>, 4th ed., by James Stewart.

It is possible to use purely mathematical reasoning to prove that planets have elliptical orbits. This can be done by solving a sequence of simple problems. In what follows, $\mathbf{r}(t)$ is a smooth, arbitrary speed curve, $\mathbf{v}(t) := \mathbf{r}'(t)$, and $\mathbf{a}(t) := \mathbf{r}''(t)$. The assertions in #1 through #7 below make no reference to physics whatsoever, but it still might be helpful to think of $\mathbf{r}(t)$ as the curve traced out in space by the orbit of a planet. Although $\mathbf{r}(t)$, $\mathbf{v}(t)$, and $\mathbf{a}(t)$ are functions of time and depend on t, we will sometimes omit t and just write \mathbf{r} , \mathbf{v} , or \mathbf{a} when referring to these vector functions.

1. Suppose that the acceleration $\mathbf{a}(t)$ is parallel to $\mathbf{r}(t)$ for all time t. Prove that the torsion $\tau(t)$ is zero for all t (and hence the curve lies in a plane).

DISCUSSION: A curve $\mathbf{r}(t)$ lies in a plane if and only if its torsion $\tau(t)$ is identically zero for all time t (cf. Exercise #43 (d) from §13.3.) Now by Exercise #45 (d) from §13.3, we have

$$\tau(t) = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \cdot \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}$$

We have $\mathbf{a}(t) = \mathbf{r}''(t) = \lambda(t)\mathbf{r}(t)$ for some scalar function $\lambda(t)$ since \mathbf{a} is parallel to \mathbf{r} at any time t. Thus, $\mathbf{r}'''(t) = \mathbf{a}'(t) = \frac{d}{dt}(\lambda(t)\mathbf{r}(t)) = \lambda'(t)\mathbf{r}(t) + \lambda(t)\mathbf{r}'(t)$. So we have:

$$\tau(t) = \frac{(\mathbf{r}' \times \lambda \mathbf{r}) \cdot (\lambda' \mathbf{r} + \lambda \mathbf{r}')}{|\mathbf{r}' \times \lambda \mathbf{r}|^2}$$

Why does it follow that $\tau(t) = 0$ for all time t?

2. Under these same assumptions, show that $\mathbf{r}(t) \times \mathbf{v}(t)$ is some constant vector **c**. DISCUSSION: Using the product rule for derivatives of cross products, we have

$$\frac{d}{dt}(\mathbf{r}(t) \times \mathbf{v}(t)) = \mathbf{v} \times \mathbf{v} + \mathbf{r} \times \mathbf{a}$$

Why are both of the cross products on the right-hand side of this identity equal to **0** (the zero vector)? Once this has been established, it follows that the derivative of $\mathbf{r}(t) \times \mathbf{v}(t)$ is **0**, whence $\mathbf{r}(t) \times \mathbf{v}(t)$ is some constant vector **c**.

3. If **r** and **a** are parallel for all time t, prove that

$$\frac{d}{dt} \Big(\mathbf{v} \times (\mathbf{r} \times \mathbf{v}) \Big) = \mathbf{a} \times (\mathbf{r} \times \mathbf{v}).$$

DISCUSSION: Using the product rule for derivatives of cross products, we have

$$\frac{d}{dt} \left(\mathbf{v} \times (\mathbf{r} \times \mathbf{v}) \right) = \mathbf{a} \times (\mathbf{r} \times \mathbf{v}) + \mathbf{v} \times \left(\frac{d}{dt} (\mathbf{r} \times \mathbf{v}) \right)$$

Why is $\frac{d}{dt}(\mathbf{r} \times \mathbf{v}) = \mathbf{0}$?

4. If $\mathbf{a} = -\frac{k}{r^3}\mathbf{r}$ (where k is some constant and $r = r(t) = |\mathbf{r}(t)|$), show that

$$\mathbf{a}\times(\mathbf{r}\times\mathbf{v})=\frac{d}{dt}\Big(\frac{k}{r}\mathbf{r}\Big)$$

DISCUSSION: On the right-hand side, we see that $\frac{d}{dt}\left(\frac{k}{r}\mathbf{r}\right) = -\frac{kr'}{r^2}\mathbf{r} + \frac{k}{r}\mathbf{r'}$. An identity from Theorem 8 of §12.4 says that $\mathbf{a} \times (\mathbf{r} \times \mathbf{v}) = (\mathbf{a} \cdot \mathbf{v})\mathbf{r} - (\mathbf{a} \cdot \mathbf{r})\mathbf{v}$. So it must be shown that $\mathbf{a} \cdot \mathbf{v} = -\frac{kr'}{r^2}$ and that $\mathbf{a} \cdot \mathbf{r} = -\frac{k}{r}$. The last identity is easy, since $\mathbf{a} \cdot \mathbf{r} = -\frac{k}{r^3}\mathbf{r} \cdot \mathbf{r} = -\frac{k}{r^3}r^2 = -\frac{k}{r}$. So why does $\mathbf{a} \cdot \mathbf{v} = -\frac{kr'}{r^2}$? HINT: Start with the identity $r^2 = \mathbf{r} \cdot \mathbf{r}$ and differentiate both sides with respect to t.

5. Again assume that $\mathbf{a} = -\frac{k}{r^3}\mathbf{r}$. Show that there exists a constant vector **b** such that:

$$\mathbf{v} imes (\mathbf{r} imes \mathbf{v}) = rac{k}{r}\mathbf{r} + \mathbf{b}.$$

DISCUSSION: By #3 and #4, we see that the vector functions $\mathbf{v}(t) \times (\mathbf{r}(t) \times \mathbf{v}(t))$ and $\frac{k}{r(t)}\mathbf{r}(t)$ have the same derivative. Then they must differ by a constant, i.e. there is a constant vector \mathbf{b} such that $\mathbf{v}(t) \times (\mathbf{r}(t) \times \mathbf{v}(t)) = \frac{k}{r(t)}\mathbf{r}(t) + \mathbf{b}$ for all time t.

- 6. Show that the (polar coordinates) function $r = \frac{p}{1 + e \cos \theta}$ is an ellipse. (Here, p and e are constants, but e isn't meant to be confused with the base of the natural exponential function.) DISCUSSION: It's worth trying to work this out by hand on one's own. For brevity, however, I'll just refer you to Theorem 6 of §10.7.
- 7. Now again assume that $\mathbf{a} = -\frac{k}{r^3}\mathbf{r}$. Show that $\mathbf{r}(t)$ moves along an ellipse with equation (in polar coordinates) $r = \frac{p}{1 + e \cos \theta}$, where $p = \frac{\|\mathbf{c}\|^2}{k}$ and $e = \frac{\|\mathbf{b}\|}{k}$.

DISCUSSION: Let *P* be the plane through the origin that is orthogonal to the vector **c**. Since $\mathbf{r}(t) \times \mathbf{v}(t) = \mathbf{c}$ for all time *t*, it follows that $\mathbf{r}(t)$ lies in *P*. Also, $\mathbf{v}(t) \times \mathbf{c}$ is orthogonal to **c** for all time *t*, so $\mathbf{v}(t)$ lies in *P*. Since $\mathbf{b} = \mathbf{v} \times \mathbf{c} - \frac{k}{r}\mathbf{r}$, then $\mathbf{b} \cdot \mathbf{c} = 0$, so **b** is in *P*. Let $\theta = \theta(t)$ be the angle in the plane *P* between the vectors $\mathbf{r}(t)$ and **b** as $\mathbf{r}(t)$ sweeps through space. Then:

$$\mathbf{c} \mathbf{c} = (\mathbf{r} \times \mathbf{v}) \cdot \mathbf{c}$$

= $\mathbf{r} \cdot (\mathbf{v} \times \mathbf{c})$ (Why?) (See Theorem 8 §12.4)
= $\mathbf{r} \cdot (\frac{k}{r}\mathbf{r} + \mathbf{b})$
= $\frac{k}{r}\mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{b}$
= $\frac{k}{r}r^2 + |\mathbf{r}||\mathbf{b}|\cos\theta$

So we see that $|\mathbf{c}|^2 = kr + r|\mathbf{b}|\cos\theta$. Solve for r to get $r = \frac{p}{1 + e\cos\theta}$, where $p = \frac{\|\mathbf{c}\|^2}{k}$ and $e = \frac{\|\mathbf{b}\|}{k}$.

С

8. Application to celestial mechanics: Let $\mathbf{r}(t)$ be the space curve describing the orbit of a planet moving through the gravitational field of the sun. Prove that the orbit is elliptical by putting together Newton's Second Law of motion ($\mathbf{F} = m\mathbf{a}$) with Newton's Universal Law of Gravitation ($\mathbf{F} = -\frac{GMm}{r^2}\mathbf{u}$). (In this last equation, G is the universal gravitational constant, M is the mass of the sun, m is the mass of the planet, and \mathbf{u} is a unit vector in the direction of \mathbf{r} .)

DISCUSSION: All we need to do now is show that $\mathbf{a} = -\frac{k}{r^3}\mathbf{r}$ for some constant k, and then we can invoke #7. Notice that in Newton's Universal Law of Gravitation, $\mathbf{u} = \frac{1}{r}\mathbf{r}$. Now set $m\mathbf{a} = -\frac{GMm}{r^2}\mathbf{u} = -\frac{GMm}{r^2}\frac{1}{r}\mathbf{r} = -\frac{GMm}{r^3}\mathbf{r}$.